Formal Security Analysis of Neural Networks using Symbolic Intervals

Authors: 

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana, Columbia University

Abstract: 

Due to the increasing deployment of Deep Neural Networks (DNNs) in real-world security-critical domains including autonomous vehicles and collision avoidance systems, formally checking security properties of DNNs, especially under different attacker capabilities, is becoming crucial. Most existing security testing techniques for DNNs try to find adversarial examples without providing any formal security guarantees about the non-existence of such adversarial examples. Recently, several projects have used different types of Satisfiability Modulo Theory (SMT) solvers to formally check security properties of DNNs. However, all of these approaches are limited by the high overhead caused by the solver.

In this paper, we present a new direction for formally checking security properties of DNNs without using SMT solvers. Instead, we leverage interval arithmetic to compute rigorous bounds on the DNN outputs. Our approach, unlike existing solver-based approaches, is easily parallelizable. We further present symbolic interval analysis along with several other optimizations to minimize overestimations of output bounds.

We design, implement, and evaluate our approach as part of ReluVal, a system for formally checking security properties of Relu-based DNNs. Our extensive empirical results show that ReluVal outperforms Reluplex, a state-of-the-art solver-based system, by 200 times on average. On a single 8-core machine without GPUs, within 4 hours, ReluVal is able to verify a security property that Reluplex deemed inconclusive due to timeout after running for more than 5 days. Our experiments demonstrate that symbolic interval analysis is a promising new direction towards rigorously analyzing different security properties of DNNs.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {217595,
author = {Shiqi Wang and Kexin Pei and Justin Whitehouse and Junfeng Yang and Suman Jana},
title = {Formal Security Analysis of Neural Networks using Symbolic Intervals},
booktitle = {27th USENIX Security Symposium (USENIX Security 18)},
year = {2018},
isbn = {978-1-939133-04-5},
address = {Baltimore, MD},
pages = {1599--1614},
url = {https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi},
publisher = {USENIX Association},
month = aug
}

Presentation Video 

Presentation Audio