
Coercion-Resistant tallying for STV voting

Vanessa Teague, Kim Ramchen and Lee Naish
Department of Computer Science and Software Engineering

The University of Melbourne
{vteague, lee}@csse.unimelb.edu.au, kramchen@gmail.com

Abstract

There are many advantages to voting schemes in which
voters rank all candidates in order, rather than just choos-
ing their favourite. However, these schemes inherently
suffer from a coercion problem when there are many can-
didates, because a coercer can demand a certain permu-
tation from a voter and then check whether that permuta-
tion appears during tallying. In this paper, we solve this
problem for the popular STV system, by constructing an
algorithm for the verifiable tallying of encrypted votes.
Our construction improves upon existing work because
it extends to multiple-seat STV and reveals less informa-
tion than other schemes.

1 Introduction

In elections of all kinds it is important that voters are free
of coercion, votes are tallied correctly and this is seen to
be the case. Electronic voting could improve the situa-
tion: some schemes offer universal verifiability, mean-
ing that anyone can check that the announced tally is
correct. Ideally it should be unnecessary to trust either
the implementors of the program or the security of the
computer used for voting. However, electronic voting
systems must take particular care to prevent a voter from
being able to prove to a coercer how they voted. This
property is known as “receipt freeness” or “coercion re-
sistance”. Without it, a coercer can either promise to re-
ward a voter if they show they voted in a particular way
or threaten to cause harm to them if they do not.

Although many electronic voting systems are designed
for first-past-the-post voting, the best voting schemes are
those that allow voters to express more than simply their
single favourite candidate. The tally method we target

is known as Single Transferrable Vote (STV) 1. It can
be used to fill single or multiple vacancies and with the
latter, achieves a form of “proportional representation”.
The multiple-vacancy case is used in Australia, Ireland
and Cambridge MA. It is particularly susceptible to co-
ercion and is the main focus of this paper. Single-seat
STV is more widespread, with uses including the Lon-
don Mayoral race and various other examples throughout
the United States and the British Commonwealth. In this
case, the coercion problem might still apply if there are
many candidates. Hence our algorithm (with an obvious
simplification) might still be useful.

If votes contain little information, for example, they
are just “yes” or “no”, or a choice of one of a small
number of possible candidates, they cannot be used to
identify individual voters. However, with STV a vote
can specify any permutation of the candidates; this has
much greater information content. Hence the “short bal-
lot assumption” [RS07] fails even when there are not
very many candidates. If all individual votes are ulti-
mately revealed then this introduces a coercion problem,
sometimes called the “Italian attack”. For example, vot-
ers can be coerced to give a particular candidate their
first preference, then the remaining preferences can be
used to encode the identity of the voter. (A typical Aus-
tralian Senate election has about 70 candidates, so there
are 70! different possible votes.) It is easy for a coercer
to choose one vote that is very unlikely to occur, de-
mand that a voter cast that particular vote, and then look
through the ballots to see whether that vote appears. In-
deed, there are so many possible votes that a coercer can
choose a different required vote for a very large number
of voters even when imposing some political constraints
on the votes, such as only requiring those with the co-

1Sometimes known as “Quota Preferential”, “instant run-off” or
“alternative vote.”



ercer’s favourite candidate first. Although this method of
coercion requires work for the coercer prior to the vote
(so a mapping from voters to permutations can be estab-
lished), it is feasible and the risk has been described in
the voting literature [Ott03]. The problem has created
a tradeoff between verifiability and coercion-resistance
for paper-based STV elections,2 but it applies even more
strongly to electronic systems in which votes are printed
on a bulletin board. Complete disclosure of all ballots
exposes the voters to coercion, but incomplete exposure
can make verification impossible without cryptography.

Our approach is to perform the entire tallying algo-
rithm on encrypted votes. We use homomorphic encryp-
tion to tally the votes’ first preferences. The main short-
coming of our scheme is that there is a single electoral
authority who learns the contents of each vote, though
it does not learn the correspondence between voters and
their votes. This means that we are trusting the author-
ity not to collude with the coercer in an Italian attack.
The authority produces a transcript in which each step of
the tallying process can be independently verified while
revealing very little information, thus reducing the op-
portunities for coercion. We define a new notion of
coercion-resistance for STV and prove that, under rea-
sonable assumptions, the scheme can be parameterised to
be coercion resistant. The initial table of encrypted votes
could be derived from an electronic voting scheme, or
from inputting and then encrypting paper ballots (though
verification of the latter would be difficult). One example
of an end-to-end verifiable election scheme that produces
the right format is contained in Appendix A. We have
implemented our scheme and tested it on a subset of the
real data for the Victorian State election. Although the
computation is expensive, it is feasible for real elections.
See section 4.3 for details.

This section gives an overview of STV and existing
work on coercion-resistant STV tallying. Section 2 gives
examples of coercion that can still occur even under
(some of) these coercion-resistant schemes. Section 3
presents our main contribution, an algorithm for prov-
ably correct STV tallying that reveals very little unnec-
essary information. Analysis appears in Section 4, with
our new definition in Section 4.1 and the sketch of a se-
curity proof in Section 4.2.

2Two elections ago, the Australian Electoral Commission revealed
the exact numbers of voters who select the ticket (i.e. recommended
vote) of a major party, but released only the first preference of those
who choose their own permutation. In practice this was usually enough
to verify 3 or 4 of the 6 seats. Following the last election, and under
pressure from voters’ organisations advocating transparency, the AEC
released complete data.

1.1 Tallying using STV
There are many slightly different sets of rules for tallying
according to this general method. We will describe the
method in general terms and defer discussion of techni-
calities to Section 3.2.1.

Assume we have cands candidates, seats seats to be
filled and n votes. At any point during the tallying pro-
cess some candidates have been declared elected and
some have been eliminated; the other candidates are
known as continuing candidates. Initially all candidates
are continuing. The algorithm terminates when seats
candidates have been elected or cands− seats have been
eliminated. A candidate is elected if they obtain at least a
quota of votes. The quota is usually bn/(seats + 1) + 1c.
This is just large enough to ensure it is impossible to elect
seats+1 candidates. Initially all votes are distributed ac-
cording to their first preference and all have weight 1.

The algorithm consists of repeatedly (re)distributing
votes according to the vote’s highest preference which
is for a continuing candidate. Each candidate’s tally is
the sum of the weights of the votes that are distributed to
them.

• After a distribution, any candidate with a quota or
more is elected. Candidates with strictly more than
a quota have their surplus redistributed. Votes for a
candidate who receives an excess of x votes above
quota Q have their weights multiplied by the trans-
fer value, x/(x + Q) before they are redistributed
to the next continuing candidate. For example, if a
candidate obtains 1.5 quotas, all votes for that can-
didate redistributed and given 0.5

0.5+1 = 1
3 their ear-

lier weight.

• If no candidate gets a quota, the candidate with the
lowest total is declared eliminated. All their votes
are redistributed without adjusting their weights.

There are many variations,3 The details of our imple-
mentation are described in Section 3.2.1.

1.2 Prior work
There has been great progress in recent years on uni-
versally verifiable election schemes. Some schemes
[CGS97, MN06, AR06] use homomorphic encryption
and tally the encrypted ballots, revealing only the to-
tal. However, none of these schemes supports prefer-
ential voting. Other very successful schemes are based
on mix networks [CRS05, Nef04, Cha]. Of these, Prêt
à Voter [CRS05] easily incorporates preferential voting

3One set of rules can be found at http://www.prsa.org.au.

2



[XSH+07], and most of the others could be modified to
support it. While none of these schemes introduce a co-
ercion problem, neither do they solve the preexisting co-
ercion problem for STV. In particular, they all end with
a step that decrypts all the votes and then publicly tallies
them. The aim of this paper is to devise a tallying step for
STV that can be used at the end of some other coercion-
resistant electronic voting scheme such as these without
introducing a coercion problem. We do this by using ho-
momorphic encryption. We assume a particular format
for the encrypted ballot, which could easily be achieved
by modifying Prêt à Voter as described in Appendix A.

There are a number of existing cryptographic schemes
for verifiable STV tallying that limit the information re-
vealed. Heather [Hea07] describes how to implement
STV counting securely in Prêt à Voter. McMahon [McM]
and Goh & Gollé [GG05] describe structures for se-
cure STV tallying that are not attached to a particular
electronic voting scheme. None of these allows the re-
weighting necessary for the multiple-seat case, though a
recent unpublished scheme by Benaloh and Moran [BM]
does. More subtly, every one of these works reveals ev-
ery candidate’s running tally after every redistribution,
which still leaves open the possibility of coercion. This
is described in Sections 2.2 and 2.3. (Though [BM]
could probably be modified to hide this information in
the same way we do. Since the details of this scheme
are unpublished as yet, we do not know how it com-
pares in efficiency or security to ours.) A similar co-
ercion problem was addressed for the Condorcet voting
scheme in [CM05], but their techniques do not extend to
STV. The main advantages of our scheme are that it can
perform the re-weighting step and hence tally multiple-
seat races, and that it reveals much less information than
other schemes.

We know of no existing definition of privacy for
electronic voting that explicitly considers the possibil-
ity that just revealing anonymised votes allows coercion.
Crutchfield et. al. [CMT06] consider the privacy vio-
lations of publically-released voting statistics, but their
model is specifically for single-selection voting schemes,
so it does not apply to our case. (They are interested
in cases where precinct-based election results are unan-
imous or nearly so.) Previous cryptography literature
has concentrated on receipt freeness, which means that
a voter cannot prove to the coercer how she voted, even
if she wants to. Often this is used interchangably with the
term coercion resistance, introduced in [JCJ05], though
sometimes a distinction is made between a coercer who
can communicate with the voter before the election (re-
quiring coercion resistance) and one who cannot (requir-

ing receipt-freeness, which is then a weaker property).
In this paper we concentrate on the stronger requirement,
and call it coercion resistance. We assume the existence
of an untappable channel between a voter and the author-
ities, implemented as a private voting booth at a polling
place, so the coercer cannot communicate with the voter
during the election. In this sense our definition is weaker
than that of [JCJ05]. A definition by Moran and Naor
[MN06] (which extends [CG96] by Canetti and Gen-
naro) uses an ideal functionality. They define a scheme
to be coercion resistant if any successful coercion attack
against it would also succeed against the ideal function-
ality. Since they deal only with first-past-the-post elec-
tions, they simply choose an ideal functionality that re-
veals all the (anonymised) votes. For STV, defining the
ideal functionality is much harder: as we have just ar-
gued, an ideal functionality that revealed all the votes
would expose voters to coercion via the Italian attack.
The simplest one for STV would be one that outputs the
set of winners and nothing else, though this is probably
overly restrictive, making the problem too difficult and
denying voters access to statistics that they may be in-
terested in. In general the question of whether a partic-
ular scheme securely implements a particular ideal func-
tionality is independent of the question of whether co-
ercion is still possible under that functionality. In Sec-
tion 4.1, we provide a definition of coercion resistance
that is complementary to Moran and Naor’s, in that it
deals directly with whether coercion is possible given
that the coercer receives certain information. It is based
on one by Okamoto [Oka97]. In order to prove that an
end-to-end voting scheme were coercion resistant, one
could first prove that it implemented a particular ideal
functionality according to the coercion-resistance defini-
tion of [MN06], then prove that that functionality was
coercion resistant in the sense we define here.

In Section 4 we argue informally that our algorithm
only reveals certain information, then we prove that that
functionality is coercion resistant according to our defi-
nition.

2 Examples of coercion

The following examples demonstrate that coercion is still
possible even when a lot of information is hidden, if
the coercer can still infer the absence of some permu-
tations. This justifies our (rather computationally inten-
sive) approach rather than the simpler alternatives men-
tioned above. In each case, the extent of the problem
depends on the situation—there may be many environ-
ments in which the risks described here are acceptable

3



and the advantages of a simple protocol overwhelming.
The most important variable is the number of candidates.
The more candidates there are, the more effective are the
coercion strategies described here. Our motivating ex-
ample is the Australian federal Senate elections, which
often have more than 70 candidates in large states. There
are usually about 50 candidates who are very unlikely to
get a seat, and both the coercer and the voters know this,
so the coercer can use them to encode a voter’s identity.
We call these unlikely candidates.

2.1 Coercion when only the “important”
preferences are revealed

Recent comments on the Irish election [Wic04] have sug-
gested revealing only those preferences that are actually
used. This does not solve the coercion problem, because
in multi-seat STV, many votes have many of their pref-
erences used. The coercer could ask the voter to put the
coercer’s favourite candidate ccoercer first, followed by
some particular permutation of unlikely candidates. If
ccoercer wins a seat (and presumably they have a good
chance of doing so, or coercing voters would be point-
less) then the vote will be redistributed to a series of can-
didates that have been or will be eliminated. This means
that most of the vote’s preferences will be publicised.
There are a very large number of possible votes of this
form (about 50!), so coercion is still a serious problem.

In some jurisdictions, including Ireland, surpluses are
redistributed by randomly sampling some of the votes
for the elected candidate. This makes this particular kind
of coercion less effective, but it is still vulnerable to a
closely related kind: the coercer demands that the voter
put ccoercer after the list of unlikely candidates. This
is a riskier strategy, but still likely to succeed even with
many coerced voters (say about 1%). If none of the un-
likely candidates are elected, then the coerced voter’s
vote passes to ccoercer with full weight and has all pre-
vious preferences revealed.

2.2 Coercion when partial tallies are re-
vealed

Existing schemes for the secure counting of preferen-
tial votes all reveal each candidate’s tally after each
(re)distribution. This can reveal the absence of a certain
permutation: if the elimination of candidate c1 does not
increase the tally of candidate c2, then the coercer can in-
fer that there was no vote in which the highest continuing
candidate was c1 and the next was c2.

This form of coercion only works if there are are rea-
sonable number of hopeless candidates, that is, candi-
dates which, when eliminated, are unlikely to effect the
tally of many other candidates. In the last Australian fed-
eral election, 27 candidates for the Victorian Senate seats
received fewer than 100 first-preference votes. When
these were eliminated, it was common for many of the
other tallies to remain constant, even after several candi-
dates had been eliminated.

Let H be the number of hopeless candidates—we will
assume H > 20. Here are some examples of how a co-
ercer could make voters pass their preferences to candi-
date ccoercer:

1. Choose a hopeless candidate h for each coerced
voter, and ask them to cast a vote that starts with
(h, ccoercer, . . .). Then check, when h is elimi-
nated, whether the tally of ccoercer increases. This
could catch H voters with reasonable probability,
if the hopeless candidates are eliminated before
ccoercer is elected.

2. Just like Example 1, but coerce 100 times as many
voters, randomly choose H − 1 of them to be
checked in the same way as Example 1 using H−1
of the hopeless candidates, and demand that the rest
cast a vote of (hH , ccoercer, . . .) (where hH is the
hopeless candidate who isn’t being used to check
the other voters). Compared to Example 1, this
catches 100 times as many voters, each with 1/100
the probability.

3. Just like Example 1, but ask the voters to put the
hopeless candidate after ccoercer. This could catch
H voters with reasonable probability, if the hopeless
candidates are eliminated after ccoercer is elected.

4. Demand, from each coerced voter, a different pair
(c1, c2) of hopeless candidates, to be followed by
ccoercer. When c1 is eliminated, check that c2’s
tally increases. Based on empirical analysis of the
last Australian election, a coercer in a large state
could coerce about 1000 voters and check nearly
half of them. (Of course, the voter could deceive
the coercer only partially, submitting a vote with the
correct prefix of hopeless candidates, but not fol-
lowing it with ccoercer.) Details of this analysis are
omitted due to space constraints.

4



2.3 Coercion when one tally is revealed
with too much precision

Suppose we retain weights and tallies to many decimal
places, and reveal final tallies (the ones when a candidate
gets elected or eliminated) to many decimal places. Sup-
pose that a coercer wants a voter to vote for candidate
c1 in first place, then candidate c2. Suppose that c1 is
elected first and their votes redistributed, then c2’s tally
is published. Suppose it happens to be an integer to 7
decimal places. Depending on the transfer value for c1,
this tally for c2 may or may not reveal much useful infor-
mation. For example, if the transfer value was 1/2, then
all the coercer can infer is that an even number of vot-
ers passed their preferences from c1 to c2. It is probably
plausible that two did. However, for other transfer val-
ues, the coercer can be quite confident that no voter put
c1 first and then c2. Extending the example, if the trans-
fer value is 1/p for some prime p, then c2’s tally being an
integer implies that the number of voters who put c1 first
and then c2 is a multiple of p. If p is large, the only rea-
sonably likely multiple could well be zero. Even if there
is some small probability that p or 2p voters did so, it is
far more likely that the voter disobeyed. A reasonable
coercer could not be expected to pay up after that.

The extent of this problem depends on the probability
distribution of all votes. Again the probabilities involved
are small, but not negligible, and could possibly be used
to coerce a small number of voters and discredit the elec-
tion.4 For a practical example, in the 2004 Australian
Federal election, in the state of Victoria, 15 candidates’
tallies did not increase when the first two elected candi-
dates’ votes were redistributed. Since the transfer values
were 0.67533384 and 0.60324735, this fact would have
been evident from their tallies alone, at least with some
degree of confidence, even if running tallies were not re-
vealed.

3 The algorithm

3.1 The main idea

Our scheme is based on an encryption scheme with an
additive homomorphism, that is, given two encrypted
values c1 and c2 one can easily compute a ciphertext
c1 ⊕ c2 that decrypts to the sum of the two values. We
define

⊕
to be to ⊕ what

∑
is to +.

Let cands be the number of candidates. A vote con-
sists of a weight w and a cands × cands matrix V with

4Again the random sampling method is not susceptible to this par-
ticular problem.

each cell separately encrypted. The diagonal of the ma-
trix is unimportant and can be omitted. For non-diagonal
values (with i 6= j), the interpretation of the matrix is
that

Decrypt(Vij) =

 −1 if candidate i is preferred to
candidate j.

0 otherwise

The vote can be summarised in a vote summary vector
s of which the j-th element sj is

sj = −
⊕
i 6=j

Vij

The vote summary is (an encrypted form of) the vote
traditionally cast in STV, except that the counting starts
from zero: the most preferred candidate gets 0, the next
gets 1, and so on until the least-favoured candidate gets
cands − 1. The vote summary can be updated very effi-
ciently upon each elimination or election by performing
a homomorphic addition with the row of the candidate
who was eliminated. That is, for all continuing candi-
dates j, upon deleting candidate i, assign

sj := sj ⊕ Vij

This means that redistributions can be performed with-
out revealing which votes are being redistributed and
without doing any mixing. An example is shown in Fig-
ure 1. (The values are shown in cleartext but would be
encrypted). The authority then transforms the vote sum-
mary into a form in which each candidate’s first prefer-
ence vote can be tallied homomorphically, then declares
and proves which candidate(s) should be elected or elim-
inated. The difficulty in the multiple-seat case is redistri-
bution after an election, which requires multiplying the
weights on votes by non-integer factors. The homomor-
phic nature of the encryption scheme gives us (reason-
ably) efficient multiplication of the encrypted value by
an integer. Division is a problem, because in general it
requires finding roots, a hard problem. We avoid divi-
sion as follows. Approximate each redistribution factor
by an integer a divided by some fixed denominator d. For
example, to approximate it to 3 decimal places, choose
d = 1000. (This is the method recommended by the
Proportional Representation Society of Australia.) Each
vote begins with a weight of 1, but upon a candidate’s
election all votes for that candidate have their weights
multiplied by a and all other votes’ weights are multi-
plied by d. The EC generates a fresh encryption of the
new weight and proves it correct with standard (honest-
verifier) zero knowledge proofs (Step 3). The algorithm
is described compeletely in Section 3.

5



× -1 0 0 0
0 × 0 0 0

Vote V = -1 -1 × -1 -1
-1 -1 0 × 0
-1 -1 0 -1 ×

Vote summary:
s = 3 4 0 2 1

Eliminate 3. Update s by adding row 3.
Vote summary:

s = 3⊕−1 4⊕−1 0⊕ 0 × 1⊕ 0

= 2 3 0 × 1

Figure 1: An example of a vote being redistributed. Can-
didates are numbered from 0 to 4. All values are en-
crypted. Squares marked × are ignored. This vote rep-
resents a first choice of candidate 2, then candidate 4,
then 3, 0 and 1. We show what happens when candi-
date 3 is eliminated. Note that the two least-preferred
candidates are moved up in the ranks, while the first two
preferences are unchanged. This process can be repeated
for all elected or eliminated candidates.

3.2 Technical background and notation

3.2.1 Technicalities of our STV implementation

Although the basic idea of STV is simple, the details are
complicated in practice. Indeed, intense debate rages
over the best methods for breaking ties and deciding
where to redistribute votes (see [Hil07] for one exam-
ple of debate over the best method for counting comput-
erised STV votes). Most variants are shortcuts which fa-
cilitate counting by hand. Even now, with computerised
counting almost ubiquitous, outdated legislation often
requires these shortcuts to be performed electronically.
If necessary, our scheme could be modified to incorpo-
rate many of the common counting rules, but we would
strongly advocate modifying the legislation instead. We
have implemented the following variants:

• When a candidate is elected, we redistribute ev-
ery vote and we take the vote’s new weight to be
the product of the transfer value and its previous
weight.5

5Different rule sets vary in their treatment of surpluses. Some only
redistribute votes obtained from the most recent distribution. Others
take a random sample of the votes for the candidate being elected. In
Australia it is common to redistribute all votes, giving all of them the
same new weight, which is then calculated in a slightly different way.

• Another variable is the precision used to record tal-
lies and votes’ weights. As described in Section 2.3,
this introduces its own coercion problems. Hence
we leave this as a parameter in our scheme and show
how to choose an appropriate value depending on
what is known about voting patterns.

• We break ties deterministically, based on candi-
dates’ index number. Schemes based on randomised
tiebreaking can easily be accommodated by choos-
ing a random tiebreaking order before the beginning
of tallying. Our main motivation is to avoid reveal-
ing that there was a tie6.

• If two or more candidates have a quota, we elect
them all and redistribute each vote to the next con-
tinuing candidate.

• We assume that all votes are complete permutations.

The last assumption is important—at several points
the proof of correct tallying depends upon it. However,
some jurisdictions do allow voters to stop before number-
ing all candidates. Heather [Hea07] suggests including a
“STOP” candidate who is never elected or eliminated. If
we were to do this, we would have to modify some of the
tallying proofs and introduce an explicit count of how
many votes had been exhausted, so that the quota could
be appropriately reduced.

3.2.2 Cryptography background

We require a semantically secure encryption scheme for
which there exist efficient operations⊕ and	 on cipher-
texts so that decryption obeys the following homomor-
phisms:

Decrypt(c1 ⊕ c2) = Decrypt(c1) + Decrypt(c2) (1)
Decrypt(c1 	 c2) = Decrypt(c1)− Decrypt(c2) (2)

This automatically allows multiplication by a con-
stant, which we denote by ⊗.

Decrypt(exp⊗ c1) = exp× Decrypt(c1) (3)

Notation We define
⊕

to be to ⊕ what
∑

is to +.
We also need the following well-known zero knowl-

edge proofs. In this paper, we require a trusted source
of random challenges. This could be obtained from a

6There are a variety of other common tiebreaking rules, which we
do not accommodate. The PRSA rules (common in Australia) specify
that the candidate who was most recently behind in the count gets elim-
inated. The Electoral Reform Society (UK) rules specify the candidate
who was behind earliest in the count gets eliminated first.

6



trusted beacon, or generated jointly by a number of par-
ticipants. The easiest method is the Fiat-Shamir heuristic
[FS87], hashing the input to the proof. We can then use
proofs that are merely honest-verifier zero knowledge.

Proof 1 The proof that a ciphertext encrypts a particular
value, or that two ciphertexts encrypt the same
(unrevealed) value [CP93, Sch91].

Proof 2 The proof that an encrypted number lies in a
certain range [Mao98]. The range must be from
0 to some power of 2.

Proof 3 The proof that at least one of a list of vec-
tors of encrypted numbers is the all-zero vector
[CEvdG88, CDS94].

El Gamal encryption satisfies these requirements, and
we have implemented our scheme using both standard
and Elliptic Curve El Gamal. The latter is much more ef-
ficient, being feasible for Australian State elections and
close to feasible for federal ones. See Section 4.3 for
details. The Paillier encryption scheme also has the re-
quired homomorphism and efficient proofs, but we have
not implemented it yet.

exponential El Gamal Let p and q be large primes
such that q|p− 1. (Here, “large” means about 1024 bits).
Let g be an element of order q in Z∗p. All arithmetic is
done in the group Z∗p. The private key is a secret s. The
public key is h = gs and the parameters p, q and g are
also public. To encrypt value a, first generate a random
value r ∈ {1, . . . , q}, then send the tuple (gr, gahr). To
decrypt a ciphertext (x, y), the holder of the private key
computes Decrypt((x, y)) = logg(y/xs).

This is just like ordinary El Gamal, except that each
message is of the form ga and we take the decryption
to be a, not ga. Obviously, this requires solving the dis-
crete log problem in general, so we ensure that a is either
known to the decryptor in advance or taken from some
range that is small enough to enumerate efficiently.

With ciphertexts c1 = (x1, y1) and c2 = (x2, y2), and
an integer exp, define the homomorphic operations by:

c1 ⊕ c2 = (x1x2, y1y2)
c1 	 c2 = (x1/x2, y1/y2)

exp⊗ c1 = (xexp
1 , y

exp
1 )

This is easily seen to satisfy Equations 1, 2 and 3. Us-
ing this homomorphism to tally encrypted votes was first
suggested in [CGS97].

exponential Elliptic Curve El Gamal An alternative
is exponential El Gamal encryption over the Elliptic
curveEa,b/Fp where p and |Ea,b| are large primes (about
160 bits). This gives a semantically secure encryption
scheme based on the hardness of the Decision Diffie-
Hellman problem [Bon98].

Specifically, let m be the order of the group and G be
a generator. The secret key is a number s ∈ [0,m − 1]
and the public key is the point H = sG. To encrypt
a ∈ [0,m − 1], choose a random r ∈ [0,m − 1] and
form (rG, aG + rH). Once again, to decrypt this we
need a to be either known to the decryptor or taken from
a small range7. The homomorphic operators are simply
the usual group operators. It is straightforward to replace
ordinary El Gamal with EC-El Gamal in the zero knowl-
edge proofs we use.

EC-ElGamal uses about 1/6 the space of ElGamal
over Z∗p. However, care must be taken to ensure that
the greatest plaintext to be encrypted fits within the range
[0,m − 1], which we assume to be about 160 bits. This
is the case for all the STV elections we know of. (Of
course a larger range can be chosen, but the savings are
proportional to it).

3.3 Security model and assumptions

We begin with a public table of votes. Everyone agrees
that this is the true list of all valid votes cast in the elec-
tion. The encrypted votes are not linked to voter iden-
tities in any way. (A technical point: this means that
the voters can’t know the randomness used to encrypt
their votes, or they are subject to coercion before we be-
gin.) One way of verifiably reaching this point, based on
Heather’s modifications to Prêt à Voter [Hea07], is con-
tained in Appendix A. Perhaps there is some alternative
based on public checking of the input and encryption of
paper ballots. This is clearly inferior from a security per-
spective, but it would be very simple to add on to the ex-
isting Australian electoral processes without rolling out
an end-to-end verifiable voting scheme.

The votes are encrypted with the public key of the
Electoral Commission (EC hencefoward), the semi-
trusted authority which carries out the tallying. The EC
is trusted not to be a coercer, and not to reveal plaintext
votes to the coercer or anyone else. It is not trusted to
count correctly, and it does not learn the correspondence
between votes and individual voters.

7By encrypting aG we sidestep the problem of ensuring that every
possible message corresponds to a point on the curve, which would be
a problem if we were using standard EC-ElGamal and trying to encrypt
a message a as (rG, A + rH) for some point A.

7



All votes must be valid and complete permutations. In
our complete system described in Appendix A, this fact
is proved by the Electoral Commission before counting
commences. The system’s security is based on the se-
mantic security of (Elliptic Curve) El Gamal encryption.

3.4 Making a tallyable vote
Recall the main data structure, with the vote and vote
summary, described in Section 3.1. Each vote has a
weight, w, that is encrypted.

For counting, the vote summary is transformed into a
tallyable vote t in which the j-th element tj satisfies

Decrypt(tj) =

 w if candidate j is the most-preferred
continuing candidate.

0 otherwise.

The EC produces this tallyable vote and then proves
its correctness. It suffices to give (honest-verifier) zero
knowledge proofs that

1. Decrypt(
⊕

j tj) = w, and

2. for all j, either Decrypt(tj) = 0 or Decrypt(sj) =
0.

These are straightforward applications of Proof 1 and
Proof 3 respectively.

3.5 The tallying algorithm
The current tallies are contained in the encrypted tally
vector T, with Tj being an encryption of candidate j’s
tally, i.e. weighted total votes after reweighting and re-
distribution. 8 When E candidates have been elected
and their votes redistributed, all tallies are dE times the
real tally (as in a traditional paper-based count). Obvi-
ously this means that the necessary quota is the real quota
times dE . Recall that n is the number of votes. The max-
imum tally at any point is ndE , and the next power of 2 is
2dlog2(ndE)e, which we denote by MaxTally(E). When-
ever we require a proof that some encrypted tally is non-
negative we use Proof 2 and prove that the value is in the
range [0,MaxTally(E)]. 9

8In some literature, the word “tally” means a sheet containing lots
of information; here, we use it only to mean one candidate’s current
total.

9The parameters must be chosen so that MaxTally(E) is always less
than half the group size, otherwise this range proof is meaningless. The
main problem occurs with too many seats. The worst case in Australia
is a federal Senate election, with about 4 million voters and 6 seats.
Then with d = 1000 the maximum plaintext is ndseats−1 ≈ 4 ∗
106 ∗ 10005 ≈ 272, which is well within range.

The tallying algorithm is paramaterised by d. Al-
though it is written as a series of computations for
the EC, many of the steps can be performed by any
observer—these are preceded by [public]. Obviously
such computations do not reveal any information, even
when performed by the EC.

Each step is either an election or an elimination, fol-
lowed by a redistribution. The algorithm is as follows:

3.5.1 Tally(d)

1. [public] For all continuing candidates c, set Tc to
be an encryption of the total first-preference vote for
c. This can be computed from the tallyable votes
by homomorphically adding: set the tally for each
candidate c to be

Tc :=
⊕

t a tallyable vote
tc

Recall that the EC knows the decryption of each
value in T (without having to run the decryption
algorithm).

2. Elimination, if no candidate has a quota If no one
has a quota, the EC first proves this as follows: For
every continuing candidate who will win a seat but
hasn’t yet10, the EC proves that they do not have
a quota, by subtracting that candidate’s (encrypted)
tally from a quota minus 1, then proving that the
resulting encrypted value is non-negative.

More formally, let Q be the quota. Recall that E
is the number of candidates elected before this step.
To show that candidate c does not have a quota,

(a) [public] the EC forms the “encryption” with
zero randomness of the quota required. De-
note it by Q∗. (In ordinary El Gamal this
would be the tuple Q∗ = (1, gdEQ); in EC-
El Gamal it would be (O, dEQG)).

(b) [public] the EC forms the “encryption” with
zero randomness of one. Call it 1.

10At first glance a similar proof seems necessary for candidates who
will not eventually win a seat, but it is not. If the candidate is elimi-
nated, then at that point they will be proven to have the smallest tally,
which must be less than a quota. If they are not eliminated, they will
remain at the conclusion of the count when seats quotas have been sub-
tracted from the total. Because of the careful definition of the quota, it
is impossible for them to have a quota at that point. Since tallies do not
decrease, either of these cases implies that the candidate could never
have had a quota. In practice this is a significant saving because often
the number of candidates is much greater than the number of seats.

8



(c) It then proves in Zero Knowledge using
Proof 2 that

Decrypt(Q∗ 	 1	Tc) ∈ [0,MaxTally(E)].

It then identifies the candidate cmin that should be
eliminated.

Recall that we refer to candidates by an index num-
ber, and break ties by index number, so there are
different facts to be proved for the other candidates’
tallies, depending on whether the other candidate
has a higher or lower index number. For each con-
tinuing candidate cwith a higher index number than
cmin, the EC proves that c has a strictly higher
tally as follows: it subtracts cmin’s (encrypted) tally
from c’s minus 1 and proves that the result encrypts
a non-negative number. More formally, to show that
candidate cmin has a strictly lower tally than anyone
with higher index number, it proves in Zero Knowl-
edge using Proof 2 for all candidates c > cmin, that

Decrypt(Tc 	 1	Tcmin) ∈ [0,MaxTally(E)].

Similarly, for each candidate with a lower index
number than cmin, the EC proves that its tally is
greater than or equal to that of cmin, i.e. that

Decrypt(Tc 	Tcmin) ∈ [0,MaxTally(E)].

3. Election, if at least one candidate has a quota

(a) For every continuing candidate who will win
a seat but hasn’t yet, the EC proves that they
do not have a quota, using the same proof as
in step 2. 11

(b) For each candidate that wins a seat, the
weights of their votes must be updated be-
fore redistribution. Suppose candidate cwin
won an excess of x votes over quota Q. Then
the candidate wins a seat and their prefer-
ences should be redistributed after having their
weights multiplied by a factor of x/(x + Q).
We wish to approximate that factor as some
integer a over d, rounding down. 12 The EC
announces the correct value of a, then proves
using Proof 2 that

Decrypt((d−a)⊗Tcwin) ≥ Decrypt(d⊗Q∗)
11Again, as in step 2, the proof is unnecessary for those who will not

eventually win a seat.
12We have to round down - rounding up would increase the total

value of all votes and risk an extra candidate gaining a quota (i.e., elect-
ing more candidates than we should).

and

Decrypt((d−a−1)⊗Tcwin) < Decrypt(d⊗Q∗).

This shows that the tally is within the range of
values for which a/d is the correct (rounded)
transfer value.

(c) For all votes, the EC will produce a new
weight. If the vote had cwin first, the new
weight will be a times the old; if not, it
will be d times the old. This is equivalent
to re-weighting only those votes being redis-
tributed, multiplying their weights by a/d.
The trick is to do so without revealing which
values are being changed. This works as fol-
lows. For each vote, with tallyable vote t,

i. [public] the EC multiplies the encrypted
weight wold by a by setting wred =
a ⊗ wold. This produces a weight that
is equal to the correct new weight if this
vote is being redistributed.

ii. [public] the EC multiplies the encrypted
weight wold by d by setting wnotRed =
d ⊗ wold. This produces a weight that
is equal to the correct new weight if this
vote is not being redistributed.

iii. The EC generates a new (encrypted)
weight wnew.

iv. The EC proves in zero knowledge, using
Proof 3 on t and the vote summary s that

(Decrypt(scwin) = 0 and

Decrypt(wnew) = Decrypt(wred))
or

(Decrypt(tcwin) = 0 and

Decrypt(wnew) = Decrypt(wnotRed)).

This implies that either the vote is being redis-
tributed and its weight was correctly changed, or it
is not being redistributed and its weight effectively
remained the same.

4. Redistribution The final step is for the EC to gener-
ate, for each vote, a new vote summary s and a new
tallyable vote t as described in Sections 3.1 and 3.4,
omitting the eliminated candidate.

5. Return to the tallying step, Step 1.

9



4 Analysis

4.1 Defining coercion-resistance

Having demonstrated that coercion can be effective even
when only limited information is revealed, we now de-
fine coercion resistance more formally. We imagine an
attack model in which the coercer communicates with
the voter before and possibly after the election, and also
receives all public information published during the elec-
tion. In our case, this is at least the transcript of the public
tallying process. The coercer is trying to make the voter
cast a vote with some particular property, such as putting
one party ahead of another, or putting a certain candidate
first. Obvious special cases are that the coercer speci-
fies the vote entirely, or tries to prevent someone from
voting. Throughout the following discussion, we con-
sider informal voting (including abstaining) to be a spe-
cial kind of vote and incorporate it into our definition of
coercion-resistance. The scheme is resistant to coercion
if the voter can be confident that the coercer will be un-
sure of whether the voter obeyed their demand or not.

Even when the coercer is only attempting to coerce
one voter, no voting scheme can be entirely secure
against coercion because simply publicising the result
could be enough to inform the coercer that the voter did
not vote as required. For example, if the coercer de-
mands a vote for candidate c and the tally shows that
nobody voted for them, then it is obvious that the voter
disobeyed. This problem is exacerbated when the co-
ercer knows some of the votes (because of fraud or be-
cause they are cast by political partisans). However, in
a reasonably large election this sort of thing is unlikely
to reveal disobedience decisively. Furthermore, the voter
does not have to be absolutely certain that disobedience
will be undetectable. She just has to consider the prob-
ability to be very high. Exactly how high depends on
the voter’s political preferences and the mode of coer-
cion. For example, if she has a strong political preference
against the coercer’s party and the method of coercion is
to offer her a small amount of money, then she may be
willing to accept quite a high probability of being caught
disobeying; if she is indifferent anyway and the coercer
threatens to shoot her if she disobeys, she will require an
extremely low probability of being caught.

The following definition assumes a voting system
whose outcome is a symmetrical function of the votes.
It assumes that a voter can “cheat” the coercer only by
submitting a different vote, not, for example, by modify-
ing the algorithm of some Internet voting scheme. (This
is an assumption about the vote-input scheme that pre-
cedes our tallying step. It would have to be proven to

implement an ideal functionality as in [MN06].) We de-
fine the scheme to be secure if the coerced voter can un-
detectably submit whatever vote she chooses, regardless
of what the coercer intended. We also assume that the
voter and the coercer have a common prior probability
distribution Π on the set of other votes. This may in-
clude, for example, knowing for sure that a certain num-
ber of voters will vote in a particular way. Define the
coercer’s view VIEWcoercer to be everything that the co-
ercer generates, computes or observes before, during, or
after the election. This is a randomised function of the
input votes. Given the view, the coercer tries to deter-
mine whether the voter voted as requested or not. The
exact definition of VIEW is dependent on the scheme.
For example, in an old-fashioned paper-based scheme
with secret ballot boxes, the coercer’s view would con-
sist only of conversations with the voters before and after
the election, and the public tally results. In an electronic
voting scheme that had been proven coercion-resistant in
the sense of [MN06], i.e. one that securely implemented
an ideal functionality IDEAL, the coercer’s view could
consist of the view that the ideal adversary obtains in an
interaction with IDEAL.

We define the preimage of a coercer’s view to be the
set of vote profiles (i.e. lists of votes of all voters) that
are consistent with that view.

Definition 4.1 Let n be the number of voters. Define the
preimage(v, VIEW) of a vote v and a view VIEW to be
the set of votes for all n − 1 voters that produce a view
computationally indistinguishable from VIEW when the
n-th voter votes v.

Consider what happens when a coercer demands a
vote vobey but the voter instead casts vcheat. Let
V be the profile of all the other votes cast. Then
the coercer’s view is that produced by vcheat and
V , that is, VIEW(V, vcheat). The coercer is trying
to detect whether the voter cast vobey or some other
vote. To do this, it will first estimate the probabil-
ity of this view being produced by an obedient voter.
This is the probability of the preimage of the view,
i.e. PrΠ

(
preimage(vobey, VIEW(V, vcheat))

)
. Obvi-

ously, if preimage(vobey, VIEW(V, vcheat)) = ∅ or

PrΠ

(
preimage(vobey, VIEW(V, vcheat))

)
= 0, then

the coercer knows that the voter has disobeyed. How-
ever, there are other situations in which the coercer might
still be very suspicious of disobedience: if the voter pro-
duces a view that would be very unlikely with the obedi-
ent vote, but quite likely otherwise, then the coercer may

10



believe that the voter disobeyed. Recall the example of
high-precision tallies from Section 2.3.

We define the likelihood ratio of the obedient vote
vobey and the disobedient vote vcheat for a particular
view VIEW to be the ratio of the probabilities that the
view was produced with each vote13.

Definition 4.2 Let n be the number of voters, vobey and
vcheat be votes (vobey the one the coercer would like the
voter to pick, and vcheat what the voter casts instead),
and VIEW the coercer’s view. Define the likelihood ratio
L(vobey, vcheat, VIEW) to be

L(vobey, vcheat, VIEW) =
PrΠ

(
preimage(vobey, VIEW)

)
PrΠ

(
preimage(vcheat, VIEW)

) .
We assume that the coercer has some “suspicion

threshold” tsus. The coercer, after getting a certain view,
computes the likelihood ratio of the obedient vote and
every possible disobedient vote, and punishes the voter
when any value is below tsus. The scheme is secure
from coercion if there is a low probability of producing
an outcome that falls below the suspicion threshold.

Definition 4.3 Let n be the number of voters, and Π be
a joint distribution on n − 1 votes (those of the voters
other than the one being coerced). Let PrV←Π () denote
the probability when V is randomly chosen according
to Π. Then a voting system is (tsus, pcaught)-coercion
resistant if for all votes vobey (demanded by the coercer),
for all votes vcheat 6= vobey, the probability

PrV←Π

(
L(vobey, vcheat, VIEW(V, vcheat)) ≤ tsus

)
is less than or equal to pcaught.

There are several ways to weaken this definition. The
most obvious one is to set the suspicion threshold tsus to
zero, so the disobedience only fails if the coercer is cer-
tain that the voter disobeyed. However, this seems too
weak because of the weighted votes example mentioned
in Section 2.3. Another weakening is to allow the co-
erced voter to collude with other voters to deceive the
coercer. Finally, we could consider a coercer trying to
coerce a whole group of voters simultaneously. We do
not consider these weakenings in this paper.

13There is no good reason to take the ratio—we just need a function
that compares the probabilities, increases in the first argument and de-
creases in the second. Ratio was the simplest and is quite commonly
used in similar likelihood calculations.

4.2 Security Analysis
Claim 4.4 If the El Gamal cryptosystem is semantically
secure, Tally(d) reveals only

1. The order of eliminations and elections, and

2. The range of the final tally of each candidate im-
plied by the transfer value approximation in Step 3.

Proof: A formal proof of this claim would consist of a
reduction to an ideal functionality revealing only items 1
and 2. We do not present such a formal proof here, but
we note that our techniques for hiding information are
very standard. �

Let IDEAL TALLY(d) denote the ideal functionality de-
scribed described in Claim 4.4. We prove coercion resis-
tance for this ideal functionality. First we must make
some assumptions about the probability distribution on
everyone’s votes, then we show that our scheme is coer-
cion resistant.

Even with the ideal functionality, there are still oppor-
tunities for coercion if weights and tallies are reported
with too much precision, as described in Section 2.3.
Also, some low probability events still expose the ab-
sence of a particular permutation. For example, if an
elected candidate has only slightly more than a quota,
then the approximation a/d reveals quite a lot of infor-
mation about the tally. Fortunately, if the tallies are re-
ported to relatively few decimal places, the coercer can
catch a cheating voter only with low probability. Of
course, we still need to make some assumptions about
the coercer’s uncertainty about everyone else’s vote. A
joint probability distribution Π on n − 1 votes induces
a probability distribution on each partial tally (the tallies
that would be obtained if only those n − 1 votes were
cast), and we make our assumptions based on that in-
duced distribution. Informally, the idea is to define the
distribution to be (tsus, d, ε)-uncertain if, given the in-
formation revealed according to Claim 4.4, for all votes
that the coercer might demand, there is a probability of
at most ε that the coercer’s estimated likelihood that the
voter cheated is greater than tsus.

Definition 4.5 Define the transfer value approximation
approx(Tc) to be the rounded-down approximation from
Step 3. For a given probability distribution Π on n − 1
votes, define the approximation approx(Tc) for candi-
date c elected during elimination and election order O
to be (tsus, d)-uninformative if

PrΠ (approx(Tc) = α)
PrΠ (approx(Tc) = α+ 1)

≥ tsus

11



and
PrΠ (approx(Tc) = α+ 1)

PrΠ (approx(Tc) = α)
≥ tsus

Definition 4.6 Define Π to be (tsus, d, ε)-uncertain if the
probability of getting at least one of

1. an elected candidate getting exactly a quota,

2. a tie for equal-lowest tally when nobody has a
quota,

3. being within 1 of either of the first two occurrences,

4. an elimination and election order and at least one
approximation that is not (tsus, d)-uninformative,
or

is at most ε.

Theorem 4.7 Suppose that the probability distribution
Π on others’ votes is (tsus, d, ε)-uncertain. Then
IDEAL TALLY(d) is (tsus, ε)-coercion resistant.

Proof: The first 3 items of definition 4.6 imply that the
probability of the coerced voter affecting the elimination
or election order is at most ε.

To see that no other votes are cheat-revealing, apply
Claim 4.4. If the coerced voter’s “cheat” does not af-
fect the elimination or election order, then the coercer’s
only extra information is the approximation based on the
final tally of each candidate who wins a seat. By Defi-
nition 4.5, this does not make the coercer suspicious (on
the basis of the ratio of their probabilities with and with-
out voter obedience). �

4.3 Computational requirements
We implemented the scheme using both standard and El-
liptic Curve El Gamal, then tested it on a subset of the
votes from the last Victorian State election. The Elliptic
Curve version would be quite reasonable for verifying
the whole of that election—it would take about 10,000
PC-hours to compute and produce a transcript of size
about 400Gb. (This is acceptable because just the data
entry already takes weeks.) Furthermore, both proving
and verifying are highly parallelisable. Verifying an Aus-
tralian federal election would require considerably more
resources, because there are up to three times as many
candidates and ten times as many voters, but would be
quite feasible if a large number of computers were com-
mitted to the task.

The results for a standard PC running an election
with 200 votes, 40 candidates, 5 seats and denominator

d = 1000, over the elliptic curve defined by E−3,383/Fp

(where p is a 160-bit prime) are as follows. The last
three times include the time taken to read in the file of
encrypted votes.

Size of Ciphered Votes 7.1 Mb
Transcript Size 40.2 Mb
Time for EC to compute Election results 12 mins
Time for EC to output Proof 45.5 mins
Time to verify Transcript 60.2 mins

5 Conclusion and further work

This paper presents a way of tallying votes for multi-seat
STV that protects voters against coercion if reasonable
assumptions are made about the other voters’ behaviour.
It is intended to be added on as the final stage of an
electronic voting scheme, though it could also be used
after some other (paper-based) method of achieving an
agreed-upon list of encrypted votes.

It would of course be possible to reveal more infor-
mation. For example, the initial (first-preference) tallies
are used by the Australian Electoral Commission to de-
termine public campaign funding. It would be easy to
modify the scheme to reveal this, or to reveal partial in-
formation using range proofs, but we have not analysed
the security implications of this.

The obvious next step is to try to distribute the secret
key so that no single authority could decrypt ballots. A
proof of correct decryption could be achieved without
explicitly reconstructing the key, using the techniques of
[CGS97]. The proof of equality of two encrypted val-
ues could also be adapted. The range proofs could be
distributed using the techniques of [DFK+06] or [ST06]
(which is based on Paillier encryption, to which our
scheme could easily be adapted). However, we do not
know how to do reweighting without all the authorities
knowing which votes are being redistributed. This alone
could be enough for successful coercion.

6 Acknowledgements

Many thanks to Thea Peacock, Tal Moran, Ron Rivest,
Josh Benaloh, Peter Ryan and Andrew Conway for in-
teresting discussions and helpful suggestions about this
paper.

References

[AR06] Ben Adida and Ronald Rivest. Scratch
and vote. In Proc. 5th ACM workshop on

12



Privacy in the electronic society (WPES),
pages 29–40, 2006.

[BM] J. Benaloh and T. Moran. Shuffle-sum: a
practical protocol for receipt-free STV tal-
lying.

[Bon98] Dan Boneh. The decision diffie-hellman
problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, LNCS
1423, pages 48–63. Springer-Verlag, 1998.

[CDS94] R. Cramer, I. Damgård, and B. Schoen-
makers. Proofs of partial knowledge and
simplified design of witness hiding proto-
cols. In Advances in Cryptology—CRYPTO
’94, LNCS 839, pages 174–187. Springer-
Verlag, 1994.

[CEvdG88] D. Chaum, J.-H. Evertse, and J. van de
Graaf. An improved protocol for demon-
strating possession of a discrete logarithm
and some generalisations. In Proc. EU-
ROCRYPT ’87, LNCS 304, pages 127–141.
Springer-Verlag, 1988.

[CG96] R. Canetti and R. Gennaro. Incoercible
multiparty computation. In Proc. FOCS 96,
pages 504–513, 1996.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmak-
ers. A secure and optimally efficient multi-
authority election scheme. European trans-
actions on Telecommunications, 8(5):481–
490, September-October 1997.

[Cha] D. Chaum. Punchscan.
www.punchscan.org.

[CM05] M. Clarkson and A. Myers. Coercion-
resistant remote voting using decryption
mixes. Frontiers in Electronic Elections,
September 2005.

[CMT06] Christopher Crutchfield, David Mol-
nar, and David Turner. Approximate
measurement of voter privacy loss
in an election with precinct reports.
NIST/NSF Workshop on Threat analyses
for voting system categories, June 2006.
vote.cs.gwu.edu/vsrw2006/papers.html.

[CP93] D. Chaum and T. P. Pedersen. Wallet
databases with observers. In Proc. CRYPTO
’92, LNCS 740, pages 89–105. Springer-
Verlag, 1993.

[CRS05] D. Chaum, P. Y. A. Ryan, and S. A. Schnei-
der. A practical voter-verifiable election
scheme. In Proc. European Symposium on
Research in Computer Security (ESORICS),
pages 118–139. Springer, 2005. LNCS
3679.

[DFK+06] I. Damgård, M. Fitzi, E. Kiltz, J. B.
Nielsen, and T.Toft. Unconditionally se-
cure constant-rounds multi-party computa-
tion for equality, comparison, bits and expo-
nentiation. In Proc. TCC 2006. LNCS 3876,
pages 285–304. Springer, 2006.

[FS87] A. Fiat and A. Shamir. How to prove your-
self: practical solutions to identification
and signature problems. In Proc. CRYPTO
’86, LNCS 263, pages 186–194. Springer-
Verlag, 1987.

[GG05] Eu-Jin Goh and Philippe Gollé. Event
driven private counters. In Proc. 9th Inter-
national Conference on Financial Cryptog-
raphy and Data Security, FC 2005, pages
313–327. Springer, LNCS 3570, 2005.

[Hea07] J. Heather. Implementing STV securely
in Prêt à Voter. In Proc. 20th IEEE
Computer Security Foundations Symposium
(CSF), pages 157–169, 2007.

[Hil07] I.D. Hill. Edited comments on robert new-
land’s suggestions. Voting Matters, 23:3–9,
February 2007. www.votingmatters.org.uk.

[JCJ05] A. Juels, D. Catalano, and M. Jakobsson.
Coercion-resistant electronic voting. In
WPES 05, 2005.

[Mao98] W. Mao. Guaranteed correct sharing of inte-
ger factorization with off-line shareholders.
In Proc. Public Key Cryptography, pages
27–42, 1998.

[McM] Michael McMahon. Verification of
preferential voting system elections
without publishing plain-text ballots.
michael@hexmedia.com.

[MN06] Tal Moran and Moni Naor. Receipt-free
universally-verifiable voting with everlast-
ing privacy. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 373–392.
Springer-Verlag, August 2006.

13



[Nef04] C. A. Neff. Practical high cer-
tainty intent verification for en-
crypted votes, October 2004.
www.votehere.com/vhti/documentation/vsv-
2.0.3638.pdf.

[Oka97] T. Okamoto. Receipt-free electronic voting
schemes for large scale elections. In Proc.
5th international workshop on security pro-
tocols, LNCS 1361, pages 25–35. Springer-
Verlag, 1997.

[Ott03] J. Otten. Fuller disclosure than in-
tended. Voting Matters, 17:8, October 2003.
www.votingmatters.org.uk.

[RS07] Ronald Rivest and Warren Smith. Three
voting protocols: Threeballot, VAV and
twin. In Proc. USENIX/ACCURATE elec-
tronic voting technology workshop (EVT
07), 2007.

[Sch91] C. P. Schnorr. Efficient signature genera-
tion by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[ST06] B. Schoenmakers and P. Tuyls. Efficient bi-
nary conversion for paillier encrypted val-
ues. In Proc. EUROCRYPT 2006, LNCS
4004, pages 522–537. Springer, 2006.

[Wic04] B. A. Wichmann. A note on the use of pref-
erences. Voting Matters, 18:11–13, June
2004. www.votingmatters.org.uk.

[XSH+07] Z. Xia, S. Schneider, J. Heather, P. Ryan,
D. Lundin, R. Peel, and P. Howard. Prêt
à Voter: all in one. In Proc. Workshop
on Trustworthy elections (WOTE 07), pages
47–56, 2007.

A Vote input

Our counting method was not designed with a specific
front-end e-voting system in mind. All that we require
is that the votes be printed on the bulletin board in the
format we use, in such a way that everyone believes the
set of published votes matches the set cast in the elec-
tion, it is impossible to link individal votes with the cor-
responding voter, and votes remain encrypted. This sec-
tion shows one way to achieve this. It is based on Prêt à
Voter, as modified by Heather [Hea07]. We take the bal-
lot construction from part way along Heather’s decryp-
tion process, the point at which every vote is a (randomly

ordered) list of pairs (p,Encrypt(c)), with Encrypt(c) be-
ing an encrypted candidate name, and p an (unencrypted)
preference. We have to modify Heather’s process slightly
even before this, so that Encrypt(c) is doubly-encrypted,
first with the public key of the EC and then with the pub-
lic key of the vote-construction authorities, who share
the key so that some threshold number of them is re-
quired for decryption. Unless there is collusion between
the EC and more than the threshold number of vote con-
struction authorities, the latter learn nothing about the
contents of the votes. The EC learns the decrypted votes
but, unless all the mix-servers collude with it, does not
learn the correspondence between votes and individual
voters. Unlike [Hea07], we do not allow incomplete per-
mutations in the input phase. The steps are:

1. re-encryption mix(es) A series of mix servers
mixes the votes and, for each vote, randomly per-
mutes the list of pairs and re-encrypts the candi-
date names. They prove correctness using one of
the standard mixing proofs.

2. vote-construction authorities The vote-
construction authorities perform a shared de-
cryption of the first layer of encryption on the
candidate names. This can be done with a proof of
correctness and without explicitly reconstructing
the key, using the techniques of [CGS97].

3. vote reconstruction [public] For each vote, ar-
range the list in preference order (first preference
first, then second, etc.). These become the row and
column labels for a matrix with “don’t care” along
the diagonal, zeros above, and “-1” everywhere be-
low. Then encrypt the cells of the matrix with the
public key of the EC and some standard random-
ness (such as 0).

4. vote de- and en-cryption The EC mixes votes and,
for each vote, decrypts the list of candidate names,
permutes them so that they are in the canonical or-
der, then permutes the rows and columns of the ma-
trix so that each cell has the same row and column
lables as it did before the label permutation, then re-
encrypts each cell. This is proven correct with one
zero knowledge proof.

This construction preserves the security assumptions
that were made in the body of the paper: the EC does
learn each decrypted vote, but does not learn which vote
corresponds to which voter (unless the mix servers all
collude with it). No other entity learns any information
about the contents of any votes.

14


