
Proportional-Share Scheduling for Distributed Storage Systems

Yin Wang∗

University of Michigan
yinw@eecs.umich.edu

Arif Merchant
HP Laboratories
arif@hpl.hp.com

Abstract
Fully distributed storage systems have gained popularity in the
past few years because of their ability to use cheap commodity
hardware and their high scalability. While there are a num-
ber of algorithms for providing differentiated quality of service
to clients of a centralized storage system, the problem has not
been solved for distributed storage systems. Providing perfor-
mance guarantees in distributed storage systems is more com-
plex because clients may have different data layouts and access
their data through different coordinators (access nodes), yet the
performance guarantees required are global.

This paper presents a distributed scheduling framework. It is
an adaptation of fair queuing algorithms for distributed servers.
Specifically, upon scheduling each request, it enforces an extra
delay (possibly zero) that corresponds to the amount of service
the client gets on other servers. Different performance goals,
e.g., per storage node proportional sharing, total service pro-
portional sharing or mixed, can be met by different delay func-
tions. The delay functions can be calculated at coordinators
locally so excess communication is avoided. The analysis and
experimental results show that the framework can enforce per-
formance goals under different data layouts and workloads.

1 Introduction

The storage requirements of commercial and institutional
organizations are growing rapidly. A popular approach
for reducing the resulting cost and complexity of man-
agement is to consolidate the separate computing and
storage resources of various applications into a common
pool. The common resources can then be managed to-
gether and shared more efficiently. Distributed storage
systems, such as Federated Array of Bricks (FAB) [20],
Petal [16], and IceCube [27], are designed to serve as
large storage pools. They are built from a number of
individual storage nodes, or bricks, but present a sin-
gle, highly-available store to users. High scalability is
another advantage of distributed storage systems. The
system can grow smoothly from small to large-scale in-
stallations because it is not limited by the capacity of an
array or mainframe chassis. This satisfies the needs of
service providers to continuously add application work-
loads onto storage resources.

A data center serving a large enterprise may support
thousands of applications. Inevitably, some of these ap-
plications will have higher storage performance require-

∗This work was done during an internship at HP Laboratories.

Figure 1: A distributed storage system

ments than others. Traditionally, these requirements have
been met by allocating separate storage for such appli-
cations; for example, applications with high write rates
may be allocated storage on high-end disk arrays with
large caches, while other applications live on less expen-
sive, lower-end storage. However, maintaining separate
storage hardware in a data center can be a management
nightmare. It would be preferable to provide each ap-
plication with the service level it requires while sharing
storage. However, storage systems typically treat all I/O
requests equally, which makes differentiated service dif-
ficult. Additionally, a bursty I/O workload from one ap-
plication can cause other applications sharing the same
storage to suffer.

One solution to this problem is to specify the perfor-
mance requirement of each application’s storage work-
load and enable the storage system to ensure that it is
met. Thus applications are insulated from the impact
of workload surges in other applications. This can be
achieved by ordering the requests from the applications
appropriately, usually through a centralized scheduler, to
coordinate access to the shared resources [5, 6, 24]. The
scheduler can be implemented in the server or as a sep-
arate interposed request scheduler [2, 12, 17, 29] that
treats the storage server as a black box and applies the
resource control externally.

Centralized scheduling methods, however, fit poorly
with distributed storage systems. To see this, consider
the typical distributed storage system shown in Figure 1.
The system is composed of bricks; each brick is a com-
puter with a CPU, memory, networking, and storage. In
a symmetric system, each brick runs the same software.
Data stored by the system is distributed across the bricks.
Typically, a client accesses the data through a coordina-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 47

tor, which locates the bricks where the data resides and
performs the I/O operation. A brick may act both as a
storage node and a coordinator. Different requests, even
from the same client, may be coordinated by different
bricks. Two features in this distributed architecture pre-
vent us from applying any existing request scheduling
algorithm directly. First, the coordinators are distributed.
A coordinator schedules requests possibly without the
knowledge of requests processed by other coordinators.
Second, the data corresponding to requests from a client
could be distributed over many bricks, since a logical
volume in a distributed storage system may be striped,
replicated, or erasure-coded across many bricks [7]. Our
goal is to design a distributed scheduler that can provide
service guarantees regardless of the data layout.

This paper proposes a distributed algorithm to enforce
proportional sharing of storage resources among streams
of requests. Each stream has an assigned weight, and the
algorithm reserves for it a minimum share of the system
capacity proportional to its weight. Surplus resources are
shared among streams with outstanding requests, also
in proportion to their weights. System capacity, in this
context, can be defined in a variety of ways: for ex-
ample, the number of I/Os per second, the number of
bytes read or written per second, etc. The algorithm is
work-conserving: no resource is left idle if there is any
request waiting for it. However, it can be shown easily
that a work-conserving scheduling algorithm for multi-
ple resources (bricks in our system) cannot achieve pro-
portional sharing in all cases. We present an extension
to the basic algorithm that allows per-brick proportional
sharing in such cases, or a method that provides a hybrid
between system-wide proportional sharing and per-brick
proportional sharing. This method allows total propor-
tional sharing when possible while ensuring a minimum
level of service on each brick for all streams.

The contribution of this paper includes a novel distrib-
uted scheduling framework that can incorporate many
existing centralized fair queuing algorithms. Within
the framework, several algorithms that are extensions to
Start-time Fair Queuing [8] are developed for different
system settings and performance goals. To the best of
our knowledge, this is the first algorithm that can achieve
total service proportional sharing for distributed storage
resources with distributed schedulers. We evaluate the
proposed algorithms both analytically and experimen-
tally on a FAB system, but the results are applicable to
most distributed storage systems. The results confirm
that the algorithms allocate resources fairly under vari-
ous settings — different data layouts, clients accessing
the data through multiple coordinators, and fluctuating
service demands.

This paper is organized as follows. Section 2 presents
an overview of the problem, the background, and the

Figure 2: Data access model of a distributed storage sys-
tem. Different clients may have different data layouts spread-
ing across different sets of bricks. However, coordinators know
all data layouts and can handle requests from any client.

related work. Section 3 describes our distributed fair
queueing framework, two instantiations of it, and their
properties. Section 4 presents the experimental evalua-
tion of the algorithms. Section 5 concludes.

2 Overview and background

We describe here the distributed storage system that our
framework is designed for, the proportional sharing prop-
erties it is intended to enforce, the centralized algorithm
that we base our work upon, and other related work.

2.1 Distributed Storage Systems

Figure 2 shows the configuration of a typical distributed
storage system. The system includes a collection of stor-
age bricks, which might be built from commodity disks,
CPUs, and NVRAM. Bricks are connected by a standard
network such as gigabit Ethernet. Access to the data on
the bricks is handled by the coordinators, which present
a virtual disk or logical volume interface to the clients.
In the FAB distributed storage system [20], a client may
access data through an arbitrary coordinator or a set of
coordinators at the same time to balance its load. Co-
ordinators also handle data layout and volume manage-
ment tasks, such as volume creation, deletion, extension
and migration. In FAB, the coordinators reside on the
bricks, but this is not required. We consider local area
distributed storage systems where the network latencies
are small compared with disk latencies. We assume that
the network bandwidths are sufficiently large that the I/O
throughput is limited by the bricks rather than the net-
work.

The data layout is usually designed to optimize prop-
erties such as load balance, availability, and reliability. In
FAB, a logical volume is divided into a number of seg-
ments, which may be distributed across bricks using a
replicated or erasure-coded layout. The choice of brick-
set for each segment is determined by the storage system.
Generally, the layout is opaque to the clients.

The scheduling algorithm we present is designed for
such a distributed system, making a minimum of as-

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association48

SYMBOLS DESCRIPTION

φf Weight of stream f
pi

f Stream f ’s i-th request
pi

f,A Stream f ’s i-th request to brick A

cost(·) Cost of a single request
costmax

f Max request cost of stream f

costmax
f,A Max cost on brick A of f

Wf (t1, t2) Aggregate cost of requests served
from f during interval [t1, t2]

batchcost Total cost of requests in between
(pi

f,A) pi−1
f,A and pi

f,A, including pi
f,A

batchcostmax
f,A Max value of batchcost(pi

f,A)
A(·) Arrival time of a request
S(·) Start tag of a request
F (·) Finish tag of a request
v(t) Virtual time at time t
delay(·) Delay value of a request

Table 1: Some symbols used in this paper.

sumptions. The data for a client may be laid out in an
arbitrary manner. Clients may request data located on
an arbitrary set of bricks at arbitrary and even fluctuating
rates, possibly through an arbitrary set of coordinators.

2.2 Proportional Sharing

The algorithms in this paper support proportional sharing
of resources for clients with queued requests. Each client
is assigned a weight by the user and, in every time inter-
val, the algorithms try to ensure that clients with requests
pending during that interval receive service proportional
to their weights.

More precisely, I/O requests are grouped into service
classes called streams, each with a weight assigned; e.g.,
all requests from a client could form a single stream. A
stream is backlogged if it has requests queued. A stream
f consists a sequence of requests p0

f ...pn
f . Each request

has an associated service cost cost(pi
f). For example,

with bandwidth performance goals, the cost might be the
size of the requested data; with service time goals, re-
quest processing time might be the cost. The maximum
request cost of stream f is denoted costmax

f . The weight
assigned to stream f is denoted φf ; only the relative val-
ues of the weights matter for proportional sharing.

Formally, if Wf (t1, t2) is the aggregate cost of the re-
quests from stream f served in the time interval [t1, t2],
then the unfairness between two continuously back-
logged streams f and g is defined to be:

∣∣∣∣
Wf (t1, t2)

φf
− Wg(t1, t2)

φg

∣∣∣∣ (1)

A fair proportional sharing algorithm should guaran-
tee that (1) is bounded by a constant. The constant usu-

Figure 3: Distributed data. Stream f sends requests to brick
A only while stream g sends requests to both A and B.

ally depends on the stream characteristics, e.g., costmax
f .

The time interval [t1, t2] in (1) may be any time dura-
tion. This corresponds to a “use it or lose it” policy, i.e.,
a stream will not suffer during one time interval for con-
suming surplus resources in another interval, nor will it
benefit later from under-utilizing resources.

In the case of distributed data storage, we need to de-
fine what is to be proportionally shared. Let us first look
at the following example.

EXAMPLE 1. Figure 3 is a storage system consisting
of two bricks A and B. If streams f and g are equally
weighted and both backlogged at A, how should we al-
locate the service capacity of brick A?

There are two alternatives for the above example, which
induce two different meanings for proportional sharing.
The first is single brick proportional sharing, i.e., ser-
vice capacity of brick A will be proportionally shared.
Many existing proportional sharing algorithms fall into
this category. However, stream g also receives service at
brick B, thus receiving higher overall service. While this
appears fair because stream g does a better job of balanc-
ing its load over the bricks than stream f , note that the
data layout may be managed by the storage system and
opaque to the clients; thus the quality of load balancing
is merely an accident. From the clients’ point of view,
stream f unfairly receives less service than stream g. The
other alternative is total service proportional sharing. In
this case, the share of the service stream f receives on
brick A can be increased to compensate for the fact that
stream g receives service on brick B, while f does not.
This problem is more intricate and little work has been
done on it.

It is not always possible to guarantee total service pro-
portional sharing with a work-conserving scheduler, i.e.,
where the server is never left idle when there is a request
queued. Consider the following extreme case.

EXAMPLE 2. Stream f requests service from brick A
only, while equally weighted stream g is sending requests
to A and many other bricks. The amount of service g
obtains from the other bricks is larger than the capacity
of A. With a work-conserving scheduler, it is impossible
to equalize the total service of the two streams.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 49

If the scheduler tries to make the total service received
by f and g as close to equal as possible, g will be blocked
at brick A, which may not be desirable. Inspired by the
example, we would like to guarantee some minimum ser-
vice on each brick for each stream, yet satisfy total ser-
vice proportional sharing whenever possible.

In this paper, we propose a distributed algorithm
framework under which single brick proportional shar-
ing, total service proportional sharing, and total service
proportional sharing with a minimum service guarantee
are all possible. We note that, although we focus on dis-
tributed storage systems, the algorithms we propose may
be more broadly applicable to other distributed systems.

2.3 The centralized approach

In selecting an approach towards a distributed propor-
tional sharing scheduler, we must take four requirements
into account: i) the scheduler must be work-conserving:
resources that backlogged streams are waiting for should
never be idle; ii) “use it or lose it”, as described in the
previous section; iii) the scheduler should accommodate
fluctuating service capacity since the service times of IOs
can vary unpredictably due to the effects of caching, se-
quentiality, and interference by other streams; and iv)
reasonable computational complexity—there might be
thousands of bricks and clients in a distributed stor-
age system, hence the computational and communication
costs must be considered.

There are many centralized scheduling algorithms that
could be extended to distributed systems [3, 4, 8, 28,
30, 17, 14, 9]. We chose to focus on the Start-time
Fair Queuing (SFQ) [8] and its extension SFQ(D) [12]
because they come closest to meeting the requirements
above. We present a brief discussion of the SFQ and
SFQ(D) algorithms in the remainder of this section.

SFQ is a proportional sharing scheduler for a single
server; intuitively, it works as follows. SFQ assigns a
start time tag and a finish time tag to each request cor-
responding to the normalized times at which the request
should start and complete according to a system notion of
virtual time. For each stream, a new request is assigned
a start time based on the assigned finish time of the pre-
vious request, or the current virtual time, whichever is
greater. The finish time is assigned as the start time plus
the normalized cost of the request. The virtual time is
set to be the start time of the currently executing request,
or the finish time of the last completed request if there is
none currently executing. Requests are scheduled in the
order of their start tags. It can be shown that, in any time
interval, the service received by two backlogged work-
loads is approximately proportionate to their weights.

More formally, the request pi
f is assigned the start tag

S(pi
f) and the finish tag F (pi

f) as follows:

S(pi
f) = max{v(A(pi

f)), F (pi−1
f)}, i ≥ 1 (2)

F (pi
f) = S(pi

f) +
cost(pi

f)
φf

, i ≥ 1 (3)

where A(pi
f) is the arrival time of request pi

f , and v(t) is
the virtual time at t; F (p0

f) = 0, v(0) = 0.
SFQ cannot be directly applied to storage systems,

since storage servers are concurrent, serving multiple re-
quests at a time, and the virtual time v(t) is not defined.
Jin et al. [12] extended SFQ to concurrent servers by
defining the virtual time as the maximum start tag of
requests in service (the last request dispatched). The
resulting algorithm is called depth-controlled start-time
fair queuing and abbreviated to SFQ(D), where D is the
queue depth of the storage device. As with SFQ, the fol-
lowing theorem [12] shows that SFQ(D) provides back-
logged workloads with proportionate service, albeit with
a looser bound on the unfairness.

THEOREM 1. During any interval [t1, t2], the dif-
ference between the amount of work completed by an
SFQ(D) server for two backlogged streams f and g is
bounded by:
∣∣∣∣
Wf (t1, t2)

φf
− Wg(t1, t2)

φg

∣∣∣∣ ≤
(

costmax
f

φf
+

costmax
g

φg

)
∗

(D + 1) (4)

While there are more complex variations of SFQ [12]
that can reduce the unfairness of SFQ(D), for simplicity,
we use SFQ(D) as the basis for our distributed schedul-
ing algorithms. Since the original SFQ algorithm cannot
be directly applied to storage systems, for the sake of
readability, we will use “SFQ” to refer to SFQ(D) in the
remainder of the paper.

2.4 Related Work

Extensive research in scheduling for packet switching
networks has yielded a series of fair queuing algorithms;
see [19, 28, 8, 3]. These algorithms have been adapted
to storage systems for service proportional sharing. For
example, YFQ [1], SFQ(D) and FSFQ(D) [12] are
based on start-time fair queueing [8]; SLEDS [2] and
SARC [29] use leaky buckets; CVC [11] employs the vir-
tual clock [30]. Fair queuing algorithms are popular for
two reasons: 1) they provide theoretically proven strong
fairness, even under fluctuating service capacity, and 2)
they are work-conserving.

However, fair queuing algorithms are not convenient
for real-time performance goals, such as latencies. To
address this issue, one approach is based on real-time
schedulers; e.g., Façade [17] implements an Earliest

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association50

Deadline First (EDF) queue with the proportional feed-
back for adjusting the disk queue length. Another
method is feedback control, a classical engineering tech-
nique that has recently been applied to many computing
systems [10]. These generally require at least a rudimen-
tary model of the system being controlled. In the case of
storage systems, whose performance is notoriously dif-
ficult to model [22, 25], Triage [14] adopts an adaptive
controller that can automatically adjust the system model
based on input-output observations.

There are some frameworks [11, 29] combining the
above two objectives (proportional sharing and latency
guarantees) in a two-level architecture. Usually, the first
level guarantees proportional sharing by fair queueing
methods, such as CVC [11] and SARC [29]. The sec-
ond level tries to meet the latency goal with a real-time
scheduler, such as EDF. Some feedback from the second
level to the first level scheduler is helpful to balance the
two objectives [29]. All of the above methods are de-
signed for use in a centralized scheduler and cannot be
directly applied to our distributed scheduling problem.

Existing methods for providing quality of service in
distributed systems can be put into two categories. The
first category is the distributed scheduling of a single re-
source. The main problem here is to maintain informa-
tion at each scheduler regarding the amount of resource
each stream has so far received. For example, in fair
queuing algorithms, where there is usually a system vir-
tual time v(t) representing the normalized fair amount of
service that all backlogged clients should have received
by time t, the problem is how to synchronize the vir-
tual time among all distributed schedulers. This can be
solved in a number or ways; for example, in high capac-
ity crossbar switches, in order to fairly allocate the band-
width of the output link, the virtual time of different input
ports can be synchronized by the access buffer inside the
crossbar [21]. In wireless networks, the communication
medium is shared. When a node can overhear packages
from neighboring nodes for synchronization, distributed
priority backoff schemes closely approximate a single
global fair queue [18, 13, 23]. In the context of storage
scheduling, Request Window [12] is a distributed sched-
uler that is similar to a leaky bucket scheduler. Services
for different clients are balanced by the windows issued
by the storage server. It is not fully work-conserving un-
der light workloads.

The second category is centralized scheduling of mul-
tiple resources. Gulati and Varman [9] address the prob-
lem of allocating disk bandwidth fairly among concur-
rent competing flows in a parallel I/O system with multi-
ple disks and a centralized scheduler. They aim at the op-
timization problem of minimizing the unfairness among
different clients with concurrent requests. I/O requests
are scheduled in batches, and a combinatorial optimiza-

tion problem is solved in each round, which makes the
method computationally expensive. The centralized con-
troller makes it unsuitable for use in fully distributed
high-performance systems, such as FAB.

To the best of our knowledge, the problem of fair
scheduling in distributed storage systems that involve
both distributed schedulers and distributed data has not
been previously addressed.

3 Proportional Sharing in Distributed
Storage Systems

We describe a framework for proportional sharing in dis-
tributed storage systems, beginning with the intuition,
followed by a detailed description, and two instantiations
of the method exhibiting different sharing properties.

3.1 An intuitive explanation

First, let us consider the simplified problem where the
data is centralized at one brick, but the coordinators may
be distributed. An SFQ scheduler could be placed either
at coordinators or at the storage brick. As fair scheduling
requires the information for all backlogged streams, di-
rect or indirect communication among coordinators may
be necessary if the scheduler is implemented at coordi-
nators. Placing the scheduler at bricks avoids the prob-
lem. In fact, SFQ(D) can be used without modification
in this case, provided that coordinators attach a stream
ID to each request so that the scheduler at the brick can
assign the start tag accordingly.

Now consider the case where the data is distributed
over multiple bricks as well. In this case, SFQ sched-
ulers at each brick can guarantee only single brick pro-
portional sharing, but not necessarily total service pro-
portional sharing because the scheduler at each brick sees
only the requests directed to it and cannot account for the
service rendered at other bricks.

Suppose, however, that each coordinator broadcasts all
requests to all bricks. Clearly, in this case, each brick
has complete knowledge of all requests for each stream.
Each brick responds only to the requests for which it
is the correct destination. The remaining requests are
treated as virtual requests, and we call the combined
stream of real and virtual request a virtual stream; see
Fig. 4. A virtual request takes zero processing time but
does account for the service share allocated to its source
stream. Then the SFQ scheduler at the brick guaran-
tees service proportional sharing of backlogged virtual
streams. As the aggregate service cost of a virtual stream
equals the aggregate service cost of the original stream,
total service proportional sharing can be achieved.

The above approach is simple and straightforward, but
with large-scale distributed storage systems, broadcast-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 51

Figure 4: The naive approach. The coordinator broadcasts
every request to all bricks. Requests to incorrect destination
bricks are virtual and take zero processing time. Proportional
scheduling at each local brick guarantees total service propor-
tional sharing.

Figure 5: The improved approach. Only the aggregate cost
of virtual requests is communicated, indicated by the num-
ber before each request (assuming unit cost of each request).
Broadcasting is avoided yet total service proportional sharing
can be achieved.

ing is not acceptable. We observe, however, that the SFQ
scheduler requires only knowledge of the cost of each
virtual request, the coordinators may therefore broad-
cast the cost value instead of the request itself. In ad-
dition, the coordinator may combine the cost of consec-
utive virtual requests and piggyback the total cost infor-
mation onto the next real request; see Fig. 5. The com-
munication overhead is negligible because, in general,
read/write data rather than requests dominate the com-
munication and the local area network connecting bricks
usually has enough bandwidth for this small overhead.

The piggyback cost information on each real request
is called the delay of the request, because the modified
SFQ scheduler will delay processing the request accord-
ing to this value. Different delay values may be used for
different performance goals, which greatly extends the
ability of SFQ schedulers. This flexibility is captured in
the framework presented next.

3.2 Distributed Fair Queuing Framework

We propose the distributed fair queuing framework dis-
played in Fig. 6; as we show later, it can be used for total
proportional sharing, single-brick proportional sharing,
or a hybrid between the two. Assume there are streams
f, g, ... and bricks A,B, The fair queueing scheduler
is placed at each brick as just discussed. The scheduler

has a priority queue for all streams and orders all requests
by some priority, e.g., start time tags in the case of an
SFQ scheduler. On the other hand, each coordinator has
a separate queue for each stream, where the requests in a
queue may have different destinations.

When we apply SFQ to the framework, each request
has a start tag and a finish tag. To incorporate the idea
presented in the previous section, we modify the compu-
tation of the tags as follows:

S(pi
f,A) = max{

v(A(pi
f,A)), F (pi−1

f,A) +
delay(pi

f,A)

φf

}
(5)

F (pi
f,A) = S(pi

f,A) +
cost(pi

f,A)

φf
(6)

The only difference between SFQ formulae (2-3) and
those above is the new delay function for each request,
which is calculated at coordinators and carried by the
request. The normalized delay value translates into the
amount of time by which the start tag should be shifted.
How the delay is computed depends upon the propor-
tional sharing properties we wish to achieve, and we will
discuss several delay functions and the resulting sharing
properties in the sections that follow. We will refer to the
modified Start-time Fair Queuing algorithm as Distrib-
uted Start-time Fair Queuing (DSFQ).

In DSFQ, as in SFQ(D), v(t) is defined to be the start
tag of the last request dispatched to the disk before or
at time t. There is no global virtual time in the system.
Each brick maintains its own virtual time, which varies
at different bricks depending on the workload and the
service capacity of the brick.

We note that the framework we propose works with
other fair scheduling algorithms [28] as long as each
stream has its own clock such that the delay can be ap-
plied; for example, a similar extension could be made to
the Virtual Clock algorithm [30] if we desire proportional
service over an extended time period (time-averaged fair-
ness) rather than the “use it or lose it” property (instan-
taneous fairness) supported by SFQ. Other options be-
tween these two extreme cases could be implemented in
this framework, as well. For example, the scheduler can
constrain each stream’s time tag to be within some win-
dow of the global virtual time. Thus, a stream that under-
utilizes its share can get extra service later, but only to a
limited extent.

If the delay value is set to always be zero, DSFQ
reduces to SFQ and achieves single brick proportional
sharing. We next consider other performance goals.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association52

Figure 6: The distributed fair queuing framework

3.3 Total Service Proportional Sharing

We describe how the distributed fair queueing frame-
work can be used for total proportional sharing when
each stream uses one coordinator, and then argue that the
same method also engenders total proportional sharing
with multiple coordinators per stream.

3.3.1 Single-Client Single-Coordinator

We first assume that requests from one stream are always
processed by one coordinator; different streams may or
may not have different coordinators. We will later extend
this to the multiple coordinator case. The performance
goal, as before, is that the total amount of service each
client receives must be proportional to its weight.

As described in Section 3.1, the following delay func-
tion for a request from stream f to brick A represents
the total cost of requests sent to other bricks since the
previous request to brick A.

delay(pi
f,A) = batchcost(pi

f,A) − cost(pi
f,A) (7)

When this delay function is used with the distributed
scheduling framework defined by formulae (5-7), we call
the resulting algorithm TOTAL-DSFQ. The delay func-
tion (7) is the total service cost of requests sent to other
bricks since the last request on the brick. Intuitively,
it implies that, if the brick is otherwise busy, a request
should wait an extra time corresponding to the aggregate
service requirements of the preceding requests from the
same stream that were sent to other bricks, normalized
by the stream’s weight.

Why TOTAL-DSFQ engenders proportional sharing
of the total service received by the streams can be ex-
plained using virtual streams. According to the formulae
(5-7), TOTAL-DSFQ is exactly equivalent to the archi-
tecture where coordinators send virtual streams to the
bricks and bricks are controlled by the standard SFQ.
This virtual stream contains all the requests in f , but the
requests that are not destined for A are served at A in

zero time. Note that SFQ holds its fairness property even
when the service capacity varies [8]. In our case, the
server capacity (processing speed) varies from normal, if
the request is to be serviced on the same brick, to infinity
if the request is virtual and is to be serviced elsewhere.
Intuitively, since the brick A sees all the requests in f
(and their costs) as a part of the virtual stream, the SFQ
scheduler at A factors in the costs of the virtual requests
served elsewhere in its scheduling, even though they con-
sume no service time at A. This will lead to proportional
sharing of the total service. The theorem below formal-
izes the bounds on unfairness using TOTAL-DSFQ.

THEOREM 2. Assume stream f is requesting service
on Nf bricks and stream g on Ng bricks. During any
interval [t1, t2] in which f and g are both continuously
backlogged at some brick A, the difference between the
total amount of work completed by all bricks for the two
streams during the entire interval, normalized by their
weights, is bounded as follows:

∣∣∣∣
Wf (t1, t2)

φf
− Wg(t1, t2)

φg

∣∣∣∣

≤ ((D + DSFQ) ∗ Nf + 1)
costmax

f,A

φf
+

((D + DSFQ) ∗ Ng + 1)
costmax

g,A

φg
+

(DSFQ + 1)

(
batchcostmax

f,A

φf
+

batchcostmax
g,A

φg

)
(8)

where D is the queue depth of the disk1, and DSFQ is
the queue depth of the Start-time Fair Queue at the brick.

PROOF. The proof of this and all following theorems
can be found in [26].

The bound in Formula (8) has two parts. The first part
is similar to the bound of SFQ(D) in (4), the unfairness
due to server queues. The second part is new and con-
tributed by the distributed data. If the majority of re-
quests of stream f is processed at the backlogged server,
the batchcostmax

f,A is small and the bound is tight. Other-
wise, if f gets a lot of service at other bricks, the bound
is loose.

As we showed in Example 2, however, there are sit-
uations in which total proportional sharing is impos-
sible with work conserving schedulers. In the theo-
rem above, this corresponds to the case with an infinite
batchcostmax

g,A , and hence the bound is infinite. To de-
lineate more precisely when total proportional sharing is
possible under TOTAL-DSFQ, we characterize when the
total service rates of the streams are proportional to their
weights. The theorem below says that, under TOTAL-
DSFQ, if a set of streams are backlogged together at a

1If there are multiple disks (the normal case), D is the sum of the
queue depths of the disks.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 53

set of bricks, then either their normalized total service
rates over all bricks are equal (thus satisfying the total
proportionality requirement), or there are some streams
whose normalized service rates are equal and the remain-
der receive no service at the backlogged bricks because
they already receive more service elsewhere.

Let Rf (t1, t2) = Wf (t1, t2)/(φf ∗ (t2 − t1)) be
the normalized service rate of stream f in the duration
(t1, t2). If the total service rates of streams are pro-
portional to their weights, then their normalized service
rates should be equal as the time interval t2 − t1 goes
to infinity. Suppose stream f is backlogged at a set
of bricks, denoted as set S, its normalized service rate
at S is denoted as Rf,S(t1, t2), and Rf,other(t1, t2) de-
notes its normalized total service rate at all other bricks.
Rf (t1, t2) = Rf,S(t1, t2) + Rf,other(t1, t2). We drop
(t1, t2) hereafter as we always consider interval (t1, t2).

THEOREM 3. Under TOTAL-DSFQ, if during (t1,
t2), streams {f1, f2, ...fn} are backlogged at a set of
bricks S, in the order Rf1,other ≤ Rf2,other ≤ ...
Rfn,other, as t2 − t1 → ∞, either Rf1 = Rf2 = ...Rfn

or ∃k ∈ {1, 2, ...n − 1}, such that Rf1 = ...Rfk
≤

Rfk+1,other and Rfk+1,S = ...Rfn,S = 0.

The intuition of Theorem 3 is as follows. At brick set
S, let us first set Rf1,S = Rf2,S = ... = Rfn,S = 0 and
try to allocate the resources of S. Stream f1 has the high-
est priority since its delay is the smallest. Thus the SFQ
scheduler will increase Rf1,S until Rf1 = Rf2,other.
Now both f1 and f2 have the same total service rate and
the same highest priority. Brick set S will then increase
Rf1,S and Rf2,S equally until Rf1 = Rf2 = Rf3,other.
In the end, either all the streams have the same total ser-
vice rate, or it is impossible to balance all streams due
to the limited service capacity of all bricks in S. In the
latter case, the first k streams have equal total service
rates, while the remaining streams are blocked for ser-
vice at S. Intuitively, this is the best we can do with a
work-conserving scheduler to equalize normalized ser-
vice rates.

In Section 3.4 we propose a modification to TOTAL-
DSFQ that ensures no stream is blocked at any brick.

3.3.2 Single-client Multi-coordinator

So far we have assumed that a stream requests service
through one coordinator only. In many high-end systems,
however, it is preferable for high-load clients to distrib-
ute their requests among multiple coordinators in order
to balance the load on the coordinators. In this section,
we discuss the single-client multi-coordinator setting and
the corresponding fairness analysis for TOTAL-DSFQ.
In summary, we find that TOTAL-DSFQ does engender

Figure 7: Effect of multiple coordinators under TOTAL-
DSFQ. Delay value of an individual request is different from
Fig. 5, but the total amount of delay remains the same.

total proportional sharing in this setting, except in some
unusual cases.

We motivate the analysis with an example. First, let
us assume that a stream accesses two coordinators in
round-robin order and examine the effect on the delay
function (7) through the example stream in Fig. 5. The
result is displayed in Fig. 7. Odd-numbered requests are
processed by the first coordinator and even-numbered re-
quests are processed by the second coordinator. With one
coordinator, the three requests to brick A have delay val-
ues 0, 2 and 0. With two round-robin coordinators, the
delay values of the two requests dispatched by the first
coordinator are now 0 and 1; the delay value of the re-
quest dispatched by the second coordinator is 1. Thus,
although individual request may have delay value differ-
ent from the case of single coordinator, the total amount
of delay remains the same. This is because every virtual
request (to other bricks) is counted exactly once.

We formalize this result in Theorem 4 below, which
says, essentially, that streams backlogged at a brick re-
ceive total proportional service so long as each stream
uses a consistent set of coordinators (i.e., the same set of
coordinators for each brick it accesses).

Formally, assume stream f sends requests through n
coordinators C1, C2, ..., Cn, and coordinator Ci receives
a substream of f denoted as fi. With respect to brick A,
each substream fi has its batchcostmax

fi,A
. Let us first as-

sume that batchcostmax
fi,A

is finite for all substreams, i.e.,
requests to A are distributed among all coordinators.

THEOREM 4. Assume stream f accesses n coordina-
tors such that each one receives substreams f1, ..., fn,
respectively, and stream g accesses m coordinators with
substreams g1, ..., gm, respectively. During any interval
[t1, t2] in which f and g are both continuously back-
logged at brick A, inequality (8) still holds, where

batchcostmax
f,A = max{ batchcostmax

f1,A, ...

batchcostmax
fn,A} (9)

batchcostmax
g,A = max{ batchcostmax

g1,A, ...

batchcostmax
gm,A} (10)

An anomalous case arises if a stream partitions the

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association54

bricks into disjoint subsets and accesses each partition
through separate coordinators. In this case, the requests
served in one partition will never be counted in the delay
of any request to the other partition, and the total service
may no longer be proportional to the weight. For ex-
ample, requests to B in Fig. 7 have smaller delay values
than the ones in Fig. 5. This case is unlikely to occur with
most load balancing schemes such as round-robin or uni-
formly random selection of coordinators. Note that the
algorithm will still guarantee total proportional sharing
if different streams use separate coordinators.

More interestingly, selecting randomly among mul-
tiple coordinators may smooth out the stream, and re-
sult in more uniform delay values. For example, if
batchcost(pj

f,A) in the original stream is a sequence of
i.i.d. (independent, identically distributed) random vari-
ables with large variance such that batchcostmax

f,A might
be large, it is not difficult to show that with indepen-
dently random mapping of each request to a coordina-
tor, batchcost(pj

fi,A
) is also a sequence of i.i.d. random

variables with the same mean, but the variance decreases
as number of coordinators increases. This means that
under random selection of coordinators, while the aver-
age delay is still the same (thus service rate is the same),
the variance in the delay value is reduced and therefore
the unfairness bound is tighter. We test this observation
through an empirical study later.

3.4 Hybrid Proportional Sharing

Under TOTAL-DSFQ, Theorem 3 tells us that a stream
may be blocked at a brick if it gets too much service
at other bricks. This is not desirable in many cases.
We would like to guarantee a minimum service rate for
each stream on every brick so the client program can
always make progress. Under the DSFQ framework,
i.e., formulae (5-6), this means that the delay must be
bounded, using a different delay function than the one
used in TOTAL-DSFQ. We next develop a delay function
that guarantees a minimum service share to backlogged
streams on each brick.

Let us assume that the weights assigned to streams are
normalized, i.e. 0 ≤ φf ≤ 1 and

∑
f φf = 1. Sup-

pose that, in addition to the weight φf , each stream f is
assigned a brick-minimum weight φmin

f , corresponding
to the minimum service share per brick for the stream.2

We can then show that the following delay function will
guarantee the required minimum service share on each
brick for each stream.

delay(pi
f,A) =

φf/φmin
f − 1

1 − φf
∗ cost(pi

f,A) (11)

2Setting the brick-minimum weights requires knowledge of the
client data layouts. We do not discuss this further in the paper.

We can see, for example, that setting φmin
f = φf yields

a delay of zero, and the algorithm then reduces to sin-
gle brick proportional sharing that guarantees minimum
share φf for stream f , as expected.

By combining delay function (11) with the delay func-
tion (7) for TOTAL-DSFQ, we can achieve an algorithm
that approaches total proportional sharing while guaran-
teeing a minimum service level for each stream per brick,
as follows.

delay(pi
f,A) = min { batchcost(pi

f,A) − cost(pi
f,A),

φf/φmin
f − 1

1 − φf
∗ cost(pi

f,A)}(12)

The DSFQ algorithm using the delay function (12) de-
fines a new algorithm called HYBRID-DSFQ. Since the
delay under HYBRID-DSFQ is no greater than the de-
lay in (11), the service rate at every brick is no less
than the rate under (11), thus the minimum per brick
service share φmin

f is still guaranteed. On the other
hand, if the amount of service a stream f receives
on other bricks between requests to brick A is lower
than (φf/φmin

f − 1)/(1 − φf) ∗ cost(pi
f,A), the delay

function behaves similarly to equation (7), and hence
the sharing properties in this case should be similar to
TOTAL-DSFQ, i.e., total proportional sharing.

Empirical evidence (in Section 4.3) indicates that
HYBRID-DSFQ works as expected for various work-
loads. However, there are pathological workloads that
can violate the total service proportional sharing prop-
erty. For example, if a stream using two bricks knows its
data layout, it can alternate bursts to one brick and then
the other. Under TOTAL-DSFQ, the first request in each
burst would have received a large delay, corresponding
to the service the stream had received on the other brick
during the preceding burst, but in HYBRID-DSFQ, the
delay is truncated by the minimum share term in the de-
lay function. As a result, the stream receives more ser-
vice than its weight entitles it to. We believe that this can
be resolved by including more history in the minimum
share term, but the design and evaluation of such a delay
function is reserved to future work.

4 Experimental Evaluation

We evaluate our distributed proportional sharing algo-
rithm in a prototype FAB system [20], which consists
of six bricks. Each brick is an identically configured
HP ProLiant DL380 server with 2x 2.8GHz Xeon CPU,
1.5GB RAM, 2x Gigabit NIC, and an integrated Smart
Array 6i storage controller with four 18G Ultral320, 15K
rpm SCSI disks configured as RAID 0. All bricks are
running SUSE 9.2 Linux, kernel 2.6.8-24.10-smp. Each
brick runs a coordinator. To simplify performance com-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 55

parisons, FAB caching was turned off, except at the disk
level.3

The workload generator consists of a number of
clients (streams), each running several Postmark [15] in-
stances. We chose Postmark as the workload generator
because its independent, randomly-distributed requests
give us the flexibility to configure different workloads
for demonstration and for testing extreme cases. Each
Postmark thread has exactly one outstanding request in
the system at any time, accessing its isolated 256MB
logical volume. Unless otherwise specified, each vol-
ume resides on a single brick and each thread generates
random read/write requests with file sizes from 1KB to
16KB. The number of transactions per thread is suffi-
ciently large so the thread is always active when it is on.
Other parameters of Postmark are set to the default val-
ues.

With our work-conserving schedulers, until a stream
is backlogged, its IO throughput increases as the num-
ber of threads increases. When it is backlogged, on the
other hand, the actual service amount depends on the
scheduling algorithm. To simplify calculation, we target
throughput (MB/sec) proportional sharing, and define the
cost of a request to be its size. Other cost functions such
as IO/sec or estimated disk service time could be used as
well.

4.1 Single Brick Proportional Sharing

We first demonstrate the effect of TOTAL-DSFQ on two
streams reading from one brick. Stream f consistently
has 30 Postmark threads, while the number of Postmark
threads for stream g is increased from 0 to 20. The ra-
tio of weights between f and g is at 1:2. As the data is
not distributed, the delay value is always zero and this is
essentially the same as SFQ(D) [12].

Figure 8 shows the performance isolation between the
two clients. The throughput of stream g is increasing and
its latency is fixed until g acquires its proportional share
at around 13 threads. After that, additional threads do
not give any more bandwidth but increase the latency.
On the other hand, the throughput and latency of stream
f are both affected by g. Once g gets its share, it has no
further impact on f .

4.2 Total Service Proportional Sharing

Figure 9 demonstrates the effectiveness of TOTAL-
DSFQ for two clients. The workload streams have ac-
cess patterns shown in Fig. 3. We arranged the data

3Our algorithms focus on the management of storage bandwidth;
a full exploration of the management of multiple resources (including
cache and network bandwidth) to control end-to-end performance is
beyond the scope of this paper.

0 5 10 15 20
0

2

4

number of Postmark threads of stream g

th
ro

up
ut

(M
B

/s
)

stream f
stream g

(a) throughputs for two streams

0 5 10 15 20
0

0.05

0.1

0.15

0.2

number of Postmark threads of stream g

av
er

ag
e

la
te

nc
y

(s
)

(b) latencies for two streams

Figure 8: Proportional sharing on one brick. φf :φg=1:2;
legend in (a) also applies to (b).

layout so that each Postmark thread accesses only one
brick. Stream f and stream g both have 30 threads on
brick A throughout the experiment, meanwhile, an in-
creasing number of threads from g is processed at brick
B. Postmark allows us to specify the maximum size of
the random files generated, and we tested the algorithm
with workloads using two different maximum random
file sizes, 16KB and 1MB.

Figure 9(a) shows that as the number of Postmark
threads from stream g directed to brick B increases, its
throughput from brick B increases, and the share it re-
ceives at brick A decreases to compensate. The total
throughputs received by streams f and g stay roughly
equal throughout. As the stream g becomes more unbal-
anced between bricks A and B, however, the throughput
difference between streams f and g varies more. This
can be related to the fairness bound in Theorem 2: as
the imbalance increases, so does batchcostmax

g,A , and the
bound becomes a little looser. Figure 9(b) uses the same
data layout but with a different file size and weight ratio.
As g gets more service on B, its throughput rises on B
from 0 to 175 MB/s. As a result, the algorithm increases
f ’s share on the shared brick A, and its throughput rises
from 40 MB/s to 75 MB/s, while g’s throughput on A
drops from 160 MB/s to 125 MB/s. In combination the
throughput of both streams increases, whole maintaining
a 1:4 ratio.

The experiment in Figure 10 has a data layout with de-
pendencies among requests. Each thread in g accesses all
three bricks, while stream f accesses one brick only. The
resource allocation is balanced when stream g has three
or more threads on the shared brick. As g has a RAID-
0 data layout, the service rates on the other two bricks
are limited by the rate on the shared brick. This exper-
iment shows that TOTAL-DSFQ correctly controls the

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association56

0 5 10 15 20
0

2

4

number of Postmark threads of stream g on brick B

th
ro

ug
hp

ut
(M

B
/s

)
stream f
stream g, brick A
stream g, brick B
stream g, total

(a) Random I/O, φf :φg=1:1, max file size=16KB

0 5 10 15 20
0

100

200

300

number of Postmark threads of stream g on brick B

th
ro

ug
hp

ut
(M

B
/s

)

(b) Sequential I/O, φf :φg=1:4, max file size=1MB

Figure 9: Total service proportional sharing. f ’s data is
on brick A only; g has data on both bricks A and B. As g
gets more service on the bricks it does not share with f , the
algorithm increases f ’s share on the brick they do share; thus
the total throughputs of both streams increase.

0 5 10 15 20
0

2

4

6

number of Postmark threads of stream g on one brick

T
hr

ou
gh

pu
t(

M
B

/s
)

stream f
stream g, one brick
stream g, total

Figure 10: Total service proportional sharing with striped
data. φf :φg=1:1. g has RAID-0 logical volume striping on
three bricks; f ’s data is on one brick only.

total share in the case where requests on different bricks
are dependent. We note that in this example, the sched-
uler could allocate more bandwidth on the shared brick
to stream g in order to improve the total system through-
put instead of maintaining proportional service; however,
this is not our goal.

Figure 11 is the result with multiple coordinators. The
data layouts and workloads are the same as in the exper-
iment shown in Figures 3 and 9: two bricks, stream f
accesses only one, and stream g accesses both. The only
difference is that stream g accesses both bricks A and B
through two or four coordinators in round-robin order.

Using multiple coordinators still guarantees propor-
tional sharing of the total throughput. Furthermore, a
comparison of Fig. 9, 11(a), and 11(b) indicates that as
the number of coordinators increases, the match between
the total throughputs received by f and g is closer, i.e.,
the unfairness bound is tighter. This confirms the ob-

0 5 10 15 20
0

2

4

number of Postmark threads of stream g on brick B

th
ro

ug
hp

ut
(M

B
/s

)

stream f
stream g, total
stream g, brick A
stream g, brick B

(a) Two coordinators

0 5 10 15 20
0

2

4

number of Postmark threads of stream g on brick B

th
ro

ug
hp

ut
(M

B
/s

)

(b) Four coordinators

Figure 11: Total service proportional sharing with multi-
coordinator, φf :φg=1:1

servation in Section 3.3.2 that multiple coordinators may
smooth out a stream and reduce the unfairness.

4.3 Hybrid Proportional Sharing

The result of HYBRID-DSFQ is presented in Fig. 12.
The workload is the same as in the experiment shown
in Figures 3 and 9: stream f accesses brick A only, and
stream g accesses both A and B. Streams f and g both
have 20 Postmark threads on A, and g has an increas-
ing number of Postmark threads on B. We wish to give
stream g a minimum share of 1/12 on brick A when it
is backlogged. This corresponds to φmin

g = 1/12; based
on Equation 12, the delay function for g is

delay(pi
g,A) = min { batchcost(pi

g,A) − cost(pi
g,A),

10 ∗ cost(pi
g,A)}

Stream f is served on A only and thus the delay is al-
ways zero.

With HYBRID-DSFQ, the algorithm reserves a min-
imum share for each stream, and tries to make the to-
tal throughput as close as possible without reallocating
the reserved share. For this workload, the service capac-
ity of a brick is approximately 6MB/sec. We can see in
Fig. 12(a) that if the throughput of stream g on brick B
is less than 4MB, HYBRID-DSFQ can balance the to-
tal throughputs of the two streams. As g receives more
service on brick B, the maximum delay part in HYBRID-
DSFQ takes effect and g gets its minimum share on brick
A. The total throughputs are no longer proportional to
the assigned weights, but is still reasonably close. Fig-
ure 12(b) repeats the experiment with the streams select-
ing between two coordinators alternately; the workload

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 57

0 5 10 15 20
0

2

4

6

number of Postmark threads of stream g on brick B

th
ro

ug
hp

ut
(M

B
/s

)

↓
0.5MB/s

stream f
stream g, total
stream g, brick A
stream g, brick B

(a) throughputs with HYBRID-DSFQ

0 5 10 15 20
0

2

4

6

number of Postmark threads of stream g on brick B

th
ro

ug
hp

ut
(M

B
/s

)

↓
0.5MB/s

(b) throughputs with HYBRID-DSFQ, two coordinators

Figure 12: Two-brick experiment using HYBRID-DSFQ

and data layout are otherwise identical to the single co-
ordinator experiment. The results indicate that HYBRID-
DSFQ works as designed with multiple coordinators too.

4.4 Fluctuating workloads

First we investigate how TOTAL-DSFQ responds to sud-
den changes in load by using an on/off fluctuating work-
load. Figure 13 shows the total throughputs of the three
streams. Steams f and g are continuously backlogged
at brick A and thus the total throughputs are the same.
When stream h is on, some bandwidth on brick B is oc-
cupied by h (h’s service is not proportional to its weight
because of insufficient threads it has and thus it is not
backlogged on brick B). As a result, g’s throughput
drops. Then f ’s throughput follows closely after a sec-
ond, because part of f ’s share on A is reallocated to g to
compensate its loss on B. Detailed throughputs of g on
each brick is not shown on the picture. We also see that
as the number of threads (and hence the SFQ depth) in-
creases, the sharp drop in g’s throughput is more signifi-
cant. These experimental observations agree with the un-
fairness bounds on TOTAL-DSFQ shown in Theorem 2,
which increase with the queue depth.

Next we examine the effectiveness of different propor-
tional sharing algorithms through sinusoidal workloads.
Both streams f and g access three bricks and overlap on
one brick only, brick A. The number of Postmark threads
for each stream on each brick is approximately a sinu-
soidal function with different frequency; see Fig. 14(a).
To demonstrate the effectiveness of proportional shar-
ing, we try to saturate brick A by setting the number of
threads on it to a sinusoidal function varying from 15
to 35, while thread numbers on other bricks take values
from 0 to 10 (not shown in Fig. 14(a)). The result con-

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

Time (sec)

th
ro

ug
hp

ut
(M

B
/s

)

stream f stream g, total stream h

(a) Streams f and g both have 20 Postmark threads on brick A, i.e.,
Queue depth DSFQ = 20

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

Time (sec)

th
ro

ug
hp

ut
(M

B
/s

)

(b) Streams f and g both have 30 threads, DSFQ = 30

Figure 13: Fluctuating workloads. Streams f and g both
have the same number of Postmark threads on brick A, and
stream g has 10 additional Postmark threads on brick B. In
addition, there is a stream h that has 10 on/off threads on brick
B that are repeatedly on together for 10 seconds and then off for
10 seconds. The weights are equal: φf : φg : φh = 1 : 1 : 1.

firms several hypotheses. Figure 14(b) is the result on
a standard FAB without any fair scheduling. Not sur-
prisingly, the throughput curves are similar to the thread
curves in Fig. 14(a) except when the server is saturated.
Figure 14(c) shows that single brick proportional sharing
provides proportional service on brick A but not neces-
sarily the total service. At time 250, the service on A
is not proportional because g has minimum threads on A
and is not backlogged. Figure 14(d) displays the effect of
total service proportional sharing. The total service rates
match well in general. At times around 65, 100, 150,
and 210, the rates deviate because one stream gets too
much service on other bricks, and its service on A drops
close to zero. Thus TOTAL-DSFQ cannot balance the
total service. At time around 230-260, the service rates
are not close because stream g is not backlogged, as was
the case in Fig. 14(c). Finally, Fig. 14(e) confirms the
effect of hybrid proportional sharing. Comparing with
Fig. 14(d), HYBRID-DSFQ proportional sharing guar-
antees minimum share when TOTAL-DSFQ does not, at
the cost of slightly greater deviation from total propor-
tional sharing during some periods.

5 Conclusions

In this paper, we presented a proportional-service
scheduling framework suitable for use in a distributed
storage system. We use it to devise a distributed sched-
uler that enforces proportional sharing of total service

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association58

0 50 100 150 200 250 300
10

20

30

40

50

60

Time (sec)

N
um

be
r

of
th

re
ad

s

f, total g, total f, brick A g, brick A

(a) Number of Postmark threads

0 50 100 150 200 250 300
0

2

4

6

8

Time (sec)

T
hr

ou
gh

pu
t(

M
B

/s
)

(b) Without any proportional sharing scheduling

0 50 100 150 200 250 300
0

2

4

6

8

Time (sec)

T
hr

ou
gh

pu
t(

M
B

/s
)

(c) Single brick proportional sharing

0 50 100 150 200 250 300
0

2

4

6

8

↓
0.5MB/s

Time (sec)

T
hr

ou
gh

pu
t(

M
B

/s
)

(d) Total service proportional sharing

0 50 100 150 200 250 300
0

2

4

6

8

↓
0.5MB/s

Time (sec)

T
hr

ou
gh

pu
t(

M
B

/s
)

(e) Hybrid proportional sharing

Figure 14: Sinusoidal workloads, φf :φg=1:1. The legend in
(a) applies to all the figures.

between streams to the degree possible given the work-
loads. Enforcing proportional total service in a distrib-
uted storage system is hard because different clients can
access data from multiple storage nodes (bricks) using
different, and possibly multiple, access points (coordina-
tors). Thus, there is no single entity that knows the state
of all the streams and the service they have received. Our
scheduler extends the SFQ(D) [12] algorithm, which
was designed as a centralized scheduler. Our sched-
uler is fully distributed, adds very little communication
overhead, has low computational requirements, and is
work-conserving. We prove the fairness properties of
this scheduler analytically and also show experimental
results from an implementation on the FAB distributed
storage system that illustrate these properties.

We also present examples of unbalanced workloads
for which no work-conserving scheduler can provide
proportional sharing of the total throughput, and attempt-
ing to come close can block some clients on some bricks.
We demonstrate a hybrid scheduler that attempts to pro-
vide total proportional sharing where possible, while
guaranteeing a minimum share per brick for every client.
Experimental evidence indicates that it works well.

Our work leaves several issues open. First, we as-
sumed that clients using multiple coordinators load those
coordinators equally or randomly; while this is a rea-
sonable assumption in most cases, there may be cases
when it does not hold — for example, when some co-
ordinators have an affinity to data on particular bricks.
Some degree of communication between coordinators
may be required in order to provide total proportional
sharing in this case. Second, more work is needed to de-
sign and evaluate better hybrid delay functions that can
deal robustly with pathological workloads. Finally, our
algorithms are designed for enforcing proportional ser-
vice guarantees, but in many cases, requirements may be
based partially on absolute service levels, such as a spec-
ified minimum throughput, or maximum response time.
We plan to address how this may be combined with pro-
portional sharing in future work.

6 Acknowledgements

Antonio Hondroulis and Hernan Laffitte assisted with
experimental setup. Marcos Aguilera, Eric Anderson,
Christos Karamanolis, Magnus Karlsson, Kimberly Kee-
ton, Terence Kelly, Mustafa Uysal, Alistair Veitch and
John Wilkes provided valuable comments. We also thank
the anonymous reviewers for their comments, and Carl
Waldspurger for shepherding the paper.

References

[1] J. L. Bruno, J. C. Brustoloni, E. Gabber, B. Ozden, and
A. Silberschatz. Disk scheduling with quality of ser-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 59

vice guarantees. In Proceedings of the IEEE Interna-
tional Conference on Multimedia Computing and Systems
(ICMCS), June 1999.

[2] D. D. Chambliss, G. A. Alvarez, P. Pandey, and D. Ja-
dav. Performance virtualization for large-scale storage
systems. In Proceedings of the 22nd International Sym-
posium on Reliable Distributed Systems (SRDS). IEEE
Computer Society, Oct. 2003.

[3] H. M. Chaskar and U. Madhow. Fair scheduling with tun-
able latency: A round-robin approach. Proceedings of the
IEEE, 83(10):1374–96, 1995.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In SIGCOMM: Sym-
posium proceedings on Communications architectures &
protocols, Sept. 1989.

[5] Z. Dimitrijević and R. Rangaswami. Quality of service
support for real-time storage systems. In International
IPSI-2003 Conference, Oct. 2003.

[6] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
art of virtualization. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles, Oct. 2003.

[7] S. Frølund, A. Merchant, Y. Saito, S. Spence, and
A. Veitch. A decentralized algorithm for erasure-coded
virtual disks. In Int. Conf. on Dependable Systems and
Networks, June 2004.

[8] P. Goyal, M. Vin, and H. Cheng. Start-time fair queueing:
A scheduling algorithm for integrated services packet
switching networks. ACM Transactions on Networking,
5(5):690–704, 1997.

[9] A. Gulati and P. Varman. Lexicographic QoS scheduling
for parallel I/O. In Proceedings of the 17th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, July
2005.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. Wiley-IEEE
Press, 2004.

[11] L. Huang, G. Peng, and T. cker Chiueh. Multi-
dimensional storage virtualization. In Proceedings of the
International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), June 2004.

[12] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. In Proceedings of the
International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), June 2004.

[13] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and
E. Knightly. Distributed priority scheduling and medium
access in ad hoc networks. Wireless Networks, 8(5):455–
466, Nov. 2002.

[14] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Perfor-
mance isolation and differentiation for storage systems. In
Proceedings of the 12th International Workshop on Qual-
ity of Service (IWQoS). IEEE, June 2004.

[15] J. Katcher. Postmark: A new file system benchmark.
Technical Report 3022, Network Appliance, Oct. 1997.

[16] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of ASPLOS. ACM, Oct. 1996.

[17] C. R. Lumb, A. Merchant, and G. A. Alvarez. Façade:
virtual storage devices with performance guarantees. In
Proceedings of the 2nd USENIX Conference on File and
Storage Technologies (FAST), Mar. 2003.

[18] H. Luo, S. Lu, V. Bharghavan, J. Cheng, and G. Zhong.
A packet scheduling approach to QoS support in multi-
hop wireless networks. Mob. Netw. Appl., 9(3):193–206,
2004.

[19] A. K. Parekh and R. G. Gallager. A generalized proces-
sor sharing approach to flow control in integrated services
networks: The single node case. IEEE/ACM Transactions
on Networking, 1(3):344–357, 1993.

[20] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. Fab: Building distributed enterprise disk ar-
rays from commodity components. In Proceedings of AS-
PLOS. ACM, Oct. 2004.

[21] D. C. Stephens and H. Zhang. Implementing distributed
packet fair queueing in a scalable switch architecture. In
Proceedings of INFOCOM, Mar. 1998.

[22] M. Uysal, G. A. Alvarez, and A. Merchant. A modular,
analytical throughput model for modern disk arrays. In
Proc. of the 9th Intl. Symp. on Modeling, Analysis and
Simulation on Computer and Telecommunications Sys-
tems (MASCOTS). IEEE, Aug. 2001.

[23] N. H. Vaidya, P. Bahl, and S. Gupta. Distributed fair
scheduling in a wireless lan. In MobiCom: Proceedings of
the 6th annual international conference on Mobile com-
puting and networking, Aug. 2000.

[24] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, Dec. 2002.

[25] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Falout-
sos, and G. R. Ganger. Storage device performance pre-
diction with cart models. In Proceedings of the Inter-
national Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), June 2004.

[26] Y. Wang and A. Merchant. Proportional service allocation
in distributed storage systems. Technical Report HPL-
2006-184, HP Laboratories, Dec. 2006.

[27] W. Wilcke et al. IBM intelligent bricks project—
petabytes and beyond. IBM Journal of Research and De-
velopment, 50(2/3):181–197, Mar. 2006.

[28] H. Zhang. Service disciplines for guaranteed performance
service in packet-switching networks. Proceedings of the
IEEE, 83(10):1374–96, 1995.

[29] J. Zhang, A. Sivasubramaniam, A. Riska, Q. Wang, and
E. Riedel. An interposed 2-level I/O scheduling frame-
work for performance virtualization. In Proceedings of
the International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS), June 2005.

[30] L. Zhang. Virtualclock: A new traffic control algorithm
for packet-switched networks. ACM Transactions on
Computer Systems, 9(2):101–124, 1991.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association60

