Ballot Casting Assurance

Ben Adida
MIT

Abstract

We propose that voting protocols be judged in part on
ballot casting assurance, a property which complements
universal verifiability. Some protocols already support
ballot casting assurance, though the concept has not re-
ceived adequate explicit emphasis. Ballot casting assur-
ance captures two well known voting concepts — cast
as intended, and recorded as cast — into one end-to-end
property: Alice, the voter, should obtain immediate and
direct assurance that her intended vote has “made it” into
the tally.

We review Neff’s scheme, MarkPledge, and show that
it provides ballot casting assurance. We also briefly show
how Chaum’s “Punchscan” system also provides ballot
casting assurance, though under more complicated de-
ployment assumptions. We show how ballot casting as-
surance opens the door to realistic failure detection and
recovery in the middle of an election, a topic which has
been ignored in much of the voting literature.

1 Introduction

The secret ballot, sometimes called the Australian ballot,
was introduced in US presidential elections only in 1892.
The purpose was to prevent vote buying, which had be-
come rampant [12]. There was notable opposition, as
forced ballot secrecy significantly reduces public audit-
ability of an election: election officials have to be trusted
to collect ballots, maintain their chain of custody, tally
them, and report the results appropriately. With modern
voting technologies — optical scanning machines, DREs,
etc ... — that further mediate the process of ballot collec-
tion and tallying, some activists are calling for an end to
the secret ballot, claiming that “Secret ballots and trans-
parency in government are mutually exclusive concepts”

[8].

C. Andrew Neff
VoteHere

Universal Verifiability. Since the early 1990s, many
cryptographic voting protocols have been proposed to
provide universal verifiability [11, 6, 1, 9]. In these
schemes, any observer can verify that only registered
voters cast ballots and that cast ballots are tallied cor-
rectly. Universal verifiability uses cryptography to re-
store the bulletin board of yore. Ballots are encrypted
and posted along with the voter’s plaintext identity. Uni-
versal verifiability thus provides a public tally, patching
a large portion of the audit-ability hole caused by the se-
cret ballot.

Ballot Casting Assurance. Universal verifiability
does not provide complete audit-ability. In addition to
knowing that all votes were correctly tallied, Alice would
like direct verification that her vote was properly cast and
recorded into this tally. We define this principle as ballot
casting assurance and argue that it, too, fills an audit-
ability gap left by the secret ballot. Interestingly, to the
average voter, ballot casting assurance may be more in-
tuitive than universal verifiability, for it is a simple, in-
dividually relevant question: independently of all other
issues, is Alice certain that her vote “made it?”

Ballot casting assurance is effectively the combination
of two existing voting protocol concepts: that ballots
should be cast as intended, and recorded as cast. The
added benefit of ballot casting assurance is two-fold:

e End-to-end verification: Alice only cares that the
recorded ballot matches her intention. Verifying the
in-between “ballot casting” is an artifact of how cer-
tain voting schemes are verified, and need not be
built into a definition of voting system security.

e Direct verification: Alice wants direct, not me-
diated, verification of the correct recording of her
vote into the tally. In particular, if Alice must trust
election officials to eventually record her vote, the
scheme does not provide ballot casting assurance.

The Possibility of Failure Recovery. Once ballot cast-
ing assurance enables this direct and immediate verifica-
tion, a new possibility arises: if Alice determines that
her vote has not been correctly recorded, she can imme-
diately complain and rectify the situation. Thus, ballot
casting assurance is fully achieved when Alice can vote,
verify, and revote until verification succeeds.

MarkPledge Scheme. We review Neff’s scheme for
high-probability voter intent verification [2], which we
refer to, from now on, as MarkPledge. This is a review
of existing material, presented here to clearly illustrate
the concept of ballot casting assurance.

At a high level, MarkPledge lets a voting machine
prove to the voter that it correctly encrypted the voter’s
choice, even if the voter’s computational ability is highly
constrained. Alice’s experience inside the voting booth
unfolds as follows (for presentation simplicity, we as-
sume a single race):

1. We assume that Alice, the voter, can compare short
strings (4 alphanumeric characters.)

2. Alice selects her candidate of choice, candidate #7,
using the voting machine’s interface.

3. The voting machine produces a specially-formed
encryption of Alice’s choice, which it prints on a
scrolling receipt.

4. The voting machine commits to Alice’s candidate
of choice by displaying a short string on screen. Al-
ice then enters a short-string challenge. The vot-
ing machine then prints out, on the receipt, Alice’s
challenge, the list of candidates, each with a corre-
sponding short string, and some additional data that
effectively completes the proof that Alice’s choice
was correctly encrypted.

5. Alice immediately checks that

e the printed challenge on the receipt matches
her challenge, and that

e the string next to her candidate of choice
matches the on-screen commitment.

6. Alice keeps the receipt and can later check, using
a computer, that the additional data printed by the
machine are consistent.

7. No coercer can tell which random short string is the
real one, and Alice can’t provide any convincing in-
dication either.

Adapting MarkPledge. Recall that ballot casting as-
surance requires that Alice get direct and immediate ver-
ification that her ballot was correctly recorded. For this
purpose, we introduce helper organizations at the polling
location. These organizations may be political parties or
any other organization. The voting process is then aug-
mented as follows:

1. Alice obtains her challenge from a helper organiza-
tion of her choice.

2. Alice prepares her ballot in the voting booth, ob-
taining an encrypted receipt at the end.

3. The voting machine immediately posts Alice’s en-
crypted ballot and plaintext identity on the public
bulletin board.

4. Alice lends her receipt to any number of helper or-
ganizations, who can confirm the validity of the bal-
lot (without learning its plaintext content) and the
presence of the corresponding encrypted vote on the
bulletin board.

5. If Alice is unsatisfied by the receipt, or if a helper
organization finds an error in the receipt, Alice may
simply revote, just as she would today in an optical-
scan voting system. In fact, this verification is use-
ful both for integrity of the process and for detecting
voters’ normal, human errors. As Alice’s identity is
part of the bulletin board post, only her last vote is
eventually tabulated.

6. Once Alice is satisfied, she checks out of the polling
location, taking her receipt with her for continued
verification. The combination of her in-booth ex-
perience and the out-of-booth verification by helper
organizations provides strong evidence that her in-
tent was correctly recorded. During a prescribed
complaint period, Alice may ask to rectify her vote
if she discovers that her ballot has disappeared from
the bulletin board.

This process is diagrammed in Figure 1.

This Paper. In Section 2, we review the concept of uni-
versal verifiability for election auditing, and introduce
the ballot casting assurance concept. In Section 3, we
review MarkPledge, including cryptographic details not
presented in this introduction. In Section 4, we show
how to implement ballot casting assurance on top of this
scheme and consider the new threat model. In Section 5,
we briefly consider ballot casting assurance for other sys-
tems, including Chaum’s PunchScan, before concluding
in Section 6.

2 Auditing an Election

Receipt

(=]
S0
= O
88
©5
53
® <
m
Bulletin Board
| Alice L]
— Bob L]
Charlie [
\\
N\
N\
A /
Bulletin Board N
52 Intermediate |<--->
0= Computation
= 0
$s 7
53 ‘
/7
= 4 .
Bulletin Board %/
Tally

<----- > Verification
— Ballot Data Flow

Figure 1: Auditing an Election — Ballot Casting Assurance de-
scribes how Alice can be certain that her vote was recorded and
posted on the bulletin board as she intended, while Universal
Verifiability pertains to the tallying process.

With the introduction of the secret ballot, the public
lost the ability to directly audit an election. Once Alice
casts her ballot, she also hands off all verification ability
to the election administrators. Given the complete disso-
ciation of voter identity and ballot content, even election
administrators are left with only crude mechanisms for
verification: the dominant measure of election reliability
is the residual vote, which indicates only the difference
between the total number of votes cast and tallied.

A number of high-level voting system verification
goals have been explored in prior literature:

1. Cast as intended: the ballot is cast at the polling
station as the voter intended.

2. Recorded as cast: cast ballots are preserved with
integrity through the ballot collection process.

3. Counted as recorded: recorded ballots are counted
correctly.

4. Eligible voter verification: only eligible voters can
cast a ballot in the first place.

With classic security processes and methods, it is un-
clear how to achieve all of these verifiability tasks di-
rectly. Instead, current voting practices rely on delegat-
ing these tasks to election officials.

Universal Verifiability. Over the last twenty years, nu-
merous cryptographic schemes have been developed to
address the counted-as-recorded and eligible voter veri-
fication verification tasks. These schemes are generally
said to implement universal verifiability, as any observer
can verify that all collected ballots have been correctly
anonymized, preserved, and tallied.

Generally, these schemes use an authenticated bulletin
board, where ballots are posted as ciphertexts together
with the voter’s plaintext identity. Individual voters can
verify that their encrypted ballot is correctly posted on
the bulletin board. All observers can check that only el-
igible voters cast a ballot and watch the tallying process
on encrypted votes, which is usually implemented as an
anonymizing mixnet or a homomorphic aggregation.

Ballot Casting Assurance. Ballot casting assurance
fills the remaining audit-ability gap: cast as intended and
recorded as cast. How can Alice obtain verification that
her intent has been recorded appropriately? If she deter-
mines that her vote has been recorded incorrectly, how
can she rectify the situation? Were it not for the secret
ballot, these questions could be answered trivially.

Two important properties of ballot casting assurance
should be emphasized:

e End-to-end verification: typical voting security
analyses distinguish the properties “cast as in-
tended” and “recorded as cast.” This distinction is
an artifact of a chain-of-custody approach to ver-
ification, where each step must be independently
verified. Ballot casting assurance need not con-
cern itself with this specific mechanism for veri-
fication. The requirement is end-to-end, from the
voter’s brain to the bulletin board.

e Direct verification: Alice, the voter, should get di-
rect and immediate verification that her vote was
correctly recorded. Mediating the verification via
election officials, or delaying the verification until
it is too late for Alice to rectify the situation, is in-
sufficient.

A number of recent proposals, including Chaum’s
visual cryptography ballot [3], its variants [4] includ-
ing PunchScan, and Neff’s encrypted receipt scheme

MarkPledge, offer solutions that address these require-
ments: it is possible to give Alice direct verification of
her vote without providing so much information that she
can prove her vote to a third party, all given conserva-
tive assumptions of the voter’s computational ability —
i.e. we cannot expect a voter to perform complex math.
These schemes provide the cryptographic basis for ballot
casting assurance in a secret-ballot setting.

3 The MarkPledge Scheme

In this section, we review the Neff ballot casting scheme
[2], which we refer to as MarkPledge, so that we can
illustrate how it can be adapted to achieve ballot casting
assurance.

3.1 Assumptions and Goals

A voter cannot be expected to do complicated math to
verify her vote. Thus, voter expectations are reduced to
a realistic minimum: they need only be able to compare
short strings, e.g. 4 alphanumeric characters. The goal
of the scheme is to achieve optimal correctness accord-
ing to this computational ability: the voting machine can
cheat the voter only by randomly guessing a single cor-
rect string out of all possible short strings the voter is
assumed to be able to compare.

In other words, if the voter is assumed capable of
comparing strings of 4 alphanumeric characters, then the
voter can be certain that, with probability (1 — z17) >
(1 — 13). her ballot was correctly produced. For the rest
of this description, we denote the string length in bits as
a. (We assume 35 alphanumeric characters, with the 0
removed to prevent ambiguity with O.)

It is worth noting that this level of voter intent verifi-
cation is high: competing schemes like Chaum’s [3] and
Ryan’s [4] offer only % verification probability per voter.

3.2 Special Form of Bit Encryption

Recall that the Exponential E1 Gamal encryption of m is
simply the normal El Gamal encryption of ¢g"* [7]. Thus,
the Exponential El Gamal encryptions of 0 and 1 are the
El Gamal encryptions of 1 and g, respectively. Note, in
particular, that O is now in the plaintext domain. We de-
note Exponential El Gamal encryption and decryption as
Ency and Decgy, respectively.

The central component of the scheme is a special form
of bit encryption, which we denote BitEncp,. A sin-
gle bit b is encoded as an a-length sequence of pairs
of ciphertexts, each an encryption using Exponential El
Gamal. The special bit encryption function is defined as:

BitEncy (b) = {[u“ vi]}ie[o a—1]

where, Vi, Decy; (u;) @ Decgy(v;) = b. In other words,
if b = 1, then each pair encodes either [0, 0] or [1, 1], and
if b = 0, then each pair encodes either [0, 1] or [1, 0].

Proof of b = 1. This type of bit encryption then ex-
hibits a particular property, whereby one can prove, in
zero knowledge and with soundness 1 — 2%, that a par-
ticular ¢ = BitEnc,(b) is the bit encryption of 1. This
proof protocol is particularly interesting because both the
prover’s first message and the challenge are short, a-bit-
length strings.

Assuming a protocol input (b, c = BitEnc,; (b)) to
Prover P and Verifier V, the proof unfolds as follows:

1. V sends commit(chal) to P,

chal| = a.

2. P sends ChosenString to V, where bit i of
ChosenString corresponds to the bit encrypted
within both elements of pair ¢ in input c.
ChosenString is thus « bits long.

3. V sends chal.

4. For each bit i of chal, P reveals the randomness for
u; if chal; = 0 or for v; if chal; = 1. This reveals
an «-bit string, one bit for each pair within c.

5. V checks that this string matches ChosenString.

This protocol is clearly complete. Soundness derives
from the randomness of chal, which ensures that, if
b = 0, then P must guess the single a-bit string that will
be revealed by chal. Zero-knowledge follows from the
straight-forward simulation: knowing chal in advance,
it’s trivial to produce the appropriate ChosenString.

Selecting option j out of k. It is then relatively
straight-forward to encode option j out of k possible op-
tions. For each i € [0,k — 1], create a bit encryption
¢; = BitEncyy,(b;), where b; = 0 for all i except b; = 1.

3.3 Voting Process

BitEnc(0) =

BiEnc(1) - Ene)
chal = 1 0 1 e 1
= Enc(0)
String® = 1 0 o - 0 d
String® = 1 0 0 1

Figure 2: The voting process with bit encryptions.

Alice, the voter, selects option j out of k possible can-
didates. Then, the voting machine produces k bit encryp-
tions, one for each index, and proves to Alice that it has

correctly encoded her choice j. To keep this explanation
simple, we assume that, of the % bit encryptions, only one
encodes a 1, and all others encode 0 — in other words that
the ballot is well-formed. There are techniques to prove
well-formedness, but they are secondary to the goal of
this protocol review. The protocol is thus:

1. Alice enters commit(chal).

2. The voting machine displays ChosenString, which
matches the encrypted string for b;, the bit corre-
sponding to Alice’s candidate choice. Recall that
ChosenString is short (4 alphanumeric characters).

3. Alice enters chal, which must match commit(chal).

4. The voting machine completes the proof that b; =
1. Then, the machine produces simulated transcripts
for all other b; using the same challenge chal, ef-
fectively simulating proofs that they, too, are 1.
This involves revealing String(i) for all indices 4,
which are the would-be ChosenString values for
each bit. These strings are printed on Alice’s re-
ceipt, which already includes the bit encryptions

€0, C1y- -+, Ck—1-

5. Alice verifies that ChosenString appears next to her
candidate of choice.

6. The receipt does not reveal which of the String(i)
was the real ChosenString displayed on screen.
Note also that Alice cannot convincingly prove
which string is the real one.

Receipt
OQ Challenge: 7rtb
Mickey n85c
Donald 3ml4
Goofie 0c8d
Alice

Figure 3: Alice’s receipt does not reveal her vote, though it
matches her memory of the screen in the voting booth.

4 Implementing Casting Assurance

We now augment MarkPledge with a few procedural
tweaks to achieve ballot casting assurance. Alice, the
voter, obtains immediate and direct verification that her
vote was correctly recorded, and individual revoting for
failure recovery becomes a possibility.

4.1 Setup

A voting location should be staffed with a handful of
helper organizations, e.g. political parties and activist or-
ganizations. These organizations are not given any priv-
ileged access: they are present merely to help the voter
verify proper ballot casting. They may be represented
simply by verification machines. We assume that some
of these organizations may act maliciously, but that, for
each voter, at least one is honest.

4.2 Ballot Casting

1. Alice consults a helper organization of her choice
to obtain her “challenge ticket,” which includes the
committed challenge and the challenge itself.

2. In the isolation booth with the voting machine, Al-
ice proceeds with her ballot selection and verifica-
tion, as per Section 3. She uses her challenge ticket
to provide commit(chal) and chal, using an input
device such as a bar code scanner. By the end of the
process, Alice has a physical receipt in hand, and
she has verified that:

(a) the verification code next to her candidate of
choice matches what she saw on screen, and

(b) the challenge printed on the receipt matches
the challenge on her challenge ticket.

In addition, the voting machine is now expected to
digitally sign the receipt.

3. The voting machine immediately posts the en-
crypted vote along with Alice’s name to the digital
bulletin board.

4. Alice hands her receipt to a helper organization of
her choice. The helper verifies that the ballot has
been correctly posted, that it is internally consistent,
and that it is correctly signed by the voting machine.

If the verification is in any way unsatisfactory to Al-
ice, she can simply return to step 1 and vote again.
When she does, her new vote replaces her old vote
on the bulletin board. The bulletin board maintains
a history of all ballots cast by Alice, noting which is
the last one to be used for tallying.

Note that this revoting process is similar to current
procedures for optically-scanned ballots when the
voter makes a mistake and requests a new ballot.
As an added bonus here, the history of revoting is
kept, in case it ever becomes a source of fraud.

5. Once Alice is satisfied with her receipt and the ver-
ifications performed by various helpers, she leaves
the polling location with her receipt in hand.

6. At her discretion, Alice can leave a copy of her vot-
ing receipt with any number of helper organization.

Note that, if it is too onerous to post immediately to the
bulletin board and verify, live, that the bulletin board has
been updated, the process can be modified so that helper
organizations only check the voting machine’s digital
signature. In this case, it might also be useful to wit-
ness election officials verifying the signature, as they can
be made liable in case the ballot goes missing at a later
point.

4.3 Complaint & Correction Process

After having left the polling location, Alice can check,
using software she trusts — even software she may have
written herself — that her vote has been correctly posted
and tallied. We consider what happens if Alice finds that
her ballot has gone missing from the public tally. We
consider here the possibility of late revoting. This pro-
cess provides significantly increased ballot casting assur-
ance, though we note that it requires significant care to
ensure that no new weaknesses are introduced (See Sec-
tion 4.5).

Before a prescribed complaint deadline (maybe 24
hours after polls close), Alice can follow these steps:

1. Present her receipt and identification to the com-
plaint center.

2. If the receipt’s signature is incorrect, the complaint
fails and no further action is taken.

3. If the receipt’s signature is correct, the encrypted
ballot is compared to the claimed encrypted ballot
on the bulletin board. If it is the same ballot, then
there was no mistake, and no further action is taken.

4. If the signature is correct and the bulletin board
shows a different ballot than the receipt’s, election
officials should update the bulletin board to reflect
Alice’s corrected vote.

5. If election officials refuse to update a vote, the voter
may turn to a political helper organization that can
perform exactly the same checks as the election of-
ficial and submit a formal complaint (possibly using
the press.)

One should assume that most voters will never care to
verify and complain on their own. Thus, as described
earlier, Alice has the ability to simply hand her ballot to
a verification agent who can do all checks on her behalf.
If this agent finds that Alice’s vote has been mishandled,
it may complain on her behalf.

4.4 Trust Assumptions

The tweaks we propose do not significantly alter the trust
assumptions of typical cryptographic voting schemes.
We review these assumptions here, and explain what we
expect of the newly-introduced helper organizations. It
is important to distinguish the two major classes of mali-
cious behavior: those which affect tally correctness, and
those which affect ballot secrecy.

Within ballot secrecy, it is also important to distin-
guish subliminal channel attacks, where the election
equipment and data violate secrecy, and side-channel at-
tacks, where some external equipment — e.g. a cell phone
camera — is used to violate the privacy of the voting
booth. This latter class of attacks is extremely problem-
atic in any election scenario, and we do not attempt to
address it here.

Voting Machines. The voting machine is not trusted
for correctness. The proof protocol ensures that the vot-
ing machine cannot cheat a single voter with more than
very small probability (ﬁ), which rules out a cheating
voting machine having any noticeable impact on the elec-
tion. In the current model, the voting machine is trusted
not to perform subliminal channel attacks on ballot se-
crecy, though it should be noted that methods exist for
preventing such malicious actions, too [2].

Bulletin Board. The bulletin board is not trusted: it
is only a common conduit for authenticated content from
the voting machines. It is expected that the various helper
organizations will keep an eye on the bulletin board, in-
cluding ensuring, via regular auditing, that everyone sees
the same view of the bulletin board. This can be per-
formed using well-understood auditing techniques, in-
cluding hash trees [10].

Helper Organizations. We assume that at least one
helper organization is honest and running correct soft-
ware. Some helper organizations may be dishonest for
certain voters, though it is expected that these organiza-
tions will be mutually distrusting, such that it is highly
unlikely that all organizations will be dishonest for a
given voter. It is important to note that, if a helper orga-
nization incorrectly verifies a ballot, the voter may easily
consult another organization, likely a competing politi-
cal party. Thus, a helper organization takes a big risk if
it lies.

For ballot secrecy, the helper organizations are com-
pletely untrusted, as they may have strong incentive to
coerce voters. Note that, even if a helper organization
provides the “challenge ticket,” it cannot violate ballot
secrecy.

Voter’s Home Software. For correctness, we assume
that a small fraction of voters will run the correct veri-
fication software. We assume that it is very difficult for
an adversary to target a particular voter at the polling lo-
cation, corrupt her helper organizations, and corrupt her
home computer simultaneously. We assume that, even
if an adversary accomplishes this complex attack against
one voter, it isn’t easily scalable to more voters.

We assume that all voters are potential adversaries
when it comes to coercion. We note that, in any scheme,
a voter may take a photo of her ballot using a camera-
phone. This is the side-channel attack previously men-
tioned, which no current voting system addresses, and
which our proposal does not exacerbate.

4.5 Threats

The verification, complaint, and correction processes
significantly increase voter confidence. At the same time,
they open up new avenues for attack. With the trust as-
sumptions defined in the previous section, we now out-
line some possible attacks and approaches to countering
them. We do not attempt to address every issue: ballot
casting assurance requires much continued research, and
we cannot expect to quickly solve all open problems. We
also note that, while these issues are important, they are
generally less worrisome than the potential for abuse in
today’s unverified elections.

Incorrect Verification. A helper organization might
act maliciously in verifying ballots at the polling loca-
tion, claiming that good ballots are bad. This may be a
particularly useful tactic for one political party to use in a
precinct that is known to be dominated by another politi-
cal party. The system presented here attempts to mitigate
such issues by ensuring that anyone can perform all bal-
lot verification tasks, thereby ensuring public oversight
of the system. A helper organization can be required to
present objective, verifiable proof that a ballot is mal-
formed.

Refusal to Replace. During the complaint period, ma-
licious election officials may delay or even prevent the
replacement of a ballot on the bulletin board, even when
presented with a valid voter complaint. To address this,
the system once again ensures that anyone can perform
the ballot verification, which should enable a voter to
escalate a complaint based purely on publicly available
data. One also notes that, with all ballots now encrypted,
the complaint process can be performed in the presence
of mutually distrusting observers.

Abusive Replacement. An attacker may attempt to re-
place an honest voter’s ballot during the complaint pe-

riod. One should note that this is an entirely new threat
given the complaint-and-replace process. The system
provides a first technical line of defense: the bulletin
board records all ballots produced by eligible voting ma-
chines. Bob cannot simply use one of his overwritten
ballots to replace Alice’s ballot, as any bulletin board
observer would detect this manipulation. The system fur-
ther mitigates this risk by adding a strong identification
requirement to the ballot replacement process.

One might also consider legal and procedural disin-
centives, such as requesting signed affidavits of ballot
replacement by the complainant, as well as notifying Al-
ice by mail that her ballot was changed in order to en-
able fraud detection and investigation. This last measure
is particularly important to prevent a new kind of ballot
box stuffing, whereby a malicious election official might
replace a number of ballots just before the close of the
complaint period.

Subliminal Channels. As detailed by Karlof et. al.
[5], the secret receipt’s randomness provides a sublim-
inal channel to a malicious voting machine that wish to
leak the ballot plaintext. It will be important to develop
methods for removing these channels in future work.

5 Other Implementations

Ballot casting assurance is implementable via other tech-
niques than the one described here.

Chaum Receipts. Chaum’s visual cryptography re-
ceipts and related schemes — e.g. PunchScan- offer sim-
ilar functionality to MarkPledge. One notable difference
lies in the directness of the verification process: if au-
diting is centralized prior to election day, as Chaum sug-
gests, Alice cannot verify that her specific ballot was cor-
rectly recorded, only that, statistically speaking, no more
than a handful of ballots can be corrupted. Even then,
this verification is indirect, requiring trust in the election
officials.

To truly achieve ballot casting assurance, auditing
should be performed by individual voter cut-and-choose:
Alice receives two ballots, audits one, and votes with the
other. This process is fairly challenging to realize with
Chaum’s ballots, because every precinct must reveal the
secret data required to decrypt half of the ballots (se-
lected randomly and “live””) while maintaining the other
half secret. That said, given this tweak, Chaum’s secret
receipts do support ballot casting assurance.

Current Systems. Current election systems, be they
DRE, optical scan, or paper based, do not provide bal-
lot casting assurance, as they completely separate the

voter’s identity at the moment of ballot casting, prevent-
ing all future direct verification. Even election adminis-
trators are limited in the verification tasks they can ac-
complish. Many types of fraud — a relatively small num-
ber of stuffed or lost ballots — may go undetected. When
an inconsistency is detected — e.g. a high residual vote
rate — the only possible recovery is to rerun the entire
election.

The Impact of Cryptography. An interesting conjec-
ture is that direct verification of secret-ballot elections
is only possible using cryptographic techniques. This
conjecture should be further explored, and, if found to
be true, should provide strong motivation for significant
continued research in usable cryptographic voting tech-
niques.

6 Conclusion

We suggest that voting research should consider ballot
casting assurance as a complement to universal verifia-
bility. While universal verifiability provides global audit-
ability that votes are counted correctly, ballot casting as-
surance provides individual assurance to Alice that her
vote “made it” to the tally process as intended. If an error
is detected, Alice can revote until verifiable rectification.
We achieve ballot casting assurance with crypto-
graphic schemes that implement secret receipts. A num-
ber of questions remain. How usable are these systems in
real-world tests? How will revoting really work? In any
case, we believe that this issue should be considered as
an integral part of voting system design and evaluation.

7 Acknowledgments

The authors would like to thank Ronald L. Rivest for
helpful comments and for the “Casting Assurance” name
suggestion, Ted Selker, Susan Hohenberger and Stephen
Weis for helpful comments. Ben Adida is supported by
the Knight Foundation grant to the Caltech/MIT Voting
Technology Project.

References

[1] Masayuki Abe. Universally verifiable MIX with verifi-
cation work independent of the number of MIX servers.
In Proceedings of EUROCRYPT 1998. Springer-Verlag,
LNCS 1403, 1998.

[2] C. Andrew Neff. Practical High Certainty Intent Verifica-
tion for Encrypted Votes. http://votehere.com/
vhti/documentation/vsv—-2.0.3638.pdf.

[3] David Chaum.
Verifiable Elections.
02(1):38-47, 2004.

Secret-Ballot Receipts: True Voter-
IEEE Security and Privacy,

(4]

(51

[6]

[7]

(8]

(91

[10]

(1]

[12]

David Chaum, Peter Y. A. Ryan, and Steve A. Schneider.
A practical voter-verifiable election scheme. In Sabrina
De Capitani di Vimercati, Paul F. Syverson, and Dieter
Gollmann, editors, ESORICS, volume 3679 of Lecture
Notes in Computer Science, pages 118-139. Springer,
2005.

Chris Karlof and Naveen Sastry and David Wagner. Cryp-
tographic Voting Protocols: A Systems Perspective. In
Fourteenth USENIX Security Symposium (USENIX Secu-
rity 2005), pages 33-50, August 2005.

Ronald Cramer, Rosario Gennaro, and Berry Schoen-
makers. A secure and optimally efficient multi-authority
election scheme. In Proceedings of EUROCRYPT 1997.
Springer-Verlag, LNCS 1233, 1997.

T. El Gamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans.
Inform. Theory, 31:469-472, 1985.

Lynn Landes. Scrap the secret ballot - re-
turn to open voting, November 2005. http:
//www.opednews.com/articles/opedne_

lynn_lan_051104_scrap-the__secret_b.htm.

C. Andrew Neff. A verifiable secret shuffle and its appli-
cation to e-voting. In CCS 2001, pages 116-125. ACM
Press, 2001.

Ralph C. Merkle. Secrecy, authentication, and public key
systems. PhD thesis, Stanford University, 1979.

Kazue Sako and Joe Kilian. Receipt-free mix-type voting
scheme - a practical solution to the implementation of a
voting booth. In EUROCRYPT, pages 393—-403, 1995.

Wikipedia. Secret Ballot. http://en.wikipedia.
org/wiki/Secret_ballot, viewed on April 3rd,
2006.

