
Architectures for Controller Based CDP

Guy Laden Paula Ta-Shma Eitan Yaffe Michael Factor
Shachar Fienblit

IBM Haifa Research Laboratories
{laden, paula, eitany, factor, shachar }@il.ibm.com

Abstract
Continuous Data Protection (CDP) is a recent storage
technology which enables reverting the state of the stor-
age to previous points in time. We propose four alterna-
tive architectures for supporting CDP in a storage con-
troller, and compare them analytically with respect to
both write performance and space usage overheads. We
describe exactly how factors such as the degree of pro-
tection granularity (continuous or at fixed intervals) and
the temporal distance distribution of the given workload
affect these overheads. Our model allows predicting the
CDP overheads for arbitrary workloads and concluding
the best architecture for a given scenario. Our analysis is
verified by running a prototype CDP enabled block de-
vice on both synthetic and traced workloads and com-
paring the outcome with our analysis. Our work is the
first to consider how performance is affected by varying
the degree of protection granularity, both analytically and
empirically. In addition it is the first to precisely quan-
tify the natural connection between CDP overheads and
a workload’s temporal locality. We show that one of the
architectures we considered is superior for workloads ex-
hibiting high temporal locality w.r.t. granularity, whereas
another of the architectures is superior for workloads ex-
hibiting low temporal locality w.r.t. granularity. We an-
alyze two specific workloads, an OLTP workload and a
file server workload, and show which CDP architecture
is superior for each workload at which granularities.

1 Introduction

Continuous Data Protection (CDP) [13] is a new
paradigm in backup and recovery, where the history of
writes to storage is continuously captured, thereby al-
lowing the storage state to be potentially reverted to any
previous point in time. Typically the amount of his-
tory stored is limited by the operator, either in tempo-
ral terms using a CDP window (e.g. 2 days) or in terms

of the amount of additional storage available for history
data. CDP can be provided by different entities in the I/O
path such as the host being protected (by the filesystem
[28, 27, 24] or the Logical Volume Manager (LVM)), a
SAN appliance [7], a SAN switch or the block storage
controller. We focus on CDP enabling a block storage
controller although parts of our work may be applicable
elsewhere. We focus on the block level since this is typi-
cally the lowest common denominator of real world het-
erogeneous applications. We focus on the controller set-
ting because it allows a wider range of architectures and
has potential for performance and resource usage ben-
efits. For example reverts do not generate network I/O,
and both device I/O and space can potentially be reduced.

Advanced functions such as (writable) point-in-time
copies and remote replication have already been intro-
duced to storage controllers. The advent of these and
other features has resulted in a growing divergence be-
tween the notion of logical and physical volumes. More-
over, log structured file systems [25] and log structured
arrays (a similar notion realized in a controller setting)
[22] have proposed exploiting this notion improve file
system/controller performance for write requests by turn-
ing logically random write requests to physically sequen-
tial ones. CDP is an additional technology that furthers
this trend, by introducing time as an additional dimen-
sion that can be virtualized. In this paper we study some
of the associated performance tradeoffs.

Enabling the controller to save the history of host
writes typically requires that the writes are duplicated
and split. We present four different architectures for
controller-based CDP that are differentiated by the point
in time at which the writes are split: on receipt of the
write by the controller, on destage of the write from the
controller cache, on overwrite of a block by a newer ver-
sion or never (avoiding duplication/splitting).

There is an ongoing debate [1] as to whether con-
tinuous protection (aka every write protection) provides

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 107

much benefit to customers compared to coarser protec-
tion granularities. As a result some products going under
the banner of CDP provide continuous (aka every write)
protection, while other products are said to support near
CDP, with protection granularities ranging from minutes
to hours. CDP at whatever granularity does not come
for free in either performance (impact on I/O throughput
and latency) or disk space. We provide an exact analy-
sis of the way the degree of protection (from granularity
of every write to arbitrarily large fixed intervals) affects
performance and space overheads.

When measuring performance, we focus on the count
of additional device I/O’s incurred by write requests in
regular (non revert) scenarios for keeping track of prior
versions and recording them in the CDP history. We fo-
cus on write requests since this is the main CDP overhead
in good-path scenarios for 3 out of 4 of our architectures,
where read performance is equivalent to that of a regu-
lar volume. Performance immediately after a revert de-
pends on the data structures chosen to represent the CDP
history and is the same across the architectures we com-
pare since they share a common infrastructure for storing
CDP history. Note that for appliance based block CDP,
duplicating and splitting writes cannot be done at destage
or overwrite time. Therefore our comparison of architec-
tures also sheds light on inherent potential differences
between appliance and controller based CDP.

Apart from logging write traffic, a controller offering
a high-end CDP feature set must provide for fast revert
of a production LUN to a prior point in time, be able to
quickly export writable historical versions of the produc-
tion volume, to perform automatic space reclamation of
the older historical data etc. Although our proposed ar-
chitectures all support these features, in this paper we do
not describe the details and focus on the overheads CDP
incurs when providing basic block I/O functionality.

We analyze our CDP architectures to accurately pre-
dict both the count of additional I/O’s incurred by write
requests and the space consumption overhead of each ar-
chitecture. We describe exactly how factors such as the
degree of protection granularity (continuous or at fixed
intervals) and the temporal distance distribution of the
given workload affect these overheads. Our work pre-
cisely quantifies the natural connection between CDP
overheads and a workload’s temporal locality. It allows
predicting the CDP overheads for arbitrary workloads
and concluding the best architecture for a given scenario.

We implemented a prototype CDP enabled block de-
vice and use it to validate our analysis against imple-
mentations of the architectures. We compare the cost
of the architectures on real-world filesystem traces and
synthetic OLTP traces, as we vary the protection gran-
ularity, and we conclude the best CDP architectures for

these scenarios.
The outline of the paper is as follows. In section 2 we

describe architectures for implementing CDP in a stor-
age controller and in section 3 we characterize their per-
formance analytically. Section 4 presents an evaluation
of the performance of the proposed architectures on syn-
thetic and real-life traced workloads. Section 5 reviews
related work, and in section 6 we present our conclu-
sions.

2 Architectures

2.1 Controller Background

Modern storage controllers typically contain a combina-
tion of processor complexes, read and fast write cache,
host and device adapters, and physical storage devices.
All components are typically paired so that there is no
single point of failure [18, 17, 16]. Our figures de-
scribe a configuration having two nodes, where each one
has one processor complex, one or more host adapters,
one or more device adapters and one read and fast write
cache, and each node owns a set of volumes (logical units
(LUNs)) of the physical storage. To implement the fast
write cache a subset of the total cache memory is backed
by non volatile storage (NVS) on the opposite node. On
node failure, volume ownership is transferred to the op-
posite node.

Cache (whether backed by NVS or not) is typically
divided into units called pages, whereas disk is divided
into units called blocks - pages/blocks are the smallest
units of memory/disk allocation respectively. Stage and
destage operations typically operate on an extent, which
is a set of consecutive blocks. In the context of this pa-
per, we concentrate on the case where the extent size is
fixed and is equal to the page size. All architectures we
discuss can be generalized to deal with the case that the
extent size is some multiple of the page size although this
requires delving into many details which need to be ad-
dressed for all architectures, and this is orthogonal to the
main ideas we want to develop in the paper.

2.2 Integrating CDP into a Controller

We assume some mechanism for mapping between logi-
cal and physical addresses 1 where there is not a simple
a priori relationship between them. Thin provisioning is
another controller feature which can benefit from such
a mapping. Such a mechanism must allow the cache to
stage/destage from a physical address which differs from
the logical address of the request. One way to do this is
to allow the cache to invoke callbacks, so that a logical
to physical map (LPMap) can be accessed either before

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association108

or after stage and destage operations. In the case of CDP,
timestamps will play a role in the LPMap.

We should distinguish between volumes that are di-
rectly addressible, and those which are mapped since
they require a structure such as an LPMap in order to
access them. Mapped volumes may be stored in indi-
vidual physical volumes or alternatively several of them
can be stored together in a larger physical volume which
serves as a storage pool. Mapped volumes may some-
times be hidden from the user, as we will see for some of
the architectures.

The LPMap structure supports the following API:

insert insert a mapping from a particular logical address
to physical address, to be labeled by the current
timestamp

lookup look up the current physical address correspond-
ing to a particular logical address

revert revert the LPMap structure to a previous point in
time

All architectures we consider will use the same LPMap
representation.

2.3 Architectural Design Points
There are several factors which determine the CDP ar-
chitecture. One factor is whether the current version of a
volume is stored together with the historical data or sepa-
rately from it. Storing current and historical data together
results in the logging architecture. Note that this is not an
option with host and network based CDP, where writes
are duplicated and split at the host or at the network.

Since good sequential read performance is likely to
be essential for most workloads, we consider alternative
architectures containing 2 volumes - a directly address-
ible volume to hold the current version, and a hidden,
mapped volume to contain historical data. In order to re-
store good sequential read performance, reverting such
a volume to a previous point in time now inherently re-
quires significant I/O - each changed extent needs to be
physically copied from the history store to the current
store. This I/O activity can be done in the background
while the history store is used to respond to read requests
as needed. This is similar to a background copy feature
which accompanies some point-in-time copy implemen-
tations [10], and we expect the duration of such a back-
ground copy and the degree of performance degradation
to be similar.

Assuming this separation between current and histori-
cal data, an important factor is when the duplication and
splitting of I/O’s is done. Splitting at write time leads
to the SplitStream architecture, splitting at destage time

leads to the SplitDownStream architecture, and splitting
before overwrite time leads to the Checkpointing ar-
chitecture. The corresponding location of the splitting
would be above the cache, below the cache and at the
storage respectively.

Note that our figures depict the current and history vol-
umes as owned by opposite nodes, even though this is
not necessarily the case. Moreover, in our figures we
depict the CDP architectures as implemented on the pre-
viously described controller hardware. The figures might
look slightly different if we were to design each particu-
lar CDP architecture from scratch with its own dedicated
hardware.

A need may arise for multi-version cache support,
namely the cache may need the ability to hold many ver-
sions of the same page. The CDP granularity requested
by the user determines when data may be overwritten, for
example every write granularity means that all versions
must be retained and none overwritten. In this case, if the
cache cannot hold multiple versions of a page, then an in-
coming write can force a destage of an existing modified
cache entry. This needs to be taken into account since it
can have affect the latency of write requests. How to best
implement a multi-version cache is outside the scope of
this paper.

2.4 The Logging Architecture
The logging architecture is the simplest - the entire his-
tory of writes to a volume is stored in a mapped volume
which is not hidden from the user. Figure 1 depicts the

Figure 1: Logging Architecture Write Flow - each write
request incurs at most 1 user data device I/O.

write flow for the logging architecture. Note that each
write request incurs at most 1 user data device I/O. If the
CDP granularity is coarser than the rate of writes to a
particular logical address, then there is potential to avoid
this I/O if the logical address is cached.

Both stages and destages need to access the LPMap
structure. This approach is good for a write dominated

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 109

workload, since not only do we avoid additional device
I/O as a result of duplicating or copying from current
volumes to historical volumes, we also have an oppor-
tunity to covert random writes into sequential ones, as
done in [25]. An additional benefit is that with the right
data structures for representing CDP history, revert can
be done with a small constant overhead although the de-
tails are out of scope for this paper. Note that both reads
and writes may require accessing the LPMap structures,
although this does not always require additional device
I/O, if these structures are intelligently cached. More im-
portantly, the cost of accessing the LPMap is similar for
all the architectures we discuss.

The important downside of this architecture is that
one is likely to forfeit good sequential read performance,
mainly because of the difficulty of sequential layout of
extents on disk, and also because of access to the LPMap
meta data. Although the layout is dependent on the im-
plementation of the LPMap, which is out of the scope
of this paper, guaranteeing good sequential read perfor-
mance for this type of architecture is a difficult research
problem [25]. Our simpler approach for achieving good
sequential read performance is to separate current and
historical data. Sequential read performance of histori-
cal data is not critical since it is only read immediately
after a revert.

An additional issue with the logging architecture is
that it is not straight forward to CDP enable an existing
volume. Building the entire LPMap structure up front is
not feasible, although if we choose to build it on demand,
we may wait indefinitely until we can recycle the space
of the original volume.

Note that the logging architecture is appropriate for a
logging workload, since read access is only needed in
error scenarios.

2.5 The SplitStream Architecture

Duplicating and splitting data above the cache leads to
the SplitStream architecture. One copy of the data is sent
to a current store - a directly addressable volume which
holds the current version, and an additional copy is sent
to a history store - a hidden, mapped volume, which in
this case contains both current and previous versions of
the data.

Figure 2 depicts the write flow for the SplitStream ar-
chitecture. Note that each write request incurs at most
2 user data I/Os, one to each of the current and history
stores. Just as for regular volumes, the cache can poten-
tially save a current store I/O for those logical addresses
that are repeatedly written to while they are still cache
resident, and this effect is independent from the CDP
granularity. If the CDP granularity is coarser than the

Figure 2: SplitStream Architecture Write Flow - Writes
are split above the cache, and each write request incurs
up to 2 user data device I/O’s.

rate of writes to a particular logical address, then there
is potential to save a second I/O if that logical address
is cached at the history store. Compared to the logging
architecture, we gain good sequential read performance
at the expense of incurring additional I/Os on write re-
quests, and using more resources such as disk space and
cache memory.

Note that in this case the cache can manage each vol-
ume separately, so a multi-versioned cache may not be a
necessity. The current store does not need to deal with
historical data, so can be cached as a regular volume,
while the history store will not service reads, so caching
simply serves as a means to buffer write access. Note that
for coarse granularity the history store cache also serves
to reduce device I/O for those logical addresses that are
written to frequently. In the SplitStream architecture,
the same data may appear twice in cache which inflates
memory requirements, although the relative sizes of the
current and history caches and the cache replacement al-
gorithm could be tailored to take this into account.

2.6 The SplitDownStream Architecture

In the SplitDownStream architecture, the duplicating and
splitting of data occurs under the cache, at destage time,
instead of above the cache as is the case for SplitStream.
In other respects the architectures are identical. This al-
lows cache pages to be shared across current and his-
torical volumes, thereby conserving memory resources.
However, since the cache functions both to serve read
requests and to buffer access to the history store, a ver-
sioned cache is needed to avoid latency issues.

Figure 3 depicts the write flow for the SplitDown-
Stream architecture. Note that if we ignore cache effects
which are different in the two architectures, SplitDown-
Stream is identical to SplitStream in the number of de-
vice I/O’s incurred by a write request.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association110

Figure 3: The SplitDownStream Architecture Write
Flow - writes are split below the cache and each write
request incurs up to 2 user data device I/O’s.

2.7 The Checkpointing Architecture

Similar to the SplitStream and SplitDownStream archi-
tectures, the Checkpointing architecture has a directly
addressible current store and a hidden mapped history
store. However, in this case the current version exists
only at the current store, while the history store contains
only previous versions of the data. At destage time, be-
fore overwriting an extent at the current store, we first
check whether it needs to be retained in the history store.
This depends on the CDP granularity - every write gran-
ularity mandates that all versions need to be retained,
whereas a coarse granularity requires very few versions
to be retained. If needed, the extent is copied to the his-
tory store before being overwritten by the destage. Note
that copying an extent from the current store to the his-
tory store requires 2 device I/O’s - one to stage to the
history store cache, and another to destage to the history
store. Thus in total we may incur up to 3 device I/O’s
per write request. Figure 4 depicts the write flow for the
Checkpointing architecture. If we do not use NVS at the
history store, all 3 device I/Os are synchronous to the
destage operation, although not to the write request itself,
since we cannot destage until the previous version of the
extent is safely on disk at the history store. Therefore to
provide good latency a versioning cache is essential.

Of the total 3 possible device I/O’s per write request, 2
of these (those for copying from the current to the history
store) are not at all influenced by caching, and are com-
pletely determined by the CDP granularity. The other
I/O (for destaging to the current store) can be avoided by
caching if the particular version can be discarded accord-
ing to the CDP granularity.

We point out that the checkpointing architecture is es-
sentially an extension of the popular copy on destage
technique used to implement Point In Time (PIT) copies
[12] to the CDP context.

Figure 4: The Checkpointing Architecture Write Flow -
the previous version is copied to the history store before
being overwritten. Each write request incurs up to 3 user
data device I/O’s.

3 Analysis

In this section we analyze both the number of device
I/O’s incurred by write requests and the space overheads
of the various CDP architectures, as a function of the
CDP granularity.

3.1 Preliminaries
The time dimension can be divided into a set of fixed
length granularity windows of size g. The requirement
is to retain the last write in each granularity window. The
smaller the value of g, the finer the granularity. When g is
arbitrarily small, this results in every write CDP, whereas
when g is arbitrarily large, this results in a regular volume
with no CDP protection.

We define a write to a particular logical address to be
retained if it is the last in its granularity window at that
address. Fine granularity gives a large proportion of re-
tained writes, while the opposite is true for coarse granu-
larity. We use r to denote the proportion retained writes
(0 ≤ r ≤ 1). For example, every write granularity gives
r = 1 and as we increase g so that the granularity be-
comes coarser, r approaches 0. 2

With respect to a fixed granularity, increasing the tem-
poral distances between writes decreases the probability
of a write to be retained. For a trace of a given workload,
the temporal distance distribution of the workload is a
function T , where for a given temporal distance t, T (t)
is the fraction of writes 3 with distance ≤ t to the sub-
sequent write, so 0 ≤ T (t) ≤ 1. There are a number
of examples of the use of temporal distance distribution
graphs in the literature [26, 32].

We use c to take write caching into account, where c
is the proportion of writes which are evicted from cache
before being overwritten (0 ≤ c ≤ 1). c = 1 means
no absorption of writes by cache, whereas c = 0 means

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 111

all writes can potentially be absorbed. Note that 1 − c
is the write cache hit rate. Like the cache hit rate, c de-
pends both on attributes of the write cache namely its size
and replacement algorithm, as well as on attributes of the
workload, namely its temporal locality and the distribu-
tion of its writes across logical addresses. The distribu-
tion of writes has a clear effect since repeated writes to
a single address require less cache space than spreading
the same number of writes across many addresses 4.

We define a write to be incurred if it is either retained,
or evicted from cache before being overwritten, or both.
In the logging architecture, the incurred writes are those
which lead to a device I/O. We use d to denote the pro-
portion of incurred writes under the logging architecture
(0 ≤ d ≤ 1). It is important to note that in general
d 6= r + c− rc since being evicted from cache and being
retained are not necessarily independent events.

3.2 Device I/O’s Incurred by Write Re-
quests

For a given r, c and d, figure 5 summarizes the I/O’s
incurred for the various architectures per write request.
Note that both r and d are dependent on the granularity
g. In section 3.4 we show how to derive r, and in section
3.5 we show how to derive d.

For example, if we have a workload with flat tem-
poral locality of 0.5 seconds, then a once per second
granularity gives r = 0.5. If we assume no cache then
the expected cost of checkpointing per write request is
rp + (1 − r)p′, where p is the cost for a retained write
and p′ is the cost for a non retained write in the check-
pointing architecture. This equals 3r+(1− r) = 2r +1.
However for SplitStream and SplitDownStream the cost
is always 2. The turning point is at r = 0.5, a larger
value of r will give an advantage to Split(Down)Stream,
whereas a smaller value will by advantageous to Check-
pointing. r is determined by the relationship between the
temporal locality of a given workload and the CDP gran-
ularity chosen by the user. Note that r is oblivious to
the distribution of the writes, since the same fraction of
retained writes can be as easily obtained with the same
number of writes to a single logical address as to 1000
addresses, only the relationship of the temporal distance
of the writes and the granularity chosen is important.

Caching does have an effect, and it should be clear
from figure 5 that Split(Down)Stream can take better ad-
vantage of the cache than Checkpointing. Checkpointing
can utilize cache to save non retained I/O’s at the cur-
rent store, but Split(Down)Stream can do the same and
more. At an unrealistic extreme of infinite cache, Split-
Stream reduces I/O’s to r per write request, the bare min-
imum (and equal to the Logging architecture). Here the

expected cost of checkpointing per write request is 3r,
since all retained writes reach the history store via the
current store. Note that SplitDownStream is slightly dif-
ferent from SplitStream in its behavior on retained I/O’s
at the current store. Since we destage cache entries to
the current and history stores together, all retained writes
reach the current store. In summary, increasing the size
of the cache reduces c, and the SplitStream architecture
gains most benefit from this, closely followed by the
SplitDownStream architecture.

Unlike the case for regular volumes (r = 0), as r in-
creases, the benefit which can be obtained by increasing
the cache size becomes more limited. For example, for
the extreme case of r = 1 e.g. every write granularity,
the I/O cost for Checkpointing per write is 3 indepen-
dent of the cache size, while for SplitDownStream it is
2. There is no crossover in this case and SplitDown-
Stream always dominates. At the opposite extreme of
a regular (non CDP enabled) volume (r = 0), the cost
of checkpointing is c, whereas for Split(Down)Stream
it is 2c, giving a crossover at c = 0. This means that
Checkpointing dominates Split(Down)Stream for all val-
ues c > 0 e.g. for an arbitrarily large cache. The reason
is that Split(Down)Stream always splits and duplicate all
writes, so it costs more than a regular volume when cache
entries are destaged. Checkpointing, however, behaves
like a regular volume in this case.

In general the crossover between Checkpointing and
SplitStream is obtained at c = 2r, where if c > 2r then
Checkpointing dominates. This means that the propor-
tion of writes evicted from cache before being overwrit-
ten needs to be at least twice the proportion of retained
writes in order for Checkpointing to dominate. Since this
is impossible when r > 0.5, Split(Down)Stream always
dominates in that scenario.

3.3 Space Overhead

The fraction of retained writes r also determines the
space needed to hold the CDP history, so there is a nat-
ural relationship between performance in terms of I/O
counts incurred by writes and CDP space overhead. Fig-
ure 6 summarizes the space overhead for the various ar-
chitectures. w denotes the number of writes within a
given CDP window, a denotes the size of the address-
able storage, and f denotes the size of the storage actu-
ally addressed during the CDP window. Since the Log-
ging architecture is space efficient, it can have a lower
space cost than a regular volume, whereas the cost of
Split(Down)Stream equals the cost of a regular volume
and a Logging volume combined. Checkpointing saves
some space overhead since the current version is not
stored in the history store.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association112

Logging Checkpointing SStream SDownStream Crossover
retained current store 1 c 1

I/O’s history store 2 1 1
sub total (r = 1) 1 3 1 + c 2 never

evicted current store c c c
I/O’s history store 0 c c

sub total (r = 0) c c 2c 2c c = 0
total no cache (c = 1) 1 2r + 1 2 2 r = 0.5
I/O’s infinite cache (c = 0) r 3r r 2r r = 0

arbitrary cache d d + 2r d + c 2d c = 2r

Figure 5: A table of device I/O’s incurred per write request in terms of r, the proportion of retained writes and c, the
proportion of writes which are destaged before being overwritten, and d, the proportion of writes resulting in a device
I/O under the logging architecure. We show the analytical crossover point between Checkpointing and SplitStream
Architectures.

Architecture Space Overhead
Regular a
Logging rw

Split(Down)Stream a + rw
Checkpointing a + rw − f

Figure 6: Space overhead of CDP architectures in terms
of r, w, a and f , where w is the total number of writes,
r is the proportion of retained writes, a is the size of
the addressable storage and f is the size of the storage
actually addressed.

3.4 Retained Writes as a Function of the
Granularity

We already mentioned that the proportion of retained
writes r depends on the relationship between the tem-
poral distance between writes and the granularity. Given
a temporal distance distribution T , we show how to ex-
press r in terms of T and the granularity g. This allows
us to infer properties of both device I/O counts incurred
by writes as well as the space overhead of CDP for any
given workload according to its temporal distance distri-
bution.

We divide the time dimension into a set of fixed length
granularity windows of size g. We assume that the first
window starts at a uniform position between 0 and g. Let
R(g) = E(r(g)) where E denotes expectation.

Claim 3.1

R(g) = 1 − 1
g

∫ g

t=0

T (t)dt

Proof 3.1 Let w1, . . . , wn be the set of writes in our
given trace, and let ai be the temporal distance between
wi and the subsequent write at the same logical address.
Let Xi be the random variable that is 1 iff wi is last in its

granularity window, and so is a retained write. We have
that R(g) = E(1

n

∑n
i=1 Xi) = 1

n

∑n
i=1 E(Xi).

Now, Xi = 1 and wi is a retained write iff it is
within distance ai from the end of the window. Since we
place the start of the first granularity window at a uni-
form offset, we have that E(Xi) = min(ai

g , 1). Thus,
E(Xi) = 1

g

∫ g

t=0
fi(t), where fi(t) = 1 if t ≤ ai and is

0 otherwise.
Altogether, R(g) = 1

n

∑n
i=1 E(Xi) =

1
g

∫ g

t=0
1
n

∑n
i=1 fi(t) and 1

n

∑n
i=1 fi(t) = 1 − T (t).

3.5 I/O Counts as a Function of the Gran-
ularity

Given a trace’s temporal distance distribution T , we
show how to express d as a function of g, assuming a
certain write cache hit rate (1 − c) and under a certain
model of cache replacement. In order to simplify our
analysis we will assume a Least Recently Written (LRW)
replacement policy for the write cache, and will assume
that the I/O rate is uniform. This means that writes wait
in cache in a FIFO queue to be destaged, and it follows
that the time interval writes wait from their last access
until they are evicted is roughly constant for all writes.
Given a cache hit rate (1 − c), we define the cache win-
dow s to be the time interval that satisfies c = 1 − T (s)
and therefore is a result of this hit rate under our model.

Recall that d is the proportion of incurred device I/O’s
in the logging architecture. A write can result in a de-
vice I/O either because it is retained, or it is evicted from
cache before being overwritten, or both. Recall that in
general d 6= r+c−rc since being evicted from cache and
being retained are not necessarily independent events.

We show how to express d as a function of the granu-
larity g and the cache window size s, where c = 1−T (s):

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 113

Claim 3.2 Let R be as defined in claim 3.1.

D(g, s) =
{ s

g R(s) + c(1 − s
g) if s < g

R(g) otherwise

Proof 3.2 Let w1, . . . , wn be the set of writes in our
given trace, and let ai be the temporal distance between
wi and the subsequent write at the same logical address.
Let Xi be the random variable that is 1 iff wi is an in-
curred write. A write wi is incurred if it is either last in
its granularity window or ai > s which causes the write
to be evicted from the cache. If s ≥ g, then Xi = 1 iff wi

is a retained write, because ai > s implies ai > g so all
evicted writes are also retained. Therefore in this case
D(s, g) = R(g).

Assuming s < g, we have D(g, s) =
E(1

n

∑n
i=1 Xi) = 1

n

∑n
i=1 E(Xi). Since we place

the start of the first granularity window at a uniform
offset, we have:

E(Xi) =
{

min(ai

g , 1) if s > ai

1 otherwise

We define a function fi(t) = 1 if t ≤ ai and is 0 other-
wise, and a function f̄i(t) = fi(t) if t ≤ s and f̄i(t) =
fi(s) otherwise. Thus, we get E(Xi) = 1

g

∫ g

t=0
f̄i(t).

Altogether we get: D(g, s) = 1
n

∑n
i=1 E(Xi) =

1
g

∫ g

t=0
1
n

∑n
i=1 f̄i(t) = 1

g [
∫ s

t=0
1
n

∑n
i=1 fi(t) +∫ g

t=s
1
n

∑n
i=1 fi(s)]. Since we know that for any

t ∈ [0, g] it holds that 1
n

∑n
i=1 fi(t) = 1 − T (t) we

get D(g, s) = 1
g [

∫ s

t=0
(1 − T (t)) +

∫ g

t=s
(1 − T (s))] =

1
g [sR(s) + (g − s)(1 − T (s))].

This result can be used to calculate the I/O counts for
the other architectures. Note that once the s = g, further
increasing the cache size will not affect d and so will
not provide additional benefit. This means that for fine
granularity, cache size does not play an important role.

3.6 Discussion
We chose the LRW caching policy because it is simple to
analyze and to implement. The result is a baseline com-
parison between the various architectures. Other caching
policies such as WOW [15] could be considered and pos-
sibly adapted to the CDP context - this is a topic for fur-
ther work. In practice the cache management policies
implemented by modern storage controllers are complex
and involve techniques such as prefetching and write co-
alescing. We did not introduce these aspects to our model
however in order to keep it simple.

Our analysis applies to a segregated fast write cache,
and an important topic of further work is to generalize it

to the non segregated case which models the implemen-
tation of some storage controllers.

We already mentioned that a versioned cache is
needed to avoid latency issues for all architectures ex-
cept for SplitStream. Assuming a versioned cache, then
some of the I/O’s incurred by a write request are syn-
chronous to the destage operation, but not to the write
operation, unless the destage is synchronous to the write
(such as when the write cache is full). Even though I/O’s
which are synchronous to a destage may not affect la-
tency, they limit the freedom of the controller and may
effect throughput. These are topics for further work.

Since there is an order of magnitude difference be-
tween random and sequential I/O bandwidth, the de-
gree of sequentiality of the incurred I/O’s also needs to
be taken into account. For both sequential and random
reads, Split(Down)Stream and Checkpointing architec-
tures behave similarly. Regarding random writes, both
architectures have the potential to convert random I/O
to sequential I/O at the history store. However, for se-
quential write workloads Checkpointing seems to have
a disadvantage, since on destage previous versions may
need to be copied to the history store synchronously to
the destage, which interferes with the sequential I/O flow
to disk. This can be somewhat offset by optimizations
such as proactively copying many adjacent logical ad-
dresses to the history store together. A more detailed
analysis of effect of the sequentiality of workloads on
the performance of the various architectures, and an em-
pirical evaluation, is outside the scope of this paper and
is a topic for further work.

It would be interesting to do a bottleneck analysis
of the various architectures, although this is beyond the
scope of our work. One point to consider is the timing of
the incurred device I/O’s and the resulting effect on the
back-end interconnect. In the Checkpointing architec-
ture, we may see bursts of activity once a CDP granular-
ity window completes, whereas in the other architectures
the additional load is more evenly spread over time.

4 Performance

In this section we analyze our CDP architectures in the
context of both synthetic and real life workloads. We
analyze the properties of the workloads that affect both
CDP performance and space usage, as well as empiri-
cally measuring the performance of the various architec-
tures using a prototype CDP enabled block device.

4.1 Experimental Setup
To evaluate the CDP architectures we presented in sec-
tion 2, we implemented a prototype stand alone net-

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association114

work storage server with CDP support. The prototype
was written in C under Linux and offers a block stor-
age I/O interface via the NBD protocol [5], and can also
be run against trace files containing timestamped I/O’s.
The prototype has a HTTP management interface which
allows reverting the storage to previous points in time.
The CDP history structures were implemented using the
B-Tree support in the Berkeley DB database library [6].
Our prototype has been tested extensively using a python
test suite and has also been used to mount file systems.

Our prototype emulates a storage controller’s cache
with a LRU replacement policy for reads and LRW (least
recently written) policy for writes. In a typical storage
controller, dirty data pages are battery backed. In the
controllers we model, for cost reasons, the number of
these pages is limited to a small fraction of the total pages
in the cache [17]. In our experiments we limited dirty
pages to occupy at most 3% of the total cache size, and
we varied the total cache size in our experiments. Based
upon our experience, a ratio close to 3% is often seen
in systems which have segregated fast write caches. We
chose a page size and extent size of 4KB, and varied the
granularity from every write granularity, across a range
of granularity values.

4.2 Workloads
4.2.1 The SPC-1 Benchmark

Storage Performance Council’s SPC-1 [9] is a synthetic
storage-subsystem performance benchmark. It works
by subjecting the storage subsystem to an I/O workload
designed to mimic realistic workloads found in typical
business critical application such as OLTP systems and
mail server applications. SPC-1 has gained some indus-
try acceptance and storage vendors such as Sun, IBM,
HP, Dell, LSI-Logic, Fujitsu, StorageTek and 3PARData
among others have submitted results for their storage
controllers [8]. The benchmark has been shown to pro-
vide a realistic pattern of I/O work [20] and has recently
been used by the research community [21, 15].

We compared the CDP architectures on workloads
similar to ones generated by SPC-1. We used an ear-
lier prototype implementation of the SPC-1 benchmark
that we refer to as SPC-1 Like. The choice of a synthetic
workload enabled us to monitor the effect of modifying
workload parameters which is important for reaching an
understanding of the behavior of the CDP architectures.
The SPC-1 Like prototype was modified to generate a
timestamped trace file instead of actually submitting the
I/O requests. All trace files generated were 1 hour long.

A central concept in SPC-1 is the Business Scaling
Unit (BSU). BSUs are the benchmark representation of
the user population’s I/O activity. Each BSU represents

the aggregate I/O load created by a specified number of
users who collectively generate up to 50 I/O’s per sec-
ond. SPC-1 can be scaled by increasing or decreasing
the number of BSUs.

SPC-1 divides the backend storage capacity into so-
called Application Storage Units (ASUs). Three ASUs
are defined: ASU-1 representing a “Data Store”, ASU-
2 representing a “User Store” and ASU-3 representing
a “Log/Sequential Write”. Storage is divided between
the ASUs as follows: 45% is assigned to ASU-1, 45%
to ASU-2 and the remaining 10% is assigned to ASU-
3. The generated workload is divided between the ASUs
as follows: 59.6% of the generated I/Os are to ASU-1,
12.3% are to ASU-2 and 28.1% to ASU-3. Finally, an-
other attribute of the SPC-1 workload is that all I/O’s are
4KB aligned.

4.2.2 cello99 traces

cello99 is a well known block level disk I/O trace taken
from the cello server over a one year period in 1999.
cello is the workgroup file server for the storage sys-
tems group at HP labs and the workload is typical of
a research group, including software development, trace
analysis and simulation. At that time, cello was a K570
class machine (4 cpus) running HP-UX 10.20, with about
2GB of main memory. We used a trace of the first hour
of 3/3/1999.

4.3 Workload Analysis

4.3.1 Temporal Distance Distribution

According to our analysis in sections 3, the temporal
distance distribution is a crucial property of a workload
which influences both performance of the various CDP
architectures in terms of I/O counts and the predicted
space usage. We observed that this distribution for SPC-
1 Like traces is determined by the ratio between the num-
ber of BSUs (the load level) and the size of the target
ASU storage. We obtained the same distribution when
the number of BSUs and ASUs is varied according to the
same ratio. We obtained a set of SPC-1 Like traces with
different distributions of overwrite delays by varying this
ratio. Increasing the number of BSUs while keeping the
storage size constant means that more activity takes place
in a given unit of time, and this decreases the expected
overwrite delays the workload. We chose to vary the
number of BSUs rather than the target storage size since
this allows us to easily keep a fixed ratio between cache
and storage size. For all trace files the total capacity of
the ASUs is kept constant at 100GB. To modify temporal
locality we varied the number of BSUs: 33, 50, 75 and

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 115

100. Our BSU/ASU ratio of 33 BSU/100 GB is compa-
rable with certain SPC1 vendor submissions for high end
storage controllers [8], therefore we expect the temporal
distance distribution to be similar.

In all our measurements we ignored I/O’s to ASU-3
since it represents a purely sequential-write workload (a
log) and we wanted to avoid skewing our results accord-
ing to this. Such a workload is characterized by very
large overwrite delays, and a logging or special purpose
architecture would be most suitable for providing CDP
functionality. Ideally, one could choose a CDP architec-
ture per protected volume.

Figure 7 shows the temporal distance distribution in
the SPC-1 Like and cello99 traces. Note that for the
SPC-1 Like traces, as the number of BSUs is increased,
the average temporal distance decreases, which indicates
that for a given granularity there is more potential for I/O
and space savings. Note that the temporal distances ex-
hibited by the cello99 are much shorter than those for the
SPC-1 Like traces, and this leads to an expected differ-
ence in behavior of the CDP architectures.

0

0.2

0.4

0.6

0.8

1

1.2

60min10min1min10sec1sec100ms

fra
ct

io
n

of
w

rit
es

time

Temporal Distance Distribution

Cello99

+
+ +

+
+

+
+

+ + + + + +

+
spc1 / 100 BSU

×
× × × × × × × ×

×
×

×
×

×
spc1 / 33 BSU

?
? ? ? ? ? ? ? ? ? ?

?
?

?

Figure 7: Temporal Distance Distribution of cello99 and
SPC-1 Like workloads. For a given interval d the graph
plots the fraction of writes with temporal distance ≤ d to
the subsequent write.

4.3.2 Space Overhead and Retained Writes

Figure 8 shows the space overhead of the CDP Logging
architecture as a function of granularity. The storage
overhead of every write (EW) granularity is normalized
to 1, and increasing the granularity reduces the space
overhead. 5 Because of the relatively small temporal dis-
tances in the cello99 trace, considerable savings are pos-
sible at very fine granularities in the order of seconds. On

the other hand, the relatively large temporal distances in
the SPC-1 traces means that space savings are obtained
only with granularities which are larger by several or-
ders of magnitude. As shown in figure 6, the space over-
head of the logging architecture equals rw, so our nor-
malized graph is a graph of r, the proportion of retained
writes, as a function of granularity. The relationship of
the space overhead of the other architectures with gran-
ularity is similar, as can be derived from figure 6. We
also calculated the expected proportion of retained writes
analytically according to the formula from claim 3.1 and
the given temporal distance distributions for the cello and
SPC1 Like traces. Figure 8 compares our analytical re-
sults with our empirical ones, and we see an extremely
close match, validating the correctness of our analysis.

0

0.2

0.4

0.6

0.8

1

30min5min1min10sec1sec

R
el

at
iv

e
ex

tra
sp

ac
e

ne
ed

ed

granularity

Retained writes comparison

spc1 measured

3

3

3

3

3

3
spc analytic

+
+ + +

+
+

+
+

+

+
cello99 measured

2

2

2

2
2

2
cello99 analytic

× × × × ×
×

× × ×

×

Figure 8: Tight match between analytical and empir-
ical measurements of space overhead. The empirical
measurements are normalized by dividing by the storage
overhead associated with every write granularity. The
analytical calculation is according to the formula in claim
3.1.

4.3.3 I/O Counts Incurred by Write Requests

We ran our prototype implementations on the Logging,
Checkpointing and SplitDownStream architectures using
the SPC1 Like trace with a 100BSU/100GB ratio and
4GB cache, and counted the number of I/O’s incurred
by write requests (see figure 9). All I/O counts are nor-
malized according to the total number of extents written
in the trace. At every write (EW) granularity, the archi-
tectures are close to a 1:2:3 ratio as expected according
to our analysis. At a granularity coarser than 5 mins the
Logging Architecture is close to the I/O counts of a reg-
ular volume. As the granularity becomes coarser, there is

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association116

a very gradual improvement (note the logarithmic scale
of the granularity axis), and SplitDownStream dominates
Checkpointing for granularities up to 30 mins, at which
point there is a crossover. The gradual improvement is
a result of a low proportion of writes with temporal dis-
tances up to 5 minutes, as shown in figure 7. In figure
10, we perform the same experiment on our SPC1 Like
trace with a 33BSU/100GB ratio and 4GB cache. Be-
cause of the reduced temporal locality, SplitDownStream
dominates Checkpointing for 60 minute granularities and
beyond.

In figure 11, we plot the empirical results we obtained
for the 100BSU trace against the calculated analytic re-
sults for the same trace. As can be seen there is a close
match, validating our analysis.

In figure 12, we performed a similar experiment using
the cello99 trace with a cache size of 64MB. As for the
SPC1 Like trace, at every write (EW) granularity the ar-
chitectures are close to a 1:2:3 ratio, although the higher
temporal locality of this trace results in a very fast de-
cline of I/O counts for the checkpointing architecture
with an increase in granularity, and it dominates Split-
DownStream at 5 minute and coarser granularities. At
a granularity of 60 mins, I/O counts for checkpointing
approach those Logging and of a regular volume.

In figure 13, we plot the empirical results we obtained
for the cello99 trace against the calculated analytic re-
sults for the same trace. As can be seen there is a close
match, validating our analysis.

0

1

2

3

4

5

60min10min1min10sec1secEW

R
el

at
iv

e
C

D
P

w
rit

e
co

st

granularity

Comparison by granularity (spc1 4GB Cache)

chkpointing

+

+
+

+
+

+
+

+
splitdownstream

×
× × × × × ×

×
logging

?
? ? ? ? ? ?

?

Figure 9: A comparison of I/O counts incurred by write
requests for the CDP architectures as a function of gran-
ularity, for the SPC1 Like trace with 100BSU/100GB.
There is a crossover point after 30mins where Check-
pointing overtakes SplitDownStream - note the logarith-
mic scale of the X axis.

0

1

2

3

4

5

60min10min1min10sec1secEW

R
el

at
iv

e
C

D
P

w
rit

e
co

st

granularity

Comparison by granularity (spc1 4GB Cache)

chkpointing

+

+
+

+
+

+
+

+
splitdownstream

×
× × × × × ×

×
logging

? ? ? ? ? ? ?

?

Figure 10: A comparison of I/O counts incurred by write
requests for the CDP architectures as a function of gran-
ularity, for the SPC1 Like trace with 33BSU/100GB.
Since this trace exhibits less temporal locality, the
crossover point of figure 9 has moved to beyond 1 hour,
in favor of SplitDownStream.

4.3.4 The Effect of Write Cache on I/O Counts

It is clear that increasing the write cache size reduces
the I/O counts for any architecture, assuming the CDP
granularity allows this. According to our analysis, the
Checkpointing architecture is more limited than Split-
DownStream in its ability to utilize write cache to reduce
I/O counts. In figure 14, we compare the I/O counts of
the various architectures as the cache size is increased,
for the cello99 trace with 1 second granularity. The per-
formance of all 3 architectures enjoy an increase in cache
size, with the SplitDownStream architecture best able to
utilize the additional cache space. In general we expect
an increase in cache size to push the crossover point be-
tween SplitDownStream and Checkpointing to coarser
granularities in favor of SplitDownStream - whereas the
crossover point for 64MB in figure 12 is less than 10 min-
utes, for approx. 100MB it is exactly 10 minutes, and for
512MB it is greater that 10 minutes. Note that in this case
a large increase in cache size makes only a small differ-
ence to the crossover granularity. Also note that once
the cache size reaches approximately 256MB, a further
increase in cache size does not further reduce the CDP
write cost. For the 256MB cache size, we found s to be
close to 10 minutes, which confirms our analysis from
section 3.5 that predicted this to happen once s = g.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 117

0

0.5

1

1.5

2

2.5

3

3.5

4

60min10min1min10sec1sec

R
el

at
iv

e
C

D
P

w
rit

e
co

st

granularity

Analysis vs. Measurement spc1 (4GB)

chkpointing

3 3 3 3 3 3 3
3

3
3

3
chkpointing / measure

+
+

+
+

+
+

+
splitdownstream

2 2 2 2 2 2 2 2 2 2

2
splitdownstream / measure

×
× × × × ×

×
logging

4 4 4 4 4 4 4 4 4 4

4
logging / measure

? ? ? ? ? ?

?

Figure 11: Tight match between analytical and em-
pirical measurements of I/O counts for the SPC1 Like
100BSU/100GB trace. The analytical calculation is ac-
cording to the analysis developed in 3.

5 Related Work

Although CDP has been gaining momentum in the indus-
try and various products are available [7, 2, 4, 3] we are
not aware of an enterprise-class storage controller with
CDP support available as a product. There has been some
research concerned with implementing CDP [23, 31, 14]
but to the best of our knowledge we are the first to de-
scribe CDP architectures suitable for implementation in
a high-end storage controller.

There has been some work examining every-write
block based CDP with a focus on reducing space over-
head [23, 31]. The paper describing the Peabody system
makes a case for content-based coalescing of sectors: for
the workloads they investigated, up to 84% of the writ-
ten sectors have identical contents to sectors that were
written previously and so could potentially be stored just
once [23]. The paper describing the Trap-array system
proposes to reduce the size of the CDP history by storing
the compressed result of the XOR of each block with its
previous version, instead of storing the block data. They
find that it is common for only a small segment of a block
to change between versions so that a XOR between the
two versions yields a block containing mostly zeros the
compresses well. Their results show up to two orders
of magnitude space overhead reduction. The resulting
cost is that retrieving a block version requires time pro-
portional to the number of versions between the target
version and the current version [31].

These results seem promising and the ideas presented

0

0.5

1

1.5

2

2.5

3

60min10min1min10sec1secEW

R
el

at
iv

e
C

D
P

w
rit

e
co

st

granularity

Comparison by granularity (cello99 64MB Cache)

chkpointing
+

+

+
+

+
+ +

+
splitdownstream

×

×
× × × × ×

×
logging

?

? ? ? ? ? ?

?

Figure 12: A comparison of I/O counts incurred by
write requests for the CDP architectures as a function of
granularity, for cello99 with 64MB cache. Checkpoint-
ing dominates SplitDownStream at 5 minute and coarser
granularities. The reason for the very different crossover
point is the much larger degree of temporal locality in the
cello99 trace.

in these papers can be considered complementary to our
work. It may be interesting to investigate one of the pro-
posed schemes as function of a variable protection gran-
ularity as neither paper does so.

The Clotho system is a Linux block device driver that
supports creating an unlimited amount of read-only snap-
shots (versions) [14]. Since snapshot creation is efficient,
frequent snapshots are feasible. Clotho is similar to the
logging architecture in that read access to the current ver-
sion requires metadata lookups. Unlike the logging ar-
chitecture in Clotho access to newer versions is more ef-
ficient than access to historical versions. Similarly to the
Trap-array system, a form of differential compression of
extents with their previous versions is supported however
its benefits on real-world workloads is not quantified.

Point-in-time volume snapshots [12] are a common
feature supported by storage controllers, LVMs, file-
systems and NAS boxes. We believe the results of our
analysis of the checkpointing architecture are relevant for
analysis of the overhead of periodic point-in-time snap-
shot support when this is implemented using COW (copy
on write): on overwrite of the block on the production
volume, the previous version of the block is copied to
the snapshot volume. We presented results and analy-
sis which provide insight into when COW-based archi-
tectures should be used and when alternatives should be
considered as protection granularity and workload vary.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association118

0

0.2

0.4

0.6

0.8

1

1.2

1.4

60min10min1min10sec1sec

R
el

at
iv

e
C

D
P

w
rit

e
co

st

granularity

Analysis vs. Measurement cello99 (64MB)

chkpointing

3
3

3

3
3

3
3

3
3 3

3
chkpointing / measure

+

+

+

+
+ +

+
splitdownstream

2
2

2
2

2 2 2 2 2 2

2
splitdownstream / measure

×
×

× × × ×

×
logging

4 4 4 4 4 4 4 4 4 4

4
logging / measure

?
?

? ? ? ?

?

Figure 13: Tight match between analytical and empirical
measurements of I/O counts for cello99 trace. The ana-
lytical calculation is according to the analysis developed
in 2

We are not aware of prior work which examined the issue
from this perspective.

Network Appliance NAS filers and the Sun ZFS [11]
filesystem support snapshotting of volumes by organiz-
ing the filesystem as a tree with user-data at the leaf level
and meta-data held in internal nodes [19]. Each snapshot
consists of a separate tree which may share subtrees with
other snapshots. Creating a snapshot volume is done by
creating a new tree root node which points to the same
children as the original volume’s root, so that the two vol-
umes are represented by overlapping trees. Once a snap-
shot is created on a volume, any blocks which it shares
with the snapshot (initially all blocks) cannot be updated
in place, and all writes to them must be redirected. The
first write to a block after a snapshot causes an entire tree
path of meta-data to be allocated and copied, and linked
to from the snapshot volume’s tree root. Compared to in-
place updates of meta-data, this approach seems to inher-
ently require writing much more meta-data, especially
for frequent snapshots. Some of this cost is balanced by
delaying writes and then performing them in large se-
quential batches, similar to LFS [25]. However at high
protection granularity it is not clear how competitive this
architecture is. An investigation of the performance of
this architecture as function of workload and protection
granularity may be an interesting further work item.

Other work examined two options for implementing
point-in-time snapshots, referred to as: COW and ‘redi-
rect on write’ (ROW) [30]. The performance of a volume
which has a single snapshot on it is examined and the two
options are compared. No consideration is given to the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

512MB256MB128MB64MB

R
el

at
iv

e
C

D
P

w
rit

e
co

st

cache size

Comparison by cache size (cello99)

chkpointing / 10min

+

+

+ +

+
logging / 10min

×

×
× ×

×
splitdownstream / 10min

?

?

?
?

?

Figure 14: Write cache size versus relative CDP cost
in terms of I/O’s incurred by write requests for the 1
hour trace of the cello99 workload with a granularity
of 10 minutes. As the cache size is increased, the
cost reduces faster for the SplitDownStream architec-
ture than for Checkpointing, and SplitDownStream dom-
inates Checkpointing for cache sizes over 100MB. Note
the exponential scale of the X-axis.

cost related to periodically creating a new point-in-time
copy. Very roughly the redirect-on-write architecture can
be compared to the logging architecture while the COW
architecture can be compared to our checkpointing ar-
chitecture. The I/O cost per write for ROW is 1 I/O and,
similarly to the case for logging, there is an extra meta-
data lookup per read as well as a loss of spacial locality.
The intuition that for write-dominated workloads ROW
has an advantage while for read-dominated ones COW
is advantageous is experimentally validated on various
workloads. The impact of block size (minimal unit of
copying to snapshot) on performance of the architectures
is also investigated. Briefly, smaller block sizes bene-
fit writes since less space is wasted while it hurts reads
because of more fragmentation.

Versioned file systems [28, 27, 24, 29] keep track of
updates to files and enable access to historical versions.
The unit of protection in these file systems is a file - the
user may access a historical version of a specific file -
while in block-based CDP the unit of protection is an
entire LUN. Some of this work discusses the overheads
of meta-data related to versioning [24, 29] but our fo-
cus has been on the overheads associated with user data.
The basic approach of investigating write related over-
heads as a function of protection granularity seems ap-
plicable to versioned file systems as well. One differ-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 119

ence is that some versioned file systems support protec-
tion granularities that are not a constant amount of time,
e.g. all the changes made to a file between the time it was
opened by an application and the time it was closed may
be considered to belong to a single version, whatever the
amount of time this happens to take. This is similar to
so called ‘event-based’ CDP where the user/application
marks events of interest rather than deciding beforehand
about protection granularity. Extending our model to
handle this may be a further work item.

6 Conclusions

We proposed CDP architectures suitable for integration
into storage controller, and analyzed them both analyti-
cally and empirically. Our analysis predicts the cost of
each architecture in terms of write-related I/O and space
overheads, and our empirical results confirm the analy-
sis. Our work is the first to consider and accurately de-
scribe the effects of varying the CDP granularity. We
show that one of the critical factors affecting both write
I/O and space overheads is the fraction of retained writes
which is determined by the relationship between the
temporal distance of writes and the granularity. Work-
loads exhibiting high temporal locality w.r.t. the gran-
ularity perform well under the checkpointing architec-
ture, whereas workloads exhibiting low temporal locality
w.r.t. the granularity perform well under the SplitDown-
Stream architecture. We analyzed specific workloads and
showed that for the SPC1 Like OLTP workloads, a Split-
DownStream architecture is superior for granularities up
to 1 hour. We also showed that the Checkpointing archi-
tecture is superior for a workgroup file server workload
such as cello99 for granularities coarser than 5 minutes.
Aside from CDP, our results can also shed light on the
performance overheads of common implementations of
point-in-time copy in terms of the frequency of taking
those copies.

6.1 Further Work
We do not claim definite conclusions regarding the cost
of the CDP architectures for the general class of OLTP
workloads or filesystem workloads. Our evaluation was
not extensive enough to substantiate such claims. How-
ever we believe our results lay a foundation for a thor-
ough investigation of real-world workloads.

A hybrid architecture which combines ideas from the
Checkpointing architecture and the SplitDownStream ar-
chitecture may offer the best of both: the behavior of
SplitDownStream at higher granularities and the behav-
ior of Checkpointing at lower granularities. Such an ar-
chitecture is an interesting further work item.

Our evaluation did not consider I/O’s related to meta-
data accesses to the LPMap CDP History structure. Also
ignored in our evaluation is sequentiality of the write-
related traffic. As described the checkpointing architec-
ture requires 2 synchronous I/O’s prior to cache destages
of some pages. Evaluating the impact this has on perfor-
mance (as well as attempting to overcome this limitation
of the checkpointing architecture) is a further work item.

Acknowledgments

We would very much like to thank Uri Braun for his
contribution at the early stages of our prototype, Chip
Jarvis for discussions on versioning cache, Bruce Mc-
Nutt for allowing us access to an earlier prototype im-
plementation of the SPC-1 benchmark, HP for access
to the cello99 traces, and Binny Gill and Dharmendra
Modha for sending us their WOW prototype. Many
thanks also to Kalman Meth, Sivan Tal, and the anony-
mous reviewers of the FAST program committee whose
valuable feedback helped improve the paper.

References

[1] Continuous Data Protection: A Market Update,
Byte and Switch Insider Report, July 2006.
http://www.byteandswitch.com/insider.

[2] EMC Recover Point. http://www.emc.com/.

[3] FalconStor CDP. http://www.falconstor.com/.

[4] Mendocino Software,
http://www.mendocinosoft.com/.

[5] Network Block Device. http://nbd.sourceforge.net/.

[6] Oracle Berkeley DB.
http://www.oracle.com/database/berkeley-
db/index.html.

[7] Revivio Inc. http://www.revivio.com/.

[8] Storage Performance Coun-
cil, SPC-1 Benchmark Results.
http://www.storageperformance.org/results.

[9] Storage Performance Council SPC-1 Specification.
http://www.storageperformance.org/specs.

[10] The IBM TotalStorage DS8000 Series: Con-
cepts and Architecture. IBM Redbook, 2005,
http://www.redbooks.ibm.com/.

[11] ZFS: The last word in file systems.
http://www.sun.com/2004-0914/feature/.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association120

[12] A. Azagury, M. E. Factor, J. Satran, and W. Micka.
Point-in-time copy: Yesterday, today and tomor-
row. In Proceedings of IEEE/NASA Conf. Mass
Storage Systems, pages 259–270, 2002.

[13] J. Damoulakis. Continuous protection. Storage,
June 2004, 3(4):33–39, 2004.

[14] M. Flouris and A. Bilas. Clotho: Transparent data
versioning at the block I/O level. In IEEE Sympo-
sium on Mass Storage Systems, 2004.

[15] B. Gill and D. S. Modha. WOW: Wise ordering
for writes combining spatial and temporal locality
in non-volatile caches. In Proceedings of USENIX
File and Storage Technologies, 2005.

[16] J. S. Glider, C. F. Fuente, and W. J. Scales. The soft-
ware architecture of a SAN storage control system.
IBM Systems Journal, 42(2):232–249, 2003.

[17] M. Hartung. IBM TotalStorage Enterprise Storage
Server: A designer’s view. IBM Systems Journal,
42(2):383–396, 2003.

[18] J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture : A Quantitative Approach; second edi-
tion. Morgan Kaufmann, 1996.

[19] D. Hitz, J. Lau, and M. A. Malcolm. File system
design for an NFS file server appliance. In Pro-
ceedings of the Winter’94 USENIX Technical Con-
ference, pages 235–246, 1994.

[20] B. McNutt and S. A. Johnson. A standard test of
I/O cache. In Proc. of the Computer Measurements
Group Conference, 2001.

[21] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In Proceedings of
USENIX File and Storage Technologies, San Fran-
cisco, CA., 2003.

[22] J. Menon. A performance comparison of RAID-5
and log-structured arrays. In Fourth IEEE Sympo-
sium on High-Performance Distributed Computing,
1995.

[23] C. B. Morrey III and D. Grunwald. Peabody: The
time travelling disk. In IEEE Symposium on Mass
Storage Systems, pages 241–253, 2003.

[24] Z. Peterson and R. Burns. Ext3cow: a time-shifting
file system for regulatory compliance. ACM Trans-
actions on Storage, 1(2):190–212, May 2005.

[25] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured filesystem.
ACM Transactions on Computer Systems, pages
26–52, 1992.

[26] C. Ruemmler and J. Wilkes. Unix disk access pat-
terns. In Proceedings of the Winter USENIX Con-
ference, pages 405–420, 1993.

[27] D. J. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Otir. Deciding when
to forget in the elephant file system. In SOSP99,
Symposium on Operating Systems Principles, 1999.

[28] M. D. Schroeder, D. K. Gifford, and R. M. Need-
ham. A caching file system for a programmers
workstation. In Proceedings of the 10th ACM Sym-
posium on Operating Systems Principles, pages
25–34, 1985.

[29] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata efficiency in versioning
file systems. In Proceedings of USENIX File And
Storage Technologies. USENIX, 2003.

[30] W. Xiao, Y. Liu, Q. K. Yang, J. Ren, and C. Xie.
Implementation and performance evaluation of two
snapshot methods on iSCSI target stores. In Pro-
ceedings of IEEE/NASA Conf. Mass Storage Sys-
tems, 2006.

[31] Q. Yang, W. Xiao, and J. Ren. TRAP-Array: A
disk array architecture providing timely recovery to
any point-in-time. In Proceedings of International
Symposium on Computer Architecture, 2006.

[32] Y. Zhou and J. F. Philbin. The multi-queue re-
placement algorithm for second level buffer caches.
In Proceedings of USENIX Annual Tech. Conf.,
Boston, MA, pages 91–104, 2001.

Notes
1With the advent of RAID and volume virtualization, these are not

necessarily true physical addresses.
2To calculate r, we only consider completed granularity windows,

so that it becomes evident which writes are retained permanently. For
“infinite” granularity, there is only one granularity window but it is
never completed.

3We only consider those writes which have a subsequent write.
4The distribution of writes may not be as important if a versioning

cache is used.
5Note that one cannot properly normalize according to the case of

a regular volume (no CDP) because there are no retained writes, and
there is no relationship between the size of the current stores in the
various workloads.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 121

