
An Analysis of Write-in Marks on Optical Scan Ballots

Theron Ji Eric Kim Raji Srikantan Alan Tsai Arel Cordero David Wagner
University of California, Berkeley

Abstract

Optical scan ballot systems are widely used in elections
today. However, deployed optical scan systems may not
always interpret write-in votes correctly. For instance, if
a voter writes in a name but forgets to shade in the corre-
sponding voting target, an optical scanner may not detect
the write-in, which could lead to a lost vote. In this paper,
we study methods for automatic recognition of write-in
marks. We then apply these methods to ballots from an
election in Leon County, Florida and study the kinds of
write-in marks that are seen in practice. Our results from
this election show that voters frequently (about 49% of
the time) do not fill in the write-in bubble when enter-
ing a write-in vote. Consequently, votes may be lost in
current voting systems.

1 Introduction

Historically, write-in candidates have always been an
overlooked part of elections. The dark horses who
run write-in campaigns are often—though certainly not
always—less well-known and under-funded compared to
their competitors. Thus, write-ins tend to be an over-
shadowed topic.

However, there are still strong reasons for allow-
ing write-in candidates. For example, candidates who
lose a party primary or candidates who file their paper-
work late may want to run a write-in campaign. Also,
in some countries write-ins are an important defense
against “name-blocking”, in which an incumbent man-
ages to prevent his or her opponents from having their
names printed on the ballot [1]. These situations make it
important that voters have a usable way to enter write-in
candidates, and for voting systems to count them accu-
rately. While write-in candidates face long odds, it is
not unheard of for write-in candidates to win. A notable
list of figures have won primaries through write-ins, in-
cluding Dwight Eisenhower, Richard Nixon, and John

F. Kennedy. Most recently was the 2010 Alaska Senate
election, where incumbent Lisa Murkowski won a write-
in campaign after losing the Republican primaries [3].
Write-ins are also more common in smaller elections,
such as city council or school board elections.

Current optical scan systems support write-in can-
didates by providing a blank space on the paper bal-
lot where the voter can write in a candidate name of
their choice. To enable the scanner to detect write-
ins, voters are instructed to fill in a bubble next to the
write-in region, indicating their intention to cast write-in
vote. Scanners separate out ballots with a write-in bub-
ble filled, so they can be inspected manually by election
officials. Therefore, write-in marks are detected by cur-
rent optical scanners only if the voter marks the corre-
sponding voting target. This system works well if voters
remember to fill in the write-in bubble. However, it falls
apart if the voter writes in a name, but forgets to mark the
voting target: such votes are not detected by the scanner
and thus are not counted.

A recent instance in which this protocol directly af-
fected the outcome of an election was the 2004 San
Diego mayoral election, where Democratic candidate
Donna Frye lost to incumbent Richard Murphy because
about 4000 write-in votes for Frye did not have the voting
target filled in [6]. If these lost votes had been accepted,
then Donna Frye would have won the election.

One approach to solving this problem is to put more
effort into instructing voters on how to mark their bal-
lots, or to design the ballots so the usage is more obvious.
However, this cannot guarantee that every voter will fol-
low the instructions. In this paper we design automated
techniques to detect these types of errors. We also apply
these methods to a large real-world data set and use the
results to gain new understanding about the prevalence
of various kinds of problems associated with write-ins.

The contributions of this paper are:

• We develop automated methods for detecting and

analyzing write-in votes, if scanned images of bal-
lots are available for analysis. These methods are
suitable for use in next-generation voting systems.

• We analyze the write-in votes and marks found on
over 100,000 ballots cast in the 2008 Leon County
election. Based upon this, we are able to provide
a quantitative analysis of the prevalence of various
sorts of voter marks, including the rate at which
write-in votes are lost due to limitations of current
technology.

• We demonstrate that a large fraction of write-in
votes are not detected or counted by current opti-
cal scan technology, motivating the benefit of better
technology for processing write-in votes.

2 Problem statement

We have two goals in our work: to develop automated
methods for detecting write-in votes, and to understand
how voters use write-in portions of the ballot in practice.

Current optical scan technology has a significant lim-
itation: it cannot detect write-in votes unless the corre-
sponding voting target has been filled. We wish to create
new methods for write-in vote detection that eliminate
this limitation. This is of importance because the limi-
tations of current technology have the potential to shape
the laws and regulations that govern public elections. For
instance, current technology cannot automatically detect
a write-in for which the corresponding voting target was
not filled, and some states declare those kinds of votes
invalid as a matter of law. As a result, even if all ballots
are manually recounted by hand (in a setting where those
votes can be detected), state law may require that those
votes not be counted. To the extent that technologists
can eliminate the limitations of current technology, pol-
icymakers and election officials may be given additional
options for better capturing the will of the populace.

Our second goal is to understand voter behavior with
respect to write-ins. In particular, we want to better un-
derstand the failure modes that exist for write-in votes.
For instance, to what degree do people actually fill out
write-in votes in accordance with assumptions made by
optical scan systems? To what extent does voter behavior
differ from the assumptions made by designers of optical
scan systems? Can such disparities lead to lost or misin-
terpreted votes, and if so, how prevalent are such cases?
A specific question we raise is, how often do voters write
in a candidate name but fail to mark the corresponding
voting target? This situation is especially relevant be-
cause it can lead to lost votes in deployed optical scan
systems.

To answer these questions, we analyze a large data
set of scanned images of all of the paper ballots cast in

the 2008 Leon County general election. Individually in-
specting ballot images for a large election is time con-
suming and expensive. (Our data set for one election in-
volves close to a quarter-million images.) Therefore, our
exploratory analysis of voter use of write-ins relies upon
the methods we develop for automating—accurately!—
much of the processing of write-in votes.

Our work on automating the detection and processing
of write-in votes requires us to automate a number of
steps that are currently handled manually. Some of the
image processing tasks we wish to automate include:

• Registering all the ballot images to a uniform coor-
dinate system.

• Grouping ballots by ballot style (or layout of con-
tests).

• Automatically identifying all the write-in regions
for every ballot.

• Detecting every mark that occurs in a write-in re-
gion, whether or not the corresponding voting target
has been filled.

• Initially categorizing write-in marks (e.g., as ac-
tual write-in votes, emphasis votes, or non-serious
votes).

For each of the above tasks, we require a high degree
of accuracy, so we also need methods for verifying the
accuracy of each step we automate. In other words, we
want to be sure at the end of the day that our analysis has
fully accounted for every write-in vote in the data.

We make several assumptions in our analysis:

• We assume that we are given scans of the front and
back side of each voted ballot. We assume these
represent the complete set of ballots.1

• We assume that we are given a set of blank ballot
images, or template images, that consists of all bal-
lot styles in the data set. We do not assume any
prior knowledge of which voted ballots correspond
to which template.

• We assume that each contest on the ballot is sur-
rounded by a clearly demarcated box.

There are several assumptions we do not make:

1We do not verify that our results match up with the actual physical
ballots cast by voters. We consider this a separable problem that is out
of scope for this work. Prior research has demonstrated both the value
of investigating ballot images, as well as methods in which the ballot
images may themselves be audited [5].

Figure 1: Overview of our approach to automatically detecting write-ins in a set of scanned ballot images.

• We do not assume the images are free from natu-
ral scanning errors. For instance, the scanner may
introduce variations in alignment or artifacts from
creases, folds, or tears. The automated image pro-
cessing techniques described in this paper are re-
sponsible for dealing with these issues.

• We also do not assume any prior knowledge of the
election configuration of the ballots. For instance,
we do not assume we are given the coordinates of
each voting target or the candidate that each voting
target corresponds to.

To maximize the applicability of our technique, we
adopt several goals:

• Our approach should be generally applicable to a
wide variety of jurisdictions and optical scan sys-
tems. It should be clear how to generalize our ap-
proach to new elections and to the ballot designs of
other vendors.

• The methods should be designed to minimize the
amount of manual labor required. We do not try to
completely eliminate all human interaction. Rather,
we think of the system as a system comprising a
human and a machine. We use the human opera-
tor for their knowledge of the problem domain (e.g.,
specifics of the local ballot layout), and use the ma-
chine for mechanical tasks. For example, in certain
cases, we may ask for a limited amount of human
assistance, e.g., to identify an example of a voting
target or registration mark. Our goal, of course, is to
reduce the amount of human involvement required
to a minimum.

By developing automated methods for write-in detec-
tion, we hope to make it easier to investigate how people
write in votes in practice. We can use this knowledge to
design more robust optical scan ballots and systems.

3 Automated Write-in Detection

Our process for detecting write-in votes in scanned ballot
images involves several steps (see Figure 1).

3.1 Registration
We start with a set of images of marked ballots, and a
set of unvoted “template” images, one per ballot layout.
Each marked ballot image will correspond to a template
image, however the images may not be perfectly aligned:
each image may be slightly rotated, scaled, or shifted
by a different amount. In addition, some ballot images
may be upside-down by virtue of how they were scanned.
Before we analyze the content of the ballots, we must
first register each scanned ballot image so it aligns with
its corresponding template image. We use feature-based
registration, which is often used in computer vision, by
making use of the hashmarks on the border of the bal-
lot image. Our registration algorithm is designed to be
robust to common errors, such as artifacts introduced by
low-resolution scans, lossy compression, or folded/torn
ballots.

The algorithm involves three steps: detection of regis-
tration marks, identification of the ballot bounding box,
and computation of an affine transformation that aligns
the ballot to a common coordinate system.2

3.1.1 Locating registration marks

Most optical scan ballots include registration marks for
the purpose of aligning the image so that it can be in-
terpreted correctly. The exact shape of these marks may
vary from one vendor to another. The Diebold/Premier
ballot style used in our data set has a border of hash-
marks (solid black rectangles) along the edges of the bal-

2An affine transformation (which accounts for rotation, scaling,
skewing, and shifting) is appropriate because the ballots are scanned
flat, pressed down inside the scanner. This would not be a safe as-
sumption to make if the ballots might be curled, as is the case in the
OpenScan system [15].

Figure 2: The location of every hashmark in the ballot
image is identified through template matching. The de-
tected hashmarks are highlighted in green.

lot which identify the boundary of the ballot and deter-
mine the positions where voting targets may appear. Our
registration process is specialized to Diebold ballots, but
it would be possible to extend it to handle other kinds of
ballots as well.

Given an example of a hashmark, we use template
matching to find the locations of all such hashmarks on
each ballot image (see Figure 2). Template matching
is a well-established image processing technique that,
given a template T and an image I, finds all locations
in I where the template T occurs. Template matching
can be performed by a straightforward algorithm that
tries to place T at each possible offset within the image,
and then scores each candidate location using a pixel-
wise difference between the pixels of T and the pixels of
the corresponding region in I. The best-scoring matches
are retained. In our experience, template matching pro-
duces highly accurate results due to the uniform nature
of the hashmarks. Efficient implementations of template
matching are available as libraries. In our work we used
the open source computer vision library, OpenCV.

3.1.2 Computing the bounding box

To more robustly register the ballot images, we compute
the bounding box of each ballot by detecting the horizon-
tal and vertical lines formed by the hashmarks that sur-
round the ballot. We separate the set of hashmarks into
four groups: the two horizontal sets of hashmarks (at the

Figure 3: Linear regression is performed on each side of
the hashmarks we just identified, to give us four best-fit
lines. Notice the slight leftwards skew of the image.

top/bottom edges of the ballot), and the two vertical sets
of hashmarks (at the left/right edges of the ballot). Then,
we perform linear regression four times, once on each set
of points.3 This finds a best-fit line for each set of hash-
marks, which ultimately gives us a bounding box of the
ballot with corners formed by the intersection of these
lines.

This method is designed to be robust against damaged
ballots, which are common in our data set.4 Sometimes
the corner of the ballot is folded, causing us to miss sev-
eral hashmarks (this is one reason why we did not simply
use the corner hashmarks to generate the bounding box).
Even if a few hashmarks are missing, linear regression
will still find the best fit through the remaining hash-
marks. This method is even robust against ballots that
are missing an entire edge: as we shall see next, a mini-
mum of two intersecting lines of hashmarks suffices.

3For the top and bottom edge, we use simple linear regression to
find the line that best predicts the y-coordinate of each hashmark as
a function of its x-coordinate. To avoid singularities, for the left and
right edge we flip the role of the x and y coordinate: we find the line
that best predicts the x-coordinate of each hashmark as a function of
its y-coordinate. This step is necessary because the line formed by the
left/right edges is nearly vertical.

4Our data set included hundreds of ballot images that showed some
sort of damage.

Figure 4: The ballot image, after it applying an affine
transformation that maps its hashmarks to their canonical
locations in a template image.

3.1.3 Affine transformation

In this final step of the registration process, we use the
location of each hashmark to compute the best-fit align-
ment. We assume we have a template showing the canon-
ical location of each hashmark. For each hashmark in
the unaligned ballot image, we associate it with its corre-
sponding hashmark in a template. In particular, we pick
one corner of the bounding box (found in §3.1.2), find the
hashmark at that corner in the ballot image, and then lo-
cate the corresponding corner hashmark in the template.
Starting from the corner hashmark, we then scan in both
the clockwise and counterclockwise direction along the
lines detected in the previous step, in both the ballot im-
age and the template image. This scan process allows
us to build a correspondence between hashmarks in the
ballot image and hashmarks in the template image.

This correspondence is robust against skewed images
since it uses relative positions instead of absolute posi-
tions. It is also robust against ballots with missing sides,
as it only needs one corner to be able to find the relative
positions of the hashmarks. As long as the ballot im-
age is missing no more than one consecutive segment of
hashmarks, we can map all of the hashmarks present on
the ballot image to the template image.

Last, we solve for the best affine transformation that
maps the ballot hashmarks to the template hashmarks,
using least-squares regression to find the transformation
that minimizes the sum of squared residuals in the result.

Figure 5: The precinct number is at the top left of every
ballot. We OCR this to group the ballots.

The ballot image can thus be brought to the universal
coordinate system. The registered ballot image as a result
of these steps is shown in Figure 4.

3.2 Ballot grouping
Once the ballots are aligned, we identify the blank bal-
lot template image that each voted ballot corresponds to,
and group all the ballots accordingly. Within a group, all
ballots have the same layout and the same set of contests.
Moreover, each contest and its corresponding write-in re-
gion is at the same location in the image on all ballots
within the group. This enables us to optimize the pro-
cess of finding write-in regions because once we have
found the location of all write-in regions within a single
ballot, we can infer the location of the write-in regions
on all the other ballots in the group.

We group ballots by their precinct number. We take
advantage of the fact that in our election, ballots in the
same precinct also share the same ballot style. The bal-
lots in our data set contain a four-digit precinct number
printed in the upper-left corner of the ballot, at the same
location on all ballots, as shown in Figure 5. Looking
only in the region containing the precinct number, we
apply OCR (optical character recognition) to obtain the
text. Our implementation uses the Tesseract OCR en-
gine.

Next, we identify the template (blank ballot) for each
precinct using form extraction [4]. Form extraction is
an image processing method that identifies the horizontal

Figure 6: The result of form extraction. It detects the
location of all boxed contests. It also finds write-in lines
(narrower horizontal lines contained within a box).

and vertical lines in the image and then finds all of the
rectangular “boxes”. In this case, the boxes generally
surround contests or headers. See Figure 6 for the result
of form extraction applied to a Leon County ballot.

We use the set of box locations as a fingerprint of the
ballot style. To identify the template corresponding to
a particular precinct, we apply form extraction to a sin-
gle ballot image from that precinct, identify the ballot
style fingerprint, and then associate that precinct with the
template with the same fingerprint. (We assume no two
templates share the same fingerprint; if a collision is de-
tected, operator assistance may be necessary.)

3.3 Finding write-in regions
Next, we find the region of the ballot where voters may
write in a name. We list several possible approaches:

1. Manual: The simplest method would simply have a
human operator specify the location of each write-in
region. This would be the most general in the sense
that it would work for any type of ballot style. This
would only need to be done once for each ballot
template, as the previous grouping step would have
already grouped each marked-ballot with its corre-
sponding template image. However, this would be-
come time-intensive if there were a large number
of ballot templates. Also, any slight inaccuracy in
selecting the region might pose a problem for clas-

Figure 7: Our algorithm automatically infers the region
for write-in marks.

sification in the next step.

2. Template Matching: In this approach, we show the
operator a sample ballot and ask him/her to select a
region containing the text “Write-in” (or any other
label that identifies a write-in region) and use this
as a template. We use template matching to find all
instances of it, and then look for a rectangular empty
space above it. Assuming that all write-in regions
on the ballot are labelled in this way, this allows us
to find all write-in regions efficiently, with minimal
operator assistance. This method is useful is useful
for ballots that do not surround each contest with
a black box or do not contain differentiated write-
in lines. In these cases, if the write-in spaces are
labeled, we can still identify where each write-in
region is located.

3. Form Extraction: Alternatively, we can eliminate
the need for operator assistance by inferring the lo-
cation of each contest on the ballot. Form extraction
identifies the horizontal and vertical lines on the bal-
lot image. We find the intersections of these lines;
the boxes that result are interpreted as the contests
on the ballot. Then, we note that write-in regions of-
ten contain a horizontal write-in line, which is con-
tained entirely within a contest box (so the line is
shorter than the width of the box). We find all lines
of this form (see Figure 6).

Next, given the location of a write-in line, we find

the empty region above it (which is left empty so
the voter can write in the name of a candidate) by
scanning row-by-row upwards until we reach a row
containing several black pixels. The empty region
above the write-in line is interpreted as the write-in
region (see Figure 7).

We apply write-in region detection to the template (blank
ballot) images. Since each marked ballot is already
grouped by ballot style, and each ballot group is associ-
ated with a template, we only need to extract the write-in
regions for each template to know their location on ev-
ery ballot. Also, if the templates were generated from
the original files (our templates were given to us as PDF
files), they may already be aligned and free from noise,
improving accuracy when working with templates.

In our implementation, we use form extraction. The
other two approaches are more general, making fewer
assumptions on the ballot style. Appendix A analyzes a
variety of ballots to determine how many ballots can be
handled by one of these approaches.

3.4 Write-in detection

Given the location of all write-in regions, we look for
ones that appear to contain handwritten marks. We first
convert the grayscale images to black and white, using
Otsu’s thresholding algorithm [12]. We then count the
number of black pixels within each cropped-out write-
in region and conclude that a write-in mark exists if this
count exceeds some threshold. The count of black pixels
effectively estimates the amount of area covered by ink
in a region.5 A threshold, which could be specified in
terms of pixels or area, gives us a buffer against stray
noise introduced by the scanner or registration.

We selected the threshold by constructing a histogram
of the set of all counts. Experimentally, we found a
clear separation between marked and non-marked re-
gions, making it easy to choose a reasonable threshold.
In selecting the threshold we chose to err on the side
of caution and accept more false positives (which can
be thrown away on inspection), over false negatives that
could lead to missing a handwritten mark.

In our experiments, we used a threshold of 500 black
pixels: regions with at least 500 black pixels (approxi-
mately 8 mm2 of dark ink) were classified as containing a
handwritten mark, while regions with fewer were classi-
fied as empty. The average write-in region is 31,311 pix-
els large (441×71), so this threshold number is around
1.6% of the area of the region.

5The area of a pixel can be determined given the DPI of an image.
For instance, our ballot images were scanned at 200 DPI, which works
out to about 62 pixels per mm2.

Figure 8: Evaluation of the accuracy of our registration
procedure. The x-axis represents the average distance
each voting target is from the corresponding voting tar-
get in the canonical template image. Most images are
registered to within at most 3 pixels error.

3.5 Voting target association
Lastly, we want to determine whether the voting target
associated with this write-in was marked or not. To find
the voting target, we search for the voting target closest
to the center of the write-in region. We can then deter-
mine if the corresponding target is actually filled by tem-
plate matching with an image of an empty voting target:
if a match is found, then the write-in voting target is not
filled in. This implies that any mark the voter makes in
the target, even if it is ambiguous, will be classified as
“filled”.

At this point, our pipeline is now complete, and we
have counts of the number of write-ins, as well as the
number of filled and unfilled write-in voting targets for
the write-in votes.

4 Evaluation of our approach to finding
write-ins

We have presented techniques to automate the detection
of write-ins given a large set of scanned ballot images.
In this section we evaluate the performance of our tech-
niques on a real data set. Since our process involves a
series of steps, we must have a way to establish confi-
dence in each step.

4.1 Registration evaluation
Accurate image registration is essential for the kind of
image analysis we propose in this paper and is a prereq-
uisite for the remainder of the steps in our process. An
alignment error of more than a few pixels may introduce
noise that can lead to misclassification down the line. In
prior work, we showed how image superposition can be
used to visually verify the correctness of ballot image
registration [5]. One question that remained open was

how to quantify the accuracy of the registration proce-
dure. For that, we developed the following technique.

We evaluate the accuracy of our alignment by measur-
ing the distribution of locations of empty voting targets
across all ballots:

1. First, we use our set of blank template ballot im-
ages (which we know to be registered correctly),
and find all the possible regions in which a voting
target might occur. We will use this information
to group together voting targets appearing near the
same region.

2. Next, for every individual ballot image, we use tem-
plate matching (see Section 3.1.1) to locate all in-
stances of empty voting targets occurring in each
image. Note, we do not attempt to locate filled vot-
ing targets, as they may vary significantly by voter.

3. Last, for every empty voting target found, we as-
sociate it with the nearest voting target in our tem-
plate ballot images (from step one). This lets us de-
termine a distribution of voting target locations per
region.

Empty voting targets are useful for measuring align-
ment because:

• Template matching works accurately and efficiently
on the distinct and identical patterns typified by
empty voting targets.

• Voting target locations are of critical importance to
optical scan ballots, so it makes sense to evaluate
registration at those regions.

• Voting targets are generally spread out across the
page, letting us measure registration on many parts
of the ballot.

We evaluated our registration method on our dataset
of Leon County ballots. For each ballot, we computed
the average Euclidean pixel distance of all the detected
empty voting targets to their corresponding locations in
the template images. For most ballots the average error
was 3 pixels or less (see Figure 8). In contrast, the unreg-
istered images showed an average error of 9.480 pixels.

Our method has a couple limitations. First, our method
relies on template matching to locate empty voting tar-
gets, which itself may introduce some slight noise. Sec-
ond, if a ballot is very poorly registered, an empty voting
target in the image may by chance associate with an in-
correct voting target in the template. This would lead
us to underestimate the alignment error. However, from
our experience the scanned ballot images were initially
closely aligned enough that we did not run into this prob-
lem. Despite these limitations, this method proved to be
a useful measure of registration accuracy for this data set.

Cause Write-ins Ballots

Registration error 17 9
Grouping error 2 1
Scanning error 2 2

Total 21 12

Table 1: False positives of our algorithm. The second
column shows the number of write-in regions affected,
and the third column shows the number of ballots af-
fected. Sometimes errors affect multiple write-in regions
on a single ballot.

4.2 Evaluating ballot grouping
We evaluated our ballot grouping algorithm by forming
one overlay image [5] per group from all the ballots in
that group. By carefully inspecting each overlay image,
we confirmed that all ballots were grouped properly. Be-
cause there was a relatively small number of groups, this
was a fairly quick task to complete.

4.3 Evaluating write-in detection
We would like to know how well our method detects
write-ins. Generally, two things can go wrong: we could
detect a write-in mark where none actually exists (a false
positive); or we could fail to detect a write-in mark when
one actually does exist (a false negative).

4.3.1 False positives

A false positive in our case is a write-in region that has
no voter-made mark, but was still classified as a write-in.
We do not try to make judgement calls about the nature
of the mark—rather, we just want to know if something is
marked in there or not. Therefore, even voter marks such
as lines, scribbles, or stray marks should be detected by
our system, and would not be considered false positives.
Given this definition, we found a total of 21 false posi-
tive write-in regions, across 12 ballots, which accounts
for 0.005% of total write-in regions (see Table 1). The
sources for these errors fell into three categories, exam-
ples of which are shown in Figure 9:

1. Registration errors. These are caused by a failure
in the registration step that left the registered ballot
misaligned. As a result, the write-in regions capture
some extraneous ink from the printed ballot.

2. Grouping errors. These are caused by putting the
ballot into the wrong group, so its write-in regions
are associated with the wrong location. This makes
us look at an incorrect location on the ballot for
write-in marks, so we may mistake printed text for

Figure 9: Examples of false positives: images classi-
fied as having a write-in mark when in fact there was
no voter-made mark in the region.

voter-made write-in marks. This kind of failure is
caused by OCR errors during grouping.

3. Scanning errors. These are due to a fold in the
scanned ballot, which just happens to intersect a
write-in region6. Folds like this appear black in the
scanned image and are mistaken for voter marks.

The first two cases are errors in our pre-processing
steps, and show that they need to be improved in order
to prevent these occurrences. Scanning errors can only
be prevented through changes to the process for scanning
ballots.

We did not have an automated way to detect false
positives. Instead, we manually searched for false pos-
itives by individually and carefully inspecting each bal-
lot flagged as having a write-in. This did not take a long
time — around 30 minutes to inspect about 1600 rela-
tively small images — but this could be an expensive
task for larger data sets or ones with a higher prevalence
of write-ins. This is a fundamentally hard problem be-
cause it can be ambiguous whether a mark counts as a
“write-in” or not.

6These folds or tears occur in several ballots (which is one reason
that the registration algorithm takes several steps), but this is the only
one that happens to interfere with a write-in region—the rest are harm-
less for our analysis.

Figure 10: Examples of false negatives (write-in marks
not detected by our algorithm). The score is the number
of black pixels in the region. Our algorithm classified
any image with a score above 500 as a write-in mark.

4.3.2 False negatives

False negatives are write-in marks that were missed by
our analysis. These include marks that were small or
light enough to pass underneath the detection threshold.
We found a total of 6 write-in regions across 6 ballots
that were false negatives, accounting for 0.002% of the
total number of write-in regions.

We detected these failure by superimposing images of
the write-in regions classified as not containing a voter
mark, to create an overlay image [5]. We visually in-
spected the resulting overlay image for marks. If the lo-
cation of the write-in regions are detected accurately and
there is a mark in any of these regions, it will also be
in the overlay. However, this method does not reliably
detect false negatives due to registration or grouping er-
ror. Our analysis suggests that the detection threshold is
important, and an alternative scheme is described in the
future work section (Section 7).

Figure 11: We used overlay images to verify that all vot-
ing targets were classified correctly. Above is an example
showing the result of overlaying 100 voting targets.

Figure 12: Examples of several kinds of write-ins.

4.4 Evaluating the classification of voting
targets

Lastly, we verified that we categorized the voting targets
for each write-in region correctly. We crop all voting
targets and classify them as filled or unfilled. We gener-
ate an overlay image superimposing all targets classified
as unfilled, and another overlay image superimposing all
targets classified as filled (see Figure 11). This confirms
that we have classified all voting targets correctly.

5 Analysis of Leon County Election

Next, we use our techniques to examine how voters ac-
tually filled out write-ins during a recent real election.
We obtained scans of the ballots from an election held in
Leon County, analyzed them using our approach (from
Section 3) to find all write-in marks made by voters in

Write-in region
marked unmarked

Target filled 833 78
Target not filled 785 366,981

Total 1,618 367,059

Table 2: Summary of write-in regions, according to
whether the voter marked the write-in region or not and
whether the corresponding voting target is filled or not.

Question Number of errors

Question 1 85
Question 2 49
Question 3 63

Total 197

Table 3: The number of cases where the MTurk majority
answer was incorrect.

that election, and then analyzed these write-in marks us-
ing Amazon’s Mechanical Turk (MTurk).

Data Set. The data set consists of scans of the ballots
from the Leon County, November 4, 2008 general elec-
tion. There were a total of 124,167 double-sided ballots,
each 8.5×14 inch in size and formatted for a Premier
(Diebold) optical scan system. The ballots were indepen-
dently scanned by the Clear Ballot Group and given to us
as 200 DPI, 8-bit grayscale uncompressed Bitmap Image
(BMP) files. Clear Ballot also provided us 19 blank tem-
plates in PDF format, for the blank ballots.

Analysis. We applied our automated write-in detection
methods to this data set. Then, we identified all false
positives and false negatives (as described in Section 4.3)
and corrected them manually. For the purposes of this
analysis, we count any marginal marks (marks inside the
voting target) as being filled, meaning that only voting
targets free of noise will be counted as unfilled.7

Table 2 shows the results of this analysis. We show the
number of write-in regions, not ballots, as there are usu-
ally multiple write-in regions per ballot. These 368,677
write-in regions are across all 124,167 ballots, and the
1,618 write-in marks are across 1,280 ballots.

Amazon Mechanical Turk. We used Amazon’s Me-
chanical Turk (MTurk) to carry out further analysis of
the Leon County write-in marks. MTurk allows a ‘re-
quester’ to submit tasks, which are then completed by

7In an actual election, these marginal marks may be ambiguous and
need to be reviewed by an election official.

Figure 13: We asked MTurk workers: “Is there hand-
writing present in the “Write-in” section? Is it clearly a
person’s name? (if it’s a scribble or a crossed-out name,
please answer “no”) The handwritten name (if you an-
swered “yes” to the previous question).”

Figure 14: We asked MTurk workers: “Is the “Write-in”
bubble filled in?”

online workers for a small monetary reward. We sub-
mitted three tasks. In each task, a write-in contest was
presented to the worker, along with the questions shown
in Figures 13, 14, 15. We used MTurk to classify voting
targets as filled or unfilled, detect handwriting in write-
in regions, and recover the name written in (if any). Our
primary motivation for using MTurk was to identify the
name written in, which would be hard to automate.

In order to establish confidence in the workers’ results,
we had three workers answer each question, and we took
the majority answer in our analysis. Despite these mea-
sures, there were still some errors. To address the re-
maining errors, we verified the MTurk results by manu-
ally inspecting and correcting every majority answer. As
Table 3 shows, there were 197 errors where the majority
answer was incorrect (out of 14,670 tasks), which is an
error rate of 1.3%.

Common Categories of Write-In Votes. We observed
several kinds of write-in votes appeared frequently:

1. Emphasis Votes. An emphasis vote is a write-in
contest in which the voter has both filled in a candi-
date’s voting target and wrote down the candidate’s
name in the write-in region. This behavior is pre-
sumably a way for the voter to emphasize his/her
voting intention (hence, an “emphasis” vote).

Figure 15: We asked MTurk workers: “Ignoring the
“Write-in” bubble, are any other bubble’s filled in? If
yes, please type the name(s) next to each filled-in bub-
ble (do not include the name on the “write-in” section, if
any).”

2. Conflict Votes. A conflict vote is a write-in contest
in which the voter filled in one candidate’s voting
bubble, but wrote down a different candidate’s name
in the write-in region.

3. “Non-serious” Names. A “non-serious” name oc-
curs in a write-in region when the name written
down clearly refers to a fictional character. A pop-
ular example is Mickey Mouse, of Disney-cartoon
fame. We detected these by manually inspecting all
write-in marks with handwriting and flagging marks
with non-serious names. We do not consider names
of celebrities as “non-serious” (such as ‘Elvis’ or
‘Stephen Colbert’).

5.1 Results
The MTurk results enabled us to answer many questions,
such as: How many voters actually filled in the write-
in bubble? How many did not? How many bubbled in
for other candidates and also made a mark in the write-in
region? More often than one might expect, we found that
voters do not behave in the way that designers of optical
scan systems might assume.

Out of the 1,618 cases of handwriting in the write-in
region, 833 had the corresponding voting target filled
in, and alarmingly 785 left the voting target unfilled.
In other words, nearly half (49%) of voters who wrote
something in the write-in region did not fill in the bub-
ble. This highlights the importance of not relying on the
presence of a filled voting target to detect write-in marks.

There were many cases where the voter filled in a cer-
tain candidate’s bubble, and also wrote that same candi-
date’s name in the write-in region (an “emphasis” vote).
This might be simply because the voter wanted to reiter-
ate which candidate they prefer, or because the voter was
unclear on how they were supposed to mark the ballot.
In our data set, 453 out of 1,618 (28%) write-in marks
were emphasis votes. Of these, there were two types of
emphasis votes: ones in which the voter also filled in the
write-in bubble, and ones in which the voter did not fill

“Non-serious” name Count

Mickey Mouse 17
Jesus 9
Donald Duck 3
Daffy Duck 3
God 3
Babe the Pig 1
Bingo the Dog 1
Bubba the Frog 1
Dr “V” 1
Me 1
Your Mom 1
Tasmanian Devil 1
Timmy the Turnip 1
Dr. Horrible 1
Ronald McDonald 1
Captain America 1
Santa Clause 1
Slim Pickens 1
Doe 1
Voltron 1
Harry Potter 1
Wedge Antilles 1
Ham Sandwich 1
Dr 1

Table 4: “Non-serious” names written in by voters, and
the number of times they were written in.

in the write-in bubble. There were 3 instances of the for-
mer, and 450 instances of the latter. It is important to
consider this type of voter behavior when designing our
write-in detection system, since emphasis votes are not
the same as other write-ins.

We also found 17 conflict votes, in which the voter
filled in a candidate’s bubble, but also wrote down a dif-
ferent candidate’s name in the write-in region. The write-
in bubble was not filled in any of these 17 votes. At the
top of each of these contests, the instructions state “Vote
for one”, so it is not immediately clear if this is a valid
vote. This case is intriguing, because current scanners
will count it as a vote for the candidate who is bubbled in,
and ignore the un-bubbled write-in. However, one could
plausibly argue that votes like these should be deemed
overvotes (an invalid vote in which the voter picked more
than one candidate). In fact, the State of Minnesota takes
this stance [11], and resolved the famous “Lizard Peo-
ple” ballot accordingly.8

In addition, we found non-serious votes. We classify

8The “Lizard People” ballot was a highly-publicized ballot where
a voter voted for Al Franklin, but wrote down “Lizard People” in the
write-in region. During the manual recount, the state decided that the
“Lizard People” ballot (and other similar ballots) are overvotes [2].

“Non-serious” name Count

none, n/a, neither 37
anyone, anyone else 10
yes 3

Table 5: “Quantifying” names written in by voters, and
the number of times they appeared.

a write-in vote as “non-serious” when it is clear that it
refers to a fictional person (e.g, “Mickey Mouse”). We
also classified some obvious cases where the voter is try-
ing to be humorous (writing “me”, for instance) as “non-
serious”. However, if it does sound like a real person’s
name, or it is unclear, we classify it as “serious”. While
non-serious votes don’t have a significant impact on elec-
tion results, these types of votes do occur: we found 54
non-serious votes (3% of the 1,618 write-ins). See Ta-
ble 4 for examples of non-serious names written in.

Finally, we found 35 write-in marks (2%) containing
quantifiers such as “none,” “neither,” or “anyone else”
(see Table 5).

Lost Votes. In current optical-scan systems, a write-in
vote is counted only if the write-in bubble is filled in. A
question that we’d like to answer is: how many write-in
votes are lost (i.e., not counted) in current systems? In
particular, we count the number of votes with a legible,
handwritten name in the write-in region, where the cor-
responding bubble is not filled in. We exclude emphasis
votes, conflict-votes, and overvotes from this count.

In the Leon County election, there were 266 votes that
would be lost under this definition. This is a surpris-
ingly large number: 16% of all write-in marks would not
be counted by the current optical-scan systems. Filter-
ing out all “non-serious” names leave 252 votes (16% of
write-in marks). In Leon County, votes for write-in can-
didates are only counted for candidates who file forms
in advance (“qualified candidates”). We did not analyze
how many of these write-ins were for qualified candi-
dates; in some jurisdictions, there is no need for write-in
candidates to register in advance. Overall, these numbers
imply that the current method of detecting write-in votes
(by detecting a filled-in voting target) misses many votes.

Lost votes could be avoided by better technology and
revised policies. One simple solution would be to not
require the voter to fill in the write-in bubble. Sev-
eral jurisdictions allow this, including the City of Mas-
sachusetts [13] and the State of Minnesota [11]. As
we’ve shown, next-generation optical scan systems could
automatically and reliably detect write-in votes without
having to rely on a write-in bubble being filled in.

Cost. Our use of MTurk was relatively inexpensive.
We paid workers $0.04, $0.03, $0.04 per task for the
questions shown in Figures 13, 14, 15, respectively. Af-
ter submitting 1630 write-in contests to MTurk, the to-
tal cost was $612.00 (including tax). While MTurk was
useful to expedite our analysis, it is not essential, and we
anticipate that election officials might prefer to take re-
sponsibility for interpreting write-in marks themselves.

6 Related work

Prior work has established the value of using scanned im-
ages for auditing and investigating elections. The Hum-
boldt County Election Transparency Project is an im-
portant pioneer of this approach, and for several elec-
tions they have rescanned all ballots cast in that county
with a commercial off-the-shelf document scanner [7].
Other open-source software projects for analyzing ballot
images include Mitch Trachtenberg’s BallotBrowser [7]
and VotoScope [8]. We were inspired and motivated by
VotoScope and BallotBrowser, and we see our work on
automating write-in detection as complementary.

The PERFECT project at Lehigh University pioneered
the application of document analysis techniques to au-
tomating the interpretation of voter marks on optical scan
ballots [16, 14, 9], though they do not look at detecting
write-ins.

We were also influenced by OpenScan [15], which an-
alyzes a video of ballots to extract and interpret ballot
images. OpenScan uses the SIFT algorithm for align-
ment [10]. However, it is not clear how to apply SIFT in
our setting. OpenScan’s implementation assumes that all
ballots have the same ballot style. Under that assump-
tion, one can use SIFT to align each ballot to a template
for that ballot style. However, when there are multiple
ballot styles, as in our data sets, it is not clear how to per-
form alignment: registration using SIFT requires knowl-
edge of the appropriate template and thus knowledge of
the ballot style before registration, and it is not easy to
infer the ballot style of unregistered ballots.

7 Future work

As shown by the examples of false positives and false
negatives, there is room for improvement to the write-in
detection algorithm. We used hard-coded thresholds on
the number of black pixels to determine whether a write-
in mark was present, and also when converting gray-
scale images into black and white. However, hard-coded
thresholds are brittle; it would be preferable to automat-
ically infer the appropriate threshold from the environ-
ment. One idea to set the threshold would be to use an

expectation-maximization algorithm9 on the write-in re-
gions, to cluster them into one cluster with empty write-
in regions and a second cluster with marks.

Several aspects of our implementation were tailored
to Premier (Diebold) ballots. Several steps in the process
make certain assumptions about the ballot that may not
be valid for other ballot styles (for instance, the presence
of registration hashmarks along the border). One promis-
ing direction might be to use algorithms like SIFT10 in
the registration and grouping stages, to build an algo-
rithm that applies to many different ballot styles.

8 Conclusion

This paper develops techniques to detect write-in marks
that could otherwise be missed by optical scan systems.
Our approach involves processing scanned images of bal-
lots to detect whether or not they contain marks in the
write-in regions. We demonstrated the feasibility of our
approach on a large data set from Leon County. The
analysis from this data set showed surprising results, in-
cluding 252 write-in marks that would not be detected
by existing optical scan systems. This suggests that our
methods may be useful for improving future optical scan
systems.

9 Acknowledgments

We thank the Clear Ballot Group, Larry Moore, and
Ion Sancho, Supervisor of Elections in Leon County, for
sharing a large collection of scanned ballot images with
us. This research would not have been possible without
their generous assistance. We thank Kai Wang and the
anonymous reviewers for helpful comments. This work
was supported by National Science Foundation grant
CNS-0524745. Any opinions, findings, conclusions or
recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

References
[1] Write in candidates, 2009. http://www.citizenmodel.net/?p=184.

[2] BOB COLLINS. The Lizard People ballot solved. Minnesota
Public Radio, 2008. http://minnesota.publicradio.

org/collections/special/columns/news cut/archive/

2008/11/the lizard people ballot solve.shtml.

9Expectation-maximization (EM) is one approach to clustering. It
may be especially applicable in our setting: the distribution of number
of black pixels in an empty region may be Gaussian, and similarly for
the number in a marked region, so the task is to separate a mixture of
two Gaussians—something EM is especially well-suited for.

10SIFT (Scale Invariant Feature Transform) is an algorithm that iden-
tifies robust features in images, regardless of how they are rotated or
translated [10].

[3] BOHRER, B. Murkowski becomes 1st write-in senator
since ’54. The Boston Globe, 2010. http://www.

boston.com/news/politics/articles/2010/11/17/

murkowski emerges as winner in alaska senate race/.

[4] CHEN, J.-L., AND LEE, H.-J. An efficient algorithm for form
structure extraction using strip projection. Pattern Recognition
(September 1998).

[5] CORDERO, A., JI, T., TSAI, A., MOWERY, K., AND WAGNER,
D. Efficient user-guided ballot image verification. In Proceedings
of EVT/WOTE 2010.

[6] FOUNDATION, C. M. San Diego mayoral election revives
memories of the 2000 Florida count, 2004. http://www.

citymayors.com/politics/usmayoral elections.html.

[7] Humboldt County Election Transparency Project. http://

humtp.com.

[8] HURSTI, H. Votoscope software, October 2005. http://vote.
nist.gov/comment harri hursti.pdf.

[9] LOPRESTI, D., NAGY, G., AND SMITH, E. B. Document Anal-
ysis Issues in Reading Optical Scan Ballots. In DAS ’10: Pro-
ceedings of the 8th IAPR International Workshop on Document
Analysis Systems (2010).

[10] LOWE, D. G. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision 60, 2
(2004), 91–110.

[11] MINNESOTA OFFICE OF THE REVISOR OF STATUTES. 2010
Minnesota Statutes - 204C.22 Determining Voter’s Intent , 2010.
https://www.revisor.mn.gov/statutes/?id=204c.22.

[12] OTSU, N. A threshold selection method from gray-level his-
tograms. In IEEE Transactions on Systems, Man and Cybernet-
ics, Vol. 9, No. 1. (1979), pp. 62–66.

[13] SECRETARY OF THE COMMONWEALTH, ELECTIONS DIVI-
SION. Running for Office as a Sticker of Write-in Candidate,
Unknown. http://www.sec.state.ma.us/ele/elestkr/

stkridx.htm.

[14] SMITH, E. H. B., LOPRESTI, D., AND NAGY, G. Ballot Mark
Detection. In 19th International Conference on Pattern Recogni-
tion (2008).

[15] WANG, K., RESCORLA, E., SHACHAM, H., AND BELONGIE,
S. OpenScan: a fully transparent optical scan voting system. In
Proceedings of EVT/WOTE 2010.

[16] XIU, P., LOPRESTI, D., BAIRD, H., NAGY, G., AND SMITH,
E. B. Style-Based Ballot Mark Recognition. In 10th In-
ternational Conference on Document Analysis and Recognition
(2009).

A Generalization to other elections

Our experiments used ballots from a single county. To
assess the applicability of our techniques to other ballot
styles and formats, we examined a subset of the sample
state and local ballots collected by the National Institute
of Standards and Technology (NIST).11 Some of these
examples came from very similar versions of the same
ballot (for example, Republican and Democratic versions
of a ballot for a primary election). For analysis purposes,

11NIST curates a collection of scanned paper ballots used in elec-
tions between 1998 and 2006. It is available at http://www.nist.
gov/itl/vote/sample-ballots.cfm

we combined these cases into a single entry so that it was
only counted once. We also excluded ballots that did not
appear to be optical scan ballots, such as touchscreen,
punch card, and lever-machine ballots.

There are four main optical scan ballot vendors in the
United States: Diebold/Premier Election Solutions, Elec-
tion Systems & Software (ES&S), Sequoia Voting Sys-
tems, and Hart InterCivic. The NIST collection includes
examples of ballots from all four vendors. Each vendor’s
ballots tend to follow a uniform format and layout, so
we analyzed examples to see if our methods for registra-
tion/alignment and automated write-in detection could be
extended to these ballot formats.

• Premier/Diebold: Premier ballots have uniform
hashmarks spaced evenly along the top and down
the left and right sides. The bottom border has un-
evenly spaced hashmarks that may indicate infor-
mation about the ballot style or page. Each contest
is typically enclosed in a box, and write-in lines are
usually labeled and lined up with the voting target.

• ES&S: ES&S ballots usually have many points that
could be used for registration. There are three hash-
marks spaced across the top and bottom of each bal-
lot, a uniform column of hashmarks on one side of
the ballot, and a few other different types of hash-
marks unevenly spread along the border. The cen-
tral area of the ballot that contains all the contests is
enclosed in a rectangle, with the corners marked by
an “L”-shaped indicator. Each contest is typically
enclosed in a box. The write-in lines sometimes
connect all the way across to the side, which can
make line detection a bit more difficult. Also, while
most ES&S ballots with write-ins had the write-in
lines labeled, some of them were not labeled.

• Sequoia: Sequoia ballots typically have a solid bar
spanning both the top and bottom of the ballot, as
well as regularly spaced hashmarks on the left and
right sides. In addition, there are hashmark forma-
tions at the top and a few hashmarks at the bottom
of the ballot that seem to be used for identifying the
ballot format. Each candidate within a contest is
separated with a horizontal line, with a write-in la-
bel or blank space left for write-ins. Write-in lines
are not differentiated from those used for listed can-
didates. The write-in space is, however, matched up
with the voting target.

• Hart: Hart ballots typically do not have hashmarks
along the border. However, there are barcodes in
three corners. Also, the entire contents of the ballot
are bound in a rectangle, the corners of which could
be used for alignment. Hart ballots have contests

Vendor Number of ballots

Premier/Diebold 29
ES&S 26
Hart 4
Sequoia 25
Unknown/Other 20

Table 6: Classification of sample ballots in the NIST col-
lection by vendor.

Figure 16: Applicability of two write-in region detection
methods on the sample ballots in the NIST collection.

that are enclosed in rectangles, with write-in lines
within. The write-in lines are not always labeled.

Of the 104 ballots we analyzed, 84 appeared to be as-
sociated with one of the four main vendors. The break-
down is shown in Table 6. Out of the 104 ballots, there
were only 3 where we could not identify any obvious
hashmarks or other indicators that could be used for
alignment. 25 of the 104 ballots did not contain any
write-in regions so were excluded from our analysis be-
low.

We examined what proportion of the remaining 79
sample ballots our write-in region detection methods
could be applied to. If the ballot contains write-in lines
within a contest enclosed in a box, the form extraction
method is applicable. If write-in regions are indicated by
a labelled write-in line, the alternate template matching
method is applicable. We found that it should be possi-
ble to identify the write-in regions for 64 out of the 79
ballots using one of these methods (see Figure 16).

There were 15 ballots that cannot be handled by the
form extraction or template matching write-in detection
techniques. These ballots typically left an unlabeled
blank space next to a voting target for the write-in (see
Figure 17 for an example). In order to identify write-
in locations for these ballots, other techniques could be
used. For example, we could find voting targets that are

Figure 17: An example of a ballot where our write-in re-
gion detection techniques would be insufficient. On this
ballot, write-in regions are not differentiated or labeled.

Figure 18: An example of a contest where a single vot-
ing target and write-in label correspond to two write-in
lines. This can be problematic when trying to automati-
cally match the label or target with a write-in.

situated next to a certain amount of blank space. A de-
fault method if none of these work is to ask the operator
to specify the write-in locations on each ballot template.

We also studied the ease of associating each write-in
region with its corresponding voting target. 74 of the 79
ballots had the voting target lined up with the write-in
region/line, so associating a write-in region with its cor-
responding voting target should not be difficult for most
ballots. However, see Figure 18 for a difficult case.

