USENIX Association

Proceedings of the 17" Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26-31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Designing a Configuration Monitoring
and Reporting Environment

Xev Gittler and Ken Beer — Deutsche Bank

ABSTRACT

The Configuration Monitoring and Reporting Environment (CMRE) is a tool designed to
collect and report on the many configuration details of systems within an enterprise. It is designed
to gather information on systems about which initially very little is known. CMRE needs few
prerequisites in order to do its job. CMRE is modular, flexible and runs on many different
platforms. It is written in a combination of Perl, Korn shell and PHP and uses proprietary as well
as open-source software. CMRE currently collects data on thousands of UNIX and Windows
systems at Deutsche Bank world wide. This paper will describe the conditions that led to the need
for such a tool, its design and limitations as well as the difficulties found along the way. This paper
will also touch upon our performance monitoring tool (PMRE), whose data we use to help us

understand our systems environment.

Accommodating Rapid Growth

Over the last ten years, Deutsche Bank (DB) has
executed a strategy which has led to its rapid growth
as a dominant player in the investment banking indus-
try. This strategy involved organic growth, acquisi-
tions and mergers. The natural outgrowth of this strat-
egy is that our systems environment contains a diverse
set of systems built in a number of organizations, with
differing standards and procedures. There was an
obvious case for improving the infrastructure by con-
solidating our infrastructure to provide an environ-
ment that is more efficient, uniform and easy to ser-
vice. We wanted to provide a platform that would
allow us to more easily answer questions from man-
agement about configuration and security issues.

Some of the questions that we wanted to be able
to more easily answer include:

e Security: List all machines that are patched
appropriately

® Capacity Planning: List number of machines
with empty CPU slots.

e Physical moves: List all machines pointing to a
particular DNS server

Given that the different environments came with
their own standards and procedures, we wanted to
develop a uniform mechanism for retrieving informa-
tion to enable us to understand our environment as a
whole. Once we had a uniform method, we could fur-
ther improve our environment by adding proactive
management tools.

Our goal is to proactively manage all our sys-
tems, including all configuration options. We want to
be able to specify from a central location exactly how
a system is configured without having to wait for an
SA to specify the data, but which requires some initial
consistency, which we cannot easily get until we have
a good view of what the systems look like.

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

Design Specifications

When designing the CMRE system, our primary
goals were to put a system in place that could be
deployed quickly (within a few months), did not
require significant effort or expense, yet vastly
improved our ability to understand our environment.
We examined a number of systems deployed internally
as well as external products, such as Explorer,
cfengine, and SNMP-based solutions, but ultimately
determined that the simplest, most flexible method
was to develop a single homegrown system, based on
the design principles of an existing tool already
deployed in one of our branch offices.

We needed to develop an inexpensive, simple,
powerful, multiplatform solution. The client software
would run as root on every UNIX system at DB glob-
ally, but would switch to the minimal permissions
required for each particular command. Therefore, we
needed to ensure that the software would be safe and
would not add unexpected load to our client systems.
We could not risk using software that we did not com-
pletely understand. On the other hand, we could not
build a lab to fully test the software because we did
not know what kinds of systems were installed. Find-
ing, testing, and adapting another’s solution was there-
fore deemed to be as time consuming as writing a sim-
ple custom application.

In order to determine the primary functionality of
the system, we conducted extensive discussions with
the various groups that we considered stakeholders in
this project and took their needs into account:

e System Administrators — need to examine the
systems in detail, and view consolidated system
data in order to troubleshoot, upgrade and move
systems.

e Security/Audit — need to examine summary
reports and drill down to see specific problems.

61

Designing a Configuration Monitoring and Reporting Environment

® Developers — need to analyze the impact of
their applications on their systems and deter-
mine resources available to them.

¢ Engineering groups — need to find systemic
bottlenecks and need to be able to plan for
infrastructure changes.

* Business Managers — need to examine resource
utilization and system status across their business.

e Senior Management — need to see high level
overviews of status and performance across all
systems globally, summarized by group.

Based on the above, we determined that our configura-
tion monitoring system should provide:

® Accessible configuration information — The
basic feature of the system should be to take
data that was previously only available in many
different, scattered, often inaccessible locations
and gather and present it from a single location.

¢ Planning data — We required a comprehensive
and easily accessible company-wide picture of
systems in order to plan for future growth. For
instance, without knowing how many machines
were running Solaris 2.6, we could not assess
the size of the task of upgrading these systems
when the operating system was at end-of-life.
Nor could we determine when applications
could be retired if we did not know the applica-
tion use metrics.

* Problem Detection and Repair — We required
the ability to identify and correct system spe-
cific problems in all affected machines as soon
as the problem arose or even before it became
an issue. For instance, when we found an issue,
we wanted to check all systems that might be
similarly affected and either patch the system or
mark it so that when the problem occurred, we
would be able to quickly determine the correc-
tive course of action. Similarly, we needed to
be able to identify and repair security and audit
issues. Without system configuration informa-
tion, we had to manually examine each and
every system to determine whether security or
audit issues affected the system.

* Historical Configuration Information — We
wanted to gather and store a significant amount
of configuration data about each system in our
environment, including historical information
for comparison purposes.

¢ Flexibility — We wanted to add additional
information collectors and reports easily as new
requirements arose.

¢ Support for Multiple Operating Systems —
We wanted the system to work across all our
supported operating systems, gathering detailed
information on all systems.

* Audience Specific Views — We wanted to be
able to present support group level summariza-
tions of configuration data, such as a list of all
systems within a group running a particular

62

Gittler & Beer

operating system, or running on particular hard-
ware, and view summary information via a web
front end. In addition, we wanted to present
management with global summarizations of
configuration data

¢ Data Filtering — We wanted to filter data, such
as flagging all systems that did not meet a par-
ticular standard, such as a minimal operating
system level, or a particular security patch.

¢ External Data Connectivity — We wanted to
tie into our inventory, monitoring, security and
other databases, and help us improve the qual-
ity of that data.

The overarching design goal was to create a sin-
gle portal where users could find any and all configu-
ration information they might require, regardless of
whether we changed the underlying tool used to col-
lect the information. We wanted a single place that
provided all the configuration information that one
might require.

Recognizing that information gathering and
reporting requirements would grow in sophistication
as people began to use these systems, the system had
to be designed with the flexibility to grow in unex-
pected ways. This required the ability to tailor reports
to various audiences (e.g., CIOs, IT Senior Manage-
ment, applications/development managers, support
managers, and system and database administrators).

The Challenges

Once we had a basic design concept we needed
to make it work within the diverse environment that
currently existed. This section will discuss the various
issues that we ran across and how we addressed them.
Many of these challenges are a direct result of com-
bining organizations and systems as part of our com-
pany’s rapid growth.

Multiple Operating Systems and Revisions

As is typical in investment banks, we are
required to support a number of different operating
systems and versions supporting different businesses.
We needed to support a range of operating systems,
including multiple versions of Solaris, AIX, Linux,
HPUX and Windows. While we were willing to sup-
port different sets of scripts for Windows and Unix,
we wanted to maintain a single set of scripts for all
Unix platforms. We also wanted output to be as simi-
lar as possible from all operating systems.

No Guarantee Of Tools On Client Systems

Because we had grown from multiple environ-
ments, one of the first major hurdles we came across
was that there was not consistent tool set available
across all systems. Our initial thought was to write the
tool in Perl, but we were unable to do so because most
of our machines did not have Perl installed. We con-
sidered deploying Perl with the client software, but
decided coordinating multiple versions of Perl would

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

Gittler & Beer

Designing a Configuration Monitoring and Reporting Environment

be more trouble than it was worth. We chose Korn
shell (ksh) as a common denominator and did not use
any external tools that did not install by default on all
operating systems we were using.

File System Layout and Disk Space Allowance

Since our systems were installed by a wide variety
of groups that were working from different specifica-
tions, we could not rely on any particular file system to
be available. Some machines had /opt, some had /apps,
some /usr/local. In some cases, /ust/local was NFS
mounted read-only. Many of the systems had minimal
disk configurations, so we had to ensure that both our
scripts and their output fit in 10-30 MB of space.

Minimal Client Processing

Many of our business areas are extremely sensi-
tive to any additional load placed on their systems.
Because of this restriction we had to minimize the pro-
cessing of data on the client system. Our experience is

that should our software interrupt a running applica-
tion, the application’s business owner could forbid the

running of our code on their systems and force us to
use a custom solution (or do without).

Different Trust Mechanism

Throughout the bank we had many different
mechanisms for allowing access to hosts, including
SSH based golden hosts! for large groups and a vari-
ety of other mechanisms for smaller groups. For
CMRE, however, we would require access to all sys-
tems across the bank.

Unexpected Configurations
When writing our scripts, we tested across a rea-

sonable variety of systems. However interesting things
can happen when, for instance, we run a disk

1A golden host is a well secured machine that has secure

access to other machines. It is used for a variety of system
administration purposes.
Data Data Data Data Data
Collector Collector Collector jesesses Collector Collector =

UNIX Database Application Other Collectors

Local Logging Local Logging Local Logging Local Logging
N\ \ 7 7
N\ \\ /I /

\ Execu%n / Harvester
N\ / /

Execution / Narvesting

) Filter /
Post Processing => Categorization \
5 . Filter /
re— Post Processing F— Categorization
Repository . : Filter / .
Processing Post Processing Categorization ||
] Filter / \
Post Processing = Categorization \
1 \
E 1
................. \ >
3 \ g
Post Processing « \ =
3 o
\ DT \ B
\ Q p—
\ =
\ 3
Y, B !
Yy %; \
Y/ > \
g M > Reports to Users 1
Reports / Feedback ‘
]
/
/

N\

User Feedback//
Requests

Figure 1: Block diagram of CMRE.

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

63

Designing a Configuration Monitoring and Reporting Environment

information command on a system with over 3,000
attached disks. As we find edge-cases like this, we mod-
ified our scripts to be even more careful and generic.
Often the unexpected actions happen because of an
incorrect system configuration. The impulse is to say,
“You should not put swap on a CDRW” or “you
should not run 10 copies of Oracle on an Ultral,”

Gittler & Beer

regardless of how oddly configured. Improving the
infrastructure is a separate task.

The Tool

The tool that we designed is part of a framework
we call the Monitoring and Reporting Environment
(MRE). This paper discusses only the Configuration

(CMRE) and (briefly) the Performance (PMRE) com-
ponents.

however there may be perfectly valid reasons for these
configurations. It cannot be a requirement of CMRE
for a system to be configured in a particular way.
CMRE’s job is to collect data from every system,

The CMRE architecture is based on a simple,
modular framework. CMRE consists of

Sys Sys Cmd/
Type Vers File

Output Command or

Run as Filename File

Category Description

Automount All All C Nobody Isautomnt Is -al /etc/auto_* Get timestamp of automounter files

Automount All All F Nobody Jetc/auto_* Get automounter files

Config SunOS All C Nobody Isgrpsys Is -al /etc/system Get kernel config

Config All Al C Nobody Isvarspl Is -1aR /var/spoolicron ~ Get timestamps on cron directory tree

Config All Al C Nobody hostid hostid Get the unix host id

Config All All C Nobody uptime uptime Get the time alive

Config All All C Nobody date date -u Date Stamp

Config All All C Nobody findperl findperl.sh Find where perl is

Config All Al F Nobody [etc/profile Get the host default user profile

Config All Al F Nobody Jetc/services Get the local services file

Config All Al F Nobody Jetc/protocols Get the local protocols file

Config All All F Nobody Jopt/mitk5/etc/krb5.conf MIT K35 config file

Config All Al F Nobody Jopt/mitkS/etc/ad.conf MIT K5 config file

Config All Al F Root /login root’s login info

Config All Al F Root /.cshrc root’s login info

Config SunOS Al C Nobody Ipstat Ipstat -t Get printer config

Config SunOS All C Root orcaperf orcaperf.sh Get the orca performance data

Config SunOS All C Nobody dmesg dmesg SunOS specific command to get kernel
messages

Config SunOS All C Nobody uname uname -a Get the unix machine/OS level id info

Config SunOS All C Nobody swap-s swap -s Get the active swap space

Config SunOS All C Nobody swap-1 swap | List the swap areas

Config SunOS All C Nobody pkginfo pkginfo - Dump the verbose package listing

Config SunOS All C Nobody modinfo modinfo Dump the kernel modules

Config SunOS All C Nobody showrev showrev -a Show package and patch info

Filesystem SunOS All C Nobody dfufs df -kF ufs Display all ufs filesystems

Filesystem SunOS All C Nobody dfvxfs df -kF vxfs Display all veritas filesystems

Filesystem SunOS All C Nobody dfnfs df -kF nfs Display all nfs mounts

Filesystem SunOS All C Root veritas veritas.sh Display veritas info

Filesystem SunOS All C Root veritas-ha ha.sh Display HA info

Filesystem AIX All C Nobody mount mount Show what filesystems currently
mounted

Filesyslem AIX All C Nobody Isfs Isfs -c AIX speciﬁc command to list
filesystems

Filesystem SunOS All F Nobody Jetc/vfstab SunOS specific file containing filesystem
mount points

Filesystem SunOS All F Nobody letc/nfssec.conf SunOS specific file for NFS security

Filesystem AIX All F Nobody [etc/filesystems AIX specific for filesystems

Filesystem Linux All C Nobody dfext2-linux df -kF ext2 Display all ext2 filesystems

Filesystem Linux All C Nobody dfrfs-linux df -kF reiserfs Display all nfs mounts

Hardware SunOS All C Nobody prtdiag pridiag -v SunOS specific command displaying
hardware info

Hardware SunOS All C Nobody eeprom eeprom -v SunOS specific command displaying PROM

settings

Table 1: Sample lines from master configuration file.

64 2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Gittler & Beer

® Minimal collector software

® An execution component for running the col-
lector software

® A harvesting component for gathering the data
to a central location

e A processing component for aggregating and

Designing a Configuration Monitoring and Reporting Environment

using either our installed framework product or our
golden host infrastructure. It parses the appropriate
commands file (described below) and uses it to
acquire the appropriate files, and run the appropriate
commands and scripts. Before they’re run the com-
mands and scripts are first wrapped in an OS-specific

mining the data
¢ A browser-based reporting component
Figure 1 depicts the components of CMRE.

shell wrapper. This way collectors can be as simple as
a single command yet still have appropriate variables
set, traps, etc. STDOUT and STDERR are collected as
well as measurements of the time the command took
to complete and timeout alarms. Success or failure is
recorded as well.

Collector

The collector is a set of Korn shell scripts and
configuration files. Master.sh is the script that is run

/.cshre /etc/inetd.conf /etc/protocols /etc/sudoers

/login /etc/init.d/* /etc/rc* /etc/syslog.conf
/etc/*.conf /etc/inittab /etc/resolv.conf /etc/system

/etc/adsm /etc/irs.conf /ete/rpe /ete/vistab

/etc/auto_* /etc/lvm /etc/security/audit/config /opt/mitk5/etc/ad.conf
/etc/cron.d/cron.allow /etc/mail /etc/security/audit/events /opt/mitk5/etc/krbS.conf

/etc/cron.d/cron.deny ~ /etc/name to major /etc/security/audit/objects /var/adm/cron/cron.allow

/etc/default/* /etc/named.conf /etc/security/audit_control /var/adm/cron/cron.deny
/etc/default/login /etc/netgroup /etc/security/audit_event /var/adm/db/*
/etc/defaultdomain /etc/netmasks /etc/security/audit_user /var/adm/loginlog
/etc/defaultrouter /etc/netsve.conf /etc/security/failedlogin /var/adm/messages
/etc/dfs/* /etc/nfssec.conf /etc/security/lastlog /var/adm/sudo/sulog
/etc/exports /etc/nodename /etc/security/login.cfg /var/adm/sulog
/etc/filesystems /etc/nsswitch.conf /etc/security/passwd /var/adm/syslog.conf
/etc/group /etc/oratab /etc/security/user /var/log/messages
/etc/hostname. * /etc/passwd /etc/sendmail.cf /var/opt/oracle/oratab
/etc/hosts.equiv /etc/path_to_inst /etc/services /var/spool/cron/allow
/etc/hosts /etc/printers.conf /etc/shadow /var/spool/cron/deny
/etc/inet/* /etc/profile /etc/ssh/sshd_config /var/yp/Makefile

Table 2: Files collected.

Dautsche Bank

Monitoring and Reporting Environment {MRE]
M | PHRT Do<umes mine _‘E-'!-HH'Irr-hn

Akl 2 dHRd Reorts

[Cesumer ~B DOOD e @ D@ B8

Operating System Type

) L E

G [

- -

i T

- T TE|] ki T T LE

o T 7 T
1] |) LiLs i} L1}

1

p] L] iTi'l Ik

I]] o 1 [[

i TH| iT :.I'EI LEH

a L 1 EL) 37

m i | I ¥ T

1 1 L [
& : -
T
]
i

Figure 2: Sample OS count report.

2003 LISA XVII - October 26-31, 2003 — San Diego, CA 65

Designing a Configuration Monitoring and Reporting Environment

There is a single master configuration file that is
maintained centrally. An extract of the master configu-
ration file is presented in the next section. The file is
delimiter separated that determines which files get col-
lected and which commands or custom scripts are run
on what version(s) of Unix (and as what user). The
collectors are grouped into multiple classes such as
“Network™ and “Config”, as well as operating sys-
tem specific classifications. This configuration file is
broken out into operating system specific files which
are packaged into the distribution of the software.
Master.sh reads the specific configuration file to deter-
mine what commands to execute.

Note that Master.sh does not do much parsing of
output. The output of many system commands is
designed to be human-, not machine-readable so com-
plex parsing is often required. Instead, parsing is done
at the back end. CMRE is effectively a distributed sys-
tem, yet we intentionally do not take advantage of it
for parsing. While we do have concerns about adding

Gittler & Beer

load, breaking things, and leaving data behind, the pri-
mary reason not to parse the data on the front end has
to do with the difference in deployment speed between
the parts of CMRE. Because of testing, change con-
trol, and approval processes, new versions of the client
software can take weeks to roll out. Back end parsing,
however, can be changed on the fly. This makes it
more effective for us to acquire as much of the raw
data as possible and parse it later. When we discover
that we now require additional information, we can
immediately change our parsers, rather than wait for
the next rollout.

Master.sh keeps two copies of the data it collects
on the client system — today’s data and yesterday’s data.
After collection, master.sh compares what is new or dif-
ferent from yesterday’s run and puts just those files and
output in a compressed tar file to be collected later.

It takes a certain amount of finesse to write the
collector software. Care must be taken to write code
that is multiplatform, stable, and with low system

/bin/echo dummy

/bin/last -100

/usr/ucb/ps -auxwwe

arp -a
crontab -1

date -u

df -kF ext2
df -kF nfs

df -kF reiserfs
df -kF ufs

df -kF vxfs
diskformat.sh
dmesg

domainname
dsmc q files

dsmc q sched

dumpadm
eeprom -v

errpt

fbconfig -list
filepermlist.sh
findperl.sh
getaixos.sh
getrhosts.sh
getsshkeys.sh

ha.sh
hostid

66

ifconfig -a

ipcs -a

Logins

Ipstat -t

Is -al /etc /etc/*.conf
/etc/passwd /etc/shadow
Is -al /etc/auto.*

Is -al /etc/auto_*

Is -al /etc/defaultrouter
Is -al /etc/group

Is -al /etc/mail/*

Is -al /etc/named.conf
Is -al /etc/netmasks

Is -al /etc/networks

Is -al /etc/printers.conf

Is -al /etc/rpc

Is -al /etc/sendmail.cf

Is -al /etc/system

Is -alR /etc

Is -alR /var/spool/lp
/var/spool/print

Is -altr /var/yp/domainname
Is -1 /dev/rdsk

Is -1 /etc/defaultdomain

Is -1 /etc/inittab
Is -1 /etc/resolv.conf
Is -1 /tftpboot

Is -1aR /var/spool/cron
Lscfg

Table 3: List of executed commands.

Isdev -C psrinfo -v

Isdev -Cc processor Ptree

Isfs -c Pwstats.sh

Islpp -h all Rpcinfo -p 127.0.0.1

Islpp -L all Sacadm -L

Isps -a Secpasswd.sh

Ispvaix.sh Showmount -e localhost

Issrc -a Showrev -a

Isvgaix.sh Sundisks.sh

modinfo Swap -1

mount Swap -s

netstat -a Sybase.sh

netstat -rn Sysdef -d | egrep -v
‘(driver.not.attached|no.driver)’

network.sh Sysdef -1

odmget -q

attribute=realmem

Sysinfo -level all
-format report

CuAt

odmget - .

nam§=in§erface CuAt Titancheck.sh
oracle-adds.sh Uname -a
orcaperf.sh Uname -aM
oslevel Uptime

pkginfo -1 Veritas.sh

pmadm -L who -a

prtconf -vD Ypcat -k rpc.bynumber
prtconf | awk -F:

’/Memory/{print $2}° | Ypcat -k ypservers
head -1

prtdiag -v Ypmaps.sh

ad [prtdiagl10k -v |

grep Memory Size Ypwhich

awk *{print $3}’

ps -efal Ypwhich -m

ps auwwxe

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Gittler & Beer

overhead. As most of the scripts are run as root across
all machines in the company, security must also be
considered very carefully.

Sample Collector Configuration

Table 1 shows some sample lines taken from the
master configuration file while Table 2 shows the
names of the all the files collected. Table 3 shows the
commands that currently executed across the various
operating systems.

Execution / Harvesting

Execution and harvesting proved very challeng-
ing initially. We came up with two methods of per-
forming these tasks, described below. Each technique
executes the collector script, which creates a single

Designing a Configuration Monitoring and Reporting Environment

file on the client, ‘config.tar.Z’. The harvester then
collects the file from each machine and renames it to a
unique name. It then tars all of the individual files into
a single tar file and uploads that file to the central pro-
cessing machine via SSH.

Management Framework

Deutsche Bank uses a commercial system man-
agement framework product on a majority of our
machines. In fact, it is a requirement that all systems in
datacenters run the framework’s monitoring agents. The
framework gives us a secure method of distributing soft-
ware, executing commands on remote machines, and
pulling the data back to a central location. Where the
framework 1is installed, we use it to install the software
(under a common directory structure provided by the

' Menitoring and Reporting Environment (MRE)

Deutsche Bank

CMPE | PMPE I [T T -Gubnl'ﬂll"l'l'-tl“‘l'lﬂ]hl‘l-

P 2l Er BT B grein

OSSummendChan |+ ﬂ [n n n m Page 1 of 1 | ﬂ n ﬂ

08 Summary Chart

Opan tha Enles fne

{?‘ Frama ﬂ e iradea

CMPE S0 Beparts

Sumna 3 e

0% Surrmarg
Hardware Sunnn ey
EOU Popidation Repeet
Caler el Gpsleas by
(P 1

Fimwmb Cambms

rrwvwvry

Larsgr arLsn

= Data ueries

F imstalled Packiage
(Rl

p bt Instolled Package
Chapry

= GA Beports

= Database Ropowts

F Ueirseirecind Fxpocked
Flli= System Summ-ary

b Walid Basswrards
Arnanary

5 RECOE & banad arls
Canfopmancn

+ C[MRE Intetnal Reports

~ L[5 P Data

05 Cound

[kasl #n bop ||

Groupname

OENCODODENE

Figure 3: OS summary chart.

2003 LISA XVII — October 26-31, 2003 — San Diego, CA

67

Designing a Configuration Monitoring and Reporting Environment Gittler & Beer

framework, so that we have a directory structure that we
can count on), execute the collector on a nightly basis,
and securely retrieve the information to the framework
management nodes. From the framework management
nodes we use SSH to get the aggregated data securely to
our central CMRE processing server.

Golden Hosts

For those machines where the framework is not
available, we have packaged the software including the
appropriate crontab entries to execute the commands on
a daily basis. We have also provided templates and
instructions for the SA groups to assist them in setting
up a harvester through whatever golden host mechanism
that they employ, using SSH. We then use SSH to get
the aggregated data securely to our central CMRE pro-
cessing server. In this case, the System Administrator is
required to ensure that there is a trust relationship, that
the file systems that we require exist, and that enough
space for collection is available.

Processing
After receiving the configuration bundles from
the harvesting systems, we extract the contents into

directories — one for each host. If the collector data we
receive is a full collection, marked with a different

filename by the collector, we first remove all the data
in that host directory, and then we un-tar the file into
the host directory. If it is an incremental collection,
then we un-tar the file into the host directory, over-
writing any changed files. After the files are extracted,
we use CVS to check the files in, thereby keeping a
historical record of the data.

We collect between 0.5 and 30 MB of raw data
from each client (depending on the type and contents of
each system). After the data is uploaded to our central
server, we process some of that data and upload it into a
database. This processing allows us to easily query and
report on information, as well as aggregate data into
group and company wide reports. The following is a
sample of the data that we upload to the database:

e Date — one of the collectors executed is the
‘date’ command which we upload to determine
the last time that the collection was successful.

® Operating System

¢ OS Version

e Hardware

e System Build Version — our internal identifier for
a particular OS release that we make available

* Memory

® Number and Speed of Processors

Monitoring and Reporting Environment (MRE) Deutsche Bank

['CMPRE | PIARE | Documantztion | Ganardl fonmatien

SEE o CHRE Reparts

Subnnik (ip b -

{:-} Al C‘ Prosdusction

Total Deplowement w ﬂ

DODD rec1or1 | @ DO 3@

AL v
ozt Harme (opbenalls

Total Deployment

Open the links o
0 Praenn) HewWindow

Surmmaries

[F5 SaFmnem iy

Lkh HisBory

Nardwivre Sunssary
ek Population Repaet

% h 4D

R |

0% Degloyment Percentags
&
o
ko
B
n;.q
:'\.

Cnllected Systenis by
Gradp

b Amwwl Deduber
Lormpamsom

Crpprics
b lewhalbedd Package

R e B]
il adis a0

e AL

s o o]]
b Mok Inctalled Package 1 H : :

Hae] § 3 F
= 5A Reports & 5 §)
= Databscs Reports 2 ’ ¥
b Wisrws b el Euprostul

Pl Sysberm Sumasary
o ovalid Paedowsoeds

SurnmMsTy

b GECOS Standdards
Conlprmsnce

» CHAL Intemal Reports

+ CWE Baw Data

[

_ Ibacktoton]

Figure 4: Sample of OS History Chart.

68

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Gittler & Beer

¢ Disk Information — Number, types, capacity,
used capacity

e Passwd Information — contents of /etc/passwd

¢ Installed Packages and Patches

® Network Interfaces

e Services — both inetd.conf contents as well as
netstat output

Processing is done via a series of custom Perl
modules. Because the information we receive is typi-
cally from commands that deliver information in a
human-readable form, we have to provide custom
parsers for each type of output. The parsed data is
uploaded into a database into tables that are designed
for that particular data.

Reporting

Our initial implementation used custom reporting
scripts. For each report we wished to present, we coded
a CGI script in Perl to extract the data from the database
or file system, and then present the report to the user.
We wanted to create a more efficient and flexible pro-
cess, therefore we examined a number of data mining
products and selected one to replace a significant num-
ber of reports. This brought the development time of
each report down to minutes from hours or days.

We provide a number of different types of
reports. Some are simple aggregated data reports, such

Designing a Configuration Monitoring and Reporting Environment

as the operating system summarization shown in Fig-
ure 2.

Note that all data in charts and graphs
included in this paper are shown with either gener-
ated data created for demonstration purposes only
or are redacted and presented to demonstrate for-
mat only.

We also provide charts of the same information
(shown in Figure 2).

In addition we also collect historical information,
so that we can see how we are doing over time, for
instance how our migration to new operating systems
is progressing (Figure 4).

Additional reports include queries such as all
machines of a particular operating system that does or
does not have a patch or package installed. This has
come in useful in a number of occasions, for instance
to track our rollout of Kerberos, to detect hosts that
were running a susceptible version of sendmail, and to
provide a list of systems that required SSH updates.

PMRE

In addition to collecting configuration information,
we are also collecting performance information. We are
currently using the public domain Orca program
(http://www.orcaware.com/orca/) to collect data on all
our systems. In addition to the standard (somewhat

Net Load Compared to Available Capacity

Available Percentage Net

Hostname Capacity U tilizecig Hostname Load
fool.uk.db.com 0.806 14.29% foo2.us.db.com 0.660
foo2.us.db.com 0.740 47.14% foo7.srv.uk.deuba.com 0.592
foo3.na.deuba.com 0.688 38.57% foo4-adm.na.deuba.com 0.512
foo4-adm.na.deuba.com 0.608 45.71% foo3.na.deuba.com 0.432
foo5.aus.deuba.com 0.564 40.00% foo10.us.db.com 0.408
foo6.aus.deuba.com 0.538 42.86% foo5.aus.deuba.com 0.403
foo7.srv.uk.deuba.com 0.528 52.86% foo6.aus.deuba.com 0.376
foo8.srv.uk.deuba.com 0.464 34.29% foo09.srv.uk.deuba.com 0.262
f009.srv.uk.deuba.com 0.444 37.14% foo8.srv.uk.deuba.com 0.242
foo10.us.db.com 0.432 48.57% fool6.aus.deuba.com 0.215
fooll.srv.uk.deuba.com 0.403 14.29% fool7.aus.deuba.com 0.202
foo12.uk.db.com 0.376 20.00% fool4.uk.db.com 0.181
fool3.srv.uk.deuba.com 0.302 27.14% foo23.uk.db.com 0.148
fool4.uk.db.com 0.289 38.57% fool.uk.db.com 0.134
fool5.uk.db.com 0.270 14.29% fool3.srv.uk.deuba.com 0.112
fool6.aus.deuba.com 0.269 42.86% foo22.apcc.ap 0.112
fool7.aus.deuba.com 0.255 45.71% foo12.uk.db.com 0.094
foo18.uk.db.com 0.232 17.14% fooll.srv.uk.deuba.com 0.067
fo019.sg.db.com 0.228 18.57% fo019.sg.db.com 0.052
f0020.srv.uk.deuba.com 0.178 14.29% foo18.uk.db.com 0.048
foo21.uk.db.com 0.175 15.71% fool5.uk.db.com 0.045
foo22.apcc.ap 0.168 40.00% foo21.uk.db.com 0.033
foo23.uk.db.com 0.132 52.86% f0020.srv.uk.deuba.com 0.030
foo24.srv.uk.deuba.com 0.091 22.86% foo24.srv.uk.deuba.com 0.027

Represents Demonstration Data Only
Table 4: Load can be shifted from busy systems to idle ones.

2003 LISA XVII - October 26-31, 2003 —

San Diego, CA

69

Designing a Configuration Monitoring and Reporting Environment

modified) graphs provided by Orca to allow people to
see the performance of our system, we also do additional
parsing of the data to determine overall weighted utiliza-
tion numbers on our machines. This allows us to deter-
mine what our most and least used hosts are, globally.
We can also drill down on individual machines. Cur-
rently we base our utilization number solely on CPU uti-
lization, which usually proves to be an accurate represen-
tation. Clearly, in some cases we will drill down on a
host and discover that while it is barely using any CPU,
it is memory or I/O constrained, but this is the exception.

Once again, in addition to summarizations we
provide host detail as well (Figure 5).

Problems Solved

CMRE has saved Deutsche Bank money in sys-
tem retirements and cost avoidance, and it has reduced
the number of people performing repetitive, manual
tasks. Below are just some of the areas where having
the information provided in CMRE has saved the bank
money, time or both.

Gittler & Beer

System Recovery

While lost system data can be recovered, a sig-
nificant amount of specific machine configuration
information is required in order to reconstruct the sys-
tem fully after it has been lost (such as size and parti-
tioning of disk, how much memory was installed,
etc.). CMRE makes all this information easily avail-
able and accessible, so that rebuilding or replicating
systems is a far simpler task.

More Efficient Reporting

Having security and audit vulnerabilities of our
systems available in a single location, significantly
reduces the time necessary for SA groups to track
down and remediate problems.

System Retirements

Based on information presented in the utilization
reports shown above, we were able to identify under-
utilized machines. As we were doing some major data
center moves, we were able to retire a number of these

Monitoring and Reporting Envirecnment (MRE)

| "G PRI | D
e

S MPE 23 PHRE Rty

Asia Pacifhc (A Hasbs)
App. Grp. Orened Hosle
Aniralin (Al Haain]
Eamaany [All Haata]
Hong Kong (A Boate]
Aapan [All Beata)

WY Cope Bndrss o hive

Ao bual cott:

= = oW = oW W oF W w e

Performance summary for

Link o PMEE dathy - chck ey

Deutsche Bank

nfa
rda
ET]

16

Blax count
MY Dadiated e, Caipr Hirdware:
WY thawel Seeioas R
WY Dadicatnd S, Salna UtiliEatice Guatanl
iy Trueding
i Core Dnfrastruckurs
v LN Dedicoted feedions B s o e dagis) gericd

B8 Hasly

PN Dedicaied fereicas
Equtar

PN Pedicated Serevions
Hobal Harkn ks

b daubdur (08 Hoats)

¥ Tmgaporu (Al Heats]
& ko
Categasizaliens

VRS

* Unlizalion Report

A

Feghght Beports

B AR ol e |
* Subanit Host
+ AN Hosts

a0 dayied period

Dy (Gon-tpa)

bR IpaEd Selfm e mptodbroa com
BRI LiTakee
| BERLEE
| LR LEN o
. doa P
. 4w a0 . B
. LA Y
| IR LR
R R
W erTe- M
W oo e s
[REEE TR

Might [Ege-gan)

& RsiLr

- - - a - - -

l Eczzles

.
=

Figure 5: Host performance summary.

70

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Gittler & Beer

machines, thereby removing them from our inventory
and avoiding costs of moving them.

Utilizing CMRE and PMRE, we were able to put
together matrixes such as the one below to determine
which systems could be retired. In the example below,
the Available Capacity is a normalized number based on
the speed and number of the processors (gathered with
CMRE) minus the load currently on the system. The
Net Load of a system is calculated based on a weighted
CPU utilization formula over a 30 day period.

Table 4 shows instances where load could be
shifted from a low utilized system (bottom to top of
right column) onto another machine with excess
capacity (top to bottom of left column) and then retire
the resources. Additional reports provide information
about depreciation of the machine (retrieved from our
Asset database) and the cost of housing the machine in
our data center.

Cost Avoidance

Even within large groups, systems are often pur-
chased individually, with large amounts of space left
for growth. The result is that systems may be signifi-
cantly under populated. Figure 6 is report that a busi-
ness area requested so that they could determine
whether to purchase new machines (requiring addi-
tional data center space, network connections, etc.).
The report showed that we had quite a few machines
that were less than fully populated, and we could
avoid the significant costs of purchasing new
machines simply by purchasing additional CPU cards.

The Future of MRE

CMRE and PMRE are the first components of an
overall management framework that we are calling

Designing a Configuration Monitoring and Reporting Environment

MRE (Management and Reporting Environment). MRE
is envisioned initially as a portal where all information
about individual systems will be consolidated or view-
able. Information available on MRE would include con-
figuration, performance, asset information, security and
event monitoring statistics, etc. For instance, someone
investigating a performance issue could go to the single
MRE portal first to look at the performance data
returned, then to examine the configuration information
that explainswhat may be causing the performance
issues. Currently, MRE is a read-only system, because
we are in the information gathering process. As we
grow the various components of MRE and are able to
tackle some of the challenges that lie ahead, we will be
far better positioned for proactive systems management.

Availability

Because the system is made up of both commer-
cial and non-commercial components, it cannot be
made generally available as a package. However, the
collector scripts as well as discussions and suggestions
about the report formats are available by contacting
the authors.

Author Information

Xev Gittler is the Regional Unix Architect for
the Americas for Deutsche Bank. He has worked for
nearly 20 years as a system administrator and system
architect at a number of financial institutions, univer-
sities, and R & D labs. He is a past Vice President of
SAGE as well as a founder and original president of
NYSA, the NY Systems Administrators group. Xev
would like to thank his wife, Rebecca Schore, for
everything, but especially for helping turn this paper

Monitoring and Reporting Environment {MRE)
[CMRE | PMRE | DocumerAmas | Ga0008 i e

R ML 25 ERE Hepreis
&l T prodoston
ALL o

Hiuk s fogpeinnalls

Al hen Beedhn bint
= Frgiet iy Wiy

ECETTTE
vl
b Ay
[P e T T R T
b
¥

Bumber of CPLUs
2 |

epulshan Raprd

tmal ywimpns by

e
Feact Cantur
L drann
Hratae Jrmriss
Pk g Ky
Paicfi Cmday
tervea Quary
il Fargeprts FETT=
i By Wend el Enneries ! 1 '
fhitladges Hnfinels

Databasa Hapares ™

I R |

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

Hardware Population far
Thig ripoe] ghioas Bow [Opulated lage s hird$ ank 1

Frpont prmemted Fai bar 25 140030 2003 OMT

Deutsche Bank

Figure 6: Sample hardware population report.

71

Designing a Configuration Monitoring and Reporting Environment Gittler & Beer

from ideas into something that could be put down on
paper. Xev can be reached via email at Xev.Gittler@
db.com.

Ken Beer graduated in 1992 from the University
of Maryland with a degree in Philosophy. For the past
10 years he has been a Unix systems administrator in
the financial sector in New York City. He is currently
a VP of Unix Engineering at Deutsche Bank where he
works on improving system maintainability. Ken lives
in Brooklyn, NY where he spends any free time he can
with his wife Cheri and son Satchel. Ken would like to
thank his dad for buying him a subscription to Byte
magazine in 1979. Ken can be reached via email at
Ken.Beer@db.com.

References

Brooks, Frederick Phillips, The Mythical Man-Month:
Essays on Software Engineering, Pearson Addi-
son Wesley, 1988.

Gall, John, Systemantics: The Underground Text of
Systems Lore, Sytemantics Press, 1986.

Perrow, Charles, Normal Accidents: Living with High-
Risk Technologies, Princeton University Press,
1999.

Dorner, Dietrich, The Logic of Failure. Perseus Pub-
lishing, 1996.

Merton, Thomas, The Unanticipated Consequences of
Purposive Social Action, 1936.

Hunt, Andrew, David Thomas, and Ward Cunningman
The Pragmatic Programmer From Journeyman
to Master, Addison-Wesley, 1999.

Burgess, Mark, “Computer Immunology,” LISA Con-
ference Proceedings, 1998.

Burgess, Mark, “A Site Configuration Engine,”
USENIX Computing systems, Vol. 8, Num. 3,
1995.

Traugott, Steve, “Bootstrapping an Infrastructure,”
LISA Conference Proceedings, 1998.

“A Simple Network Management Protocol (SNMP),”
RFC 1157.

Oectiker, Tobias, “Template Tree II: The Post-Installa-
tion Setup Tool,” LISA Conference Proceedings,
2001.

72

2003 LISA XVII - October 26-31, 2003 — San Diego, CA

