
Strong Accountability for Network Storage

Aydan R. Yumerefendi and Jeffrey S. Chase

Duke University

{aydan,chase}@cs.duke.edu

Abstract

This paper presents the design, implementation, and

evaluation of CATS, a network storage service with

strong accountability properties. A CATS server anno-

tates read and write responses with evidence of correct

execution, and offers audit and challenge interfaces that

enable clients to verify that the server is faithful. A

faulty server cannot conceal its misbehavior, and evi-

dence of misbehavior is independently verifiable by any

participant. CATS clients are also accountable for their

actions on the service. A client cannot deny its actions,

and the server can prove the impact of those actions on

the state views it presented to other clients.

Experiments with a CATS prototype evaluate the cost

of accountability under a range of conditions and ex-

pose the primary factors influencing the level of assur-

ance and the performance of a strongly accountable stor-

age server. The results show that strong accountability

is practical for network storage systems in settings with

strong identity andmodest degrees of write-sharing. The

accountability concepts and techniques used in CATS

generalize to a broader class of network services.

1 Introduction

A system is accountable if it provides a means to detect

and expose misbehavior by its participants. Account-

ability provides powerful incentives to promote cooper-

ation and discourage malicious and incorrect behavior.

This paper proposes and evaluates system support for

strongly accountable storage protocols and services. A

system is strongly accountable if it provides a means for

each participant to determine for itself if others are be-

having correctly, without trusting assertions of misbe-

havior by another participant who may itself be compro-

mised.

To illustrate strong accountability properties and the

means to provide them for shared storage, we present

CATS, a certified accountable tamper-evident storage

service. CATS is a rudimentary network storage ser-

vice: it enables clients to read and write a shared direc-

tory of objects maintained by a CATS server. CATS pro-

vides clients with the means to verify that the server ex-

ecutes writes correctly, and that read responses are cor-

rect given the sequence of valid writes received at the

server. Crucially, strong accountability of the server also

extends to the clients: a correct server can prove that

its state resulted from actions taken by specific clients.

Clients cannot deny or repudiate their operations on a

strongly accountable server, or the impact of those op-

erations on the shared state. The CATS network storage

service is based on a generic state storage toolkit. Our

intent is that the CATS toolkit can serve as a substrate for

a range of accountable services with richer semantics.

Various notions of accountability and end-to-end trust

appear in many previous systems (see Section 6). Our

approach is focused on assuring semantically faithful be-

havior, rather than performance accountability [15]. For

example, a compromised CATS server can deny service,

but it cannot misrepresent the shared state without risk

of exposure that is provable to all participants. In this re-

spect, CATS offers a strong form of tamper-evidence [17]

at the server. More generally, strong accountability may

be viewed as a form of Byzantine failure detection. It is

a complementary alternative to consensus voting [8, 28],

which is vulnerable to “groupthink” if an attack compro-

mises multiple replicas.

The CATS toolkit embodies the state of the art from re-

search in authenticated data structures [2, 6, 12, 20, 21,

24, 25]. As in many of these schemes, CATS servers can

supply cryptographic proofs that their read responses re-

sulted from valid write operations. CATS also incorpo-

rates new primitives for secure challenges and audits.

Servers export a challenge interface to verify that writes

are incorporated and visible by other clients. The au-

dit interface enables an auditor to verify integrity of

writes over arbitrary intervals of recent history, so that a

faulty server cannot revert writes without risk of detec-

tion. Other participants may verify audit results without

requiring trust in the auditor. Finally, we extend previ-

ous work on authenticated data structures with new ca-

pabilities for fast, reliable secondary storage access and

caching, and investigate the impact of design choices on

storage, access, and accountability costs.

This paper is organized as follows. Section 2 presents

an overview of our approach, threat model, and assump-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 77

tions. Section 3 describes the design of the CATS state

management toolkit and storage service. Section 4 out-

lines the details of our prototype implementation, while

Section 5 presents experimental results with the proto-

type. Section 6 sets our work in context with related

work, and Section 7 concludes.

2 Overview

The CATS network storage service is a building block for

distributed applications or services. Its purpose is to act

as a safe repository of state shared among the partici-

pants (actors) of a distributed system, who are clients of

the storage service. The shared state guides the behav-

ior of the clients, and the clients may affect the group

through updates to the shared state. The clients may

represent a community of users, who are responsible for

their updates.

CATS supports the core functions of a network file sys-

tem. Clients can create, read, and write opaque objects

identified by unique identifiers (oids). Each write re-

quest generates a new version of an object. Versions are

named by monotonically increasing timestamps of the

writes that created them. Reads retrieve the most recent

version of the object. A client may also request a prior

version of an object that was valid at a specified time.

We have limited our focus to essential object storage

functions: for example, in its present form, CATS does

not support nested directories, symbolic names or links,

renaming, partial reads or writes, truncates, or appends.

2.1 Threat Model

The strong accountability property provides clients with

the means to verify that the server protects the integrity

of the shared state: read responses correctly reflect the

valid writes issued by the clients. Moreover, the system

can assign provable responsibility for an object version

to the client that issued the write for that version.

To define the threat model, we specify the properties

of a correctly executing storage service.

• Authenticity and undeniability. The service ex-

ecutes writes issued only by properly authorized

clients. A client cannot deny responsibility for a

write that it has issued.

• Freshness and consistency. Writes are applied in

order, and reads always return the object version

that was valid at the requested time (i.e., the version

created by the previous write).

• Completeness or inclusion. Writes are included in

the service state and are visible to other authorized

clients.

A faulty storage server could attempt to violate any of

the above properties. For example, it could accept writes

from unauthorized clients, improperly modify existing

objects, or replay earlier writes. In a more subtle attack

the server could acknowledge the completion of a write

request but attempt to conceal it from other clients. The

storage service or a client could attempt to deny that it

executed or requested a completed operation. Table 1

lists possible attacks.

CATS does not prevent any of these forms of misbe-

havior. In particular, it does not attempt to remove the

need for trust among clients and servers; trust is essen-

tial for sharing and cooperation. Rather, the philoso-

phy of our approach is: “trust but verify” [35]. CATS

holds the storage server and other participants account-

able for their actions, so that a faulty actor is exposed

and isolated. Accountability precludes an effective at-

tack to subvert the behavior of the overall system with-

out unavoidable risk of detection. Integrity also requires

that an accountable system protect its participants from

false accusations of guilt. In CATS, a participant’s guilt

is cryptographically provable to all participants.

CATS is compatible with read access controls. How-

ever, violations of confidentiality are not part of the

threat model: a CATS server cannot be held accountable

for serving reads that violate the policy.

2.2 Trust Assumptions

Table 2 lists the components of a CATS service. The

accountability properties of the system rest on correct

functioning of two core elements.

Asymmetric cryptography. Each actor can sign its

requests using at least one asymmetric key pair bound

to a principal; the public key is distributed securely to

all actors, e.g., using a Public Key Infrastructure (PKI).

Digital signatures ensure integrity, authenticity, and non-

repudiation of actions.

Secure authentication is the core trust assumption in

our system. If keys are compromised, then an actor may

be falsely held accountable for actions it did not take.

Note, however, that an attacker cannot misrepresent the

actions of any actor whose key it does not possess, and

any actions it takes with a stolen key can be traced to

that key. Even so, a successful attack against a trusted

PKI root would open CATS to subversion by the attacker;

thus a PKI constitutes a Trusted Computing Base in the

traditional sense.

External publishing medium. Each actor has a

means to publish a digest of its state periodically. A

digest is a secure hash over the actor’s state at a point

in time. Digests are digitally signed, so an actor cannot

repudiate previous claims about its state. Only the stor-

age server publishes digests in the accountable storage

service example.

Each actor must have independent access to the his-

tory of published digests in order to validate proofs in-

dependently. Thus the publishing medium is a trusted

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association78

Attack Defense

Server fails to execute write or object create provable detection

Client repudiates object create or write provable detection

Server denies write or object create provable detection

Client writes out of order rejected by server

Server returns invalid read response provable detection

Fraudulent or unauthorized writes provable detection with simple static ACLs; relies on

trusted external authorization server for richer policies

Server replays or reverts valid writes, destroys objects, reorders

writes, or accepts out-of-order writes

verifiable detection by challenge or audit

Tampering & forking, or other variants of above attacks on data

integrity

verifiable detection by challenge or audit

Violation of privacy or read access policy no defense

Table 1: Summary of attacks and defenses.

Component Trust Assumptions

Clients and servers Trusted but accountable: Cannot subvert the system without risk of provable detec-

tion. Incorrect or invalid actions taken with a stolen key are provably detectable.

Publishing medium Trusted to render published digests visible to all participants. Accountable for forg-

eries or alterations to published digests. Cannot subvert the system without risk of

provable detection.

Authorization service Not required for simple static access control lists. Must be trusted to enforce richer

access control policies if needed.

Trusted platform / trusted path Necessary for individual user accountability, else no distinction between misbehav-

ior of user and misbehavior of user software.

Public key infrastructure: Trusted Computing Base: Compromise of PKI can subvert the system.

Table 2: Summary of components and trust assumptions.

component. Since digests are signed, a faulty publish-

ing medium cannot forge or alter digests unilaterally, but

it could mount a denial-of-accountability attack by con-

cealing them. The medium could also collude with a

participant to alter the digest history of that participant,

but such an attack would be detectable and provable by

another participant that caches previously published di-

gests. In essence, a faulty publishing medium can de-

stroy the accountability properties of the system, but it

cannot itself subvert the system.

Due diligence. Accountability in CATS relies on vol-

untary actions by each actor to verify the behavior of the

others. For example, if the clients of the CATS storage

service do not request or check proofs that their writes

were executed and persist (see 2.3), then a faulty server

may escape detection. Of course, a lazy client may free-

ride on the diligence of others, possibly leading to a clas-

sic tragedy of the commons. What is important is that an

attacker cannot determine or control its risk of exposure.

2.3 Challenges and Audits

An important element of our approach is to incorpo-

rate challenge and audit interfaces into service proto-

cols. Challenges force a server to provide a crypto-

graphic proof certifying that its actions are correct and

consistent relative to published state digests. An impor-

tant form of challenge is an audit to verify consistent

behavior across a sequence of actions or an interval of

history. Challenges and audits do not require trust in

the auditor; any actor may act as an auditor. If an ac-

tor’s challenge or audit reveals misbehavior, the actor

can present its case as a plaintiff to any other actor, which

may verify the validity of the accusation.

Auditing defends against a freshness attack, in which

a faulty server discards or reverts a valid write that it has

previously accepted (Section 3.5). A client with author-

ity to read an object can choose to audit the sequence

of updates to that object through time to ensure fresh-

ness and consistency. Actors select a degree of auditing

that balances overhead and the probability of detection

of misbehavior. The server cannot change its history to

conceal its misbehavior from an auditor.

For example, a CATS storage server may be chal-

lenged to prove that it has incorporated a recently com-

pleted write into its published state digest. It may be

audited to prove that its current state resulted from a se-

quence of valid writes by authorized clients, and that its

read responses reflect that state. A challenged or au-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 79

dited CATS server must also justify that any accepted

write complies with the existing access control policy

(See Section 2.4). A faulty server cannot allow unau-

thorized writes or execute its own writes using a fraud-

ulent identity. If an attacker subverts the server, the

worst damage it can cause is to deny service or discard

data; covert modifications (including revertedwrites) are

tamper-evident and can be exposed at any time through

challenges and audits. In particular, the server can be

held provably accountable for a forking attack [17].

2.4 Discussion and Limitations

User accountability, identity, and privacy. Ideally, the

accountability of a system should extend to its users. For

example, the CATS storage service could hold users ac-

countable for actions they take within a community or

organization, possibly exposing them to legal sanction

or other social sanction.

However, user accountability requires strong identity

bindings. There is a fundamental tension between ac-

countability and privacy or anonymity. Strong identi-

ties exist today within user communities that interact us-

ing shared services in areas such as health care, infras-

tructure control, enterprise work flow, finance, and gov-

ernment, where accountability is particularly important.

Many of these areas already use some form of PKI.

User accountability also requires a trusted path to the

user so that software running with the user’s identity

cannot act without the user’s consent. The questions of

how to establish a trusted path to the user and ensure that

the user authorizes actions taken with its identity are out-

side the scope of this paper. The solution is likely to re-

quire some trust in the platform (e.g., a Trusted Platform

Module [33]).

More generally, a signed message or action is not

a guarantee of intent by the principal: many security

breaches occur when components are subverted or pri-

vate keys are otherwise stolen [3]. Importantly, when

such a breach occurs, our approach ensures that attack-

ers cannot modify existing history, as noted above.

External publishing medium. The external publish-

ing medium is a certified log that is globally visible. The

publishing medium is much simpler than the storage ser-

vice because it does not accept updates, does not sup-

port dynamic object creation, and does not allow write-

sharing. There are several ways to implement an exter-

nal publishing medium. Timestamping services [7] pub-

lish digests using write-once media such as newspapers.

An alternative solution may use a trusted web site. Fi-

nally, the clients of the service can implement the pub-

lishing medium by using a peer-to-peer approach that

leverages some form of gossip and secure broadcast.

Access control. As part of its operation a CATS ser-

vice should demonstrate that a write complies with a

write access control policy. It is easy to hold the server

accountable for enforcing a simple and static policy for

write access control; for example, if the creator of an ob-

ject provides an immutable list of identities permitted to

modify the object. We are investigating how to extend

strong accountability to richer access control policies. A

CATS server may use an external authorization server to

govern access control policy and issue signed assertions

endorsing specific clients to write specific objects. How-

ever, such an authorization server must be trusted, and it

is an open question how to assure accountability for it in

the general case.

Denial of service through challenges and audits.

One concern is that challenges and audits could be used

as the basis for a denial-of-service attack on the server.

We view this problem as an issue of performance isola-

tion and quality of service: resources expended to serve

audits and challenges may be controlled in the same way

as read and write requests. Community standards may

define a “statute of limitations” that limits the history

subject to audit, and bounds the rate at which each actor

may legitimately request audits and challenges.

3 CATS Design

Figure 1 presents a high-level view of the CATS storage

service and its components. The service and its clients

communicate using the Simple Object Access Protocol

(SOAP). Each message is digitally signed. The Pub-

lic Key Infrastructure (PKI) and the publishing medium

constitute the trusted base. Misbehavior of any other ac-

tor can be detected and proven.

The storage service has simple and well-defined op-

erations (Table 3), which allows us to design it as a thin

layer on top of a generic state store toolkit. The CATS

toolkit incorporates common state management func-

tions to organize service state to enable strong account-

ability. The CATS storage service uses the state store

toolkit to ensure the tamper-evidence of its state and to

prove to its clients that it maintains its state correctly.

The toolkit’s core principle is to separate state man-

agement from state transformation due to application

logic. The CATS toolkit represents service state as an in-

dexed set of named, typed, elements. The state store ac-

cepts updates annotated with a request—digitally signed

by the issuer—and links these action records to the up-

dated data objects. The CATS accountable storage ser-

vice is a simple application of the toolkit because each

element corresponds to exactly one storage object, and

each update modifies exactly one element. The toolkit

provides foundational support for strongly accountable

application services, although accountability for more

advanced services must be “designed in” to the internal

logic, state representations and protocols.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association80

CATS

signed SOAP

storage service

read

write

challenge

audit

logic state
external medium

state digest

check result:

compare digest

verify proof
PKI

, proof, result

Figure 1: Overview of a CATS service, e.g., the accountable storage service.

Operation Description

read(oid) Returns the most recent version of the object with the specified oid. In our proto-

type, every read response includes a proof of correctness relative to the digest for

the most recent epoch (implicit challenge).

read(oid, time) Returns a signed response with the version of the specified object at given time

(epoch). In our prototype, every read response includes a proof of correctness rela-

tive to the digest for the epoch (implicit challenge).

write(oid, value, current) Overwrites the specified object with the given value. The server accepts the request

only if at the time of the write the version stamp of the object is equal to current.

Otherwise, returns the object’s version stamp.

challenge(oid, epoch) Requests that the server provide a proof that the object with the given oid is or is

not included in the service state, relative to the published digest for the given time

(epoch). The response includes a membership proof for the object and its value, or

an exclusion proof if the oid was not valid.

audit(oid, epoch, span,

depth)

Requests that the service substantiate the write history for the object named by

oid over the time interval [epoch, epoch + span]. The request is equivalent to

depth randomly selected challenge requests over the interval. The depth parameter

controls the degree of assurance.

Table 3: Accountable storage service operations. The service accepts reads and writes to a set of named versioned

objects. All client writes and all server responses are digitally signed so that actors can be held accountable for their

actions. Challenges and audits provide the means for clients or third-party auditors to verify the consistency of a

server’s actions relative to periodic non-repudiable digests generated by that server and visible to all actors.

3.1 Action Histories

Strong accountability requires CATS to represent action

histories whose integrity is protected, and provide prim-

itives to retrieve, exchange, and certify those histories.

We have to know who said what to whom, and how that

information was used.

Every CATS request and response carries a digital sig-

nature that uniquely authenticates its sender and proves

the integrity of the message. Specifically, the content of

each request and response is encapsulated in a signed ac-

tion record. Actors may retain a history of action records

and transmit them to make provable statements about the

behavior of other actors and the validity of their actions.

The action history may be integrated into the internal

service state.

For example, the CATS storage server links each ele-

ment or object to the set of client requests that affected

it or produced its value. A CATS server may justify its

responses by presenting a sequence of cached, signed

action records that show how its state resulted from the

actions of its clients, starting from its published state at

a given point in time, as described below.

Action records are verifiable by any receiver and are

non-repudiable by the sender. Importantly, symmet-

ric cryptography approaches, e.g., Message Authentica-

tion Codes or SSL, are not sufficient for accountability.

Shared keys cannot guarantee non-repudiation of origin

or content: any party in possession of the shared key can

forge the actions of another using the key.

3.2 State Digests and Commitment

A CATS server periodically generates a signed digest

over its local state. The state storage data structure pro-

vides a function for an actor to compute a compact,

fixed-size hash over an atomic snapshot of its current

state.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 81

Servers publish their digests by including them in

their responses to clients and publishing them to an ex-

ternal medium (Section 2.2). Publishing a digest com-

mits the server to a unique view of its state and its his-

tory at a specific point in time. The server cannot lie

about what its state was at that time without the risk of

exposure. Any modification of the state affects the di-

gest; any conflicts with previously published digests are

detectable and provable. In particular, the server can-

not safely present different views of its state to different

clients—a forking attack [17, 23]. While nothing pre-

vents the the server from returning different digest val-

ues to different clients, clients can detect such misbehav-

ior by comparing digests among themselves or against

the published copy.

An epoch is the time interval between generation of

two consecutive state digests by some actor. An epoch is

committed when the digest of its end-state is published.

Epochs are numbered with consecutive timestamp val-

ues. To preserve the integrity of the timeline, the com-

putation of each new state digest incorporates the di-

gest from the previous epoch as an input. This form of

chaining prevents the service from removing a commit-

ted snapshot or adding a new snapshot in the past.

3.3 Proofs

Servers can make provable statements about their states

or operations relative to a published digest. A CATS

server can generate two kinds of proofs:

• Inclusion. The server claims that a given

(oid, value) pair was recorded in the service state

at the end of some epoch. The claim is backed by

an unforgeablemembership proof showing that the

(oid, value) pair was used to compute the digest

for that epoch in a proper way.

• Exclusion. The server claims that no object with

a given oid existed in its state at the end of some

epoch. The claim is backed by a proof exhibiting a

proper computation of the epoch digest that did not

include an object with that oid. If a previous writer

had written an object with that oid, it could have

verified that the server incorporated the object into

its digest in a proper way that would have precluded

such a proof.

Section 3.6 describes these proofs and the data struc-

tures that support them in more detail.

A client may request a proof by issuing a challenge on

a target oid. The server responds to a challenge with an

inclusion proof if the oidwas valid, or an exclusion proof

if it was not. If the challenge is issued by an actor other

than the last writer, an inclusion proof includes a signed

copy of the write that generated the object’s value.

Challenges enable a client to substantiate any read or

write response. A writer can issue a challenge to verify

that its write to an oid was incorporated into the server’s

state for an epoch, as represented in the server’s pub-

lished digest, in a proper way that precludes the server

from denying or safely concealing the write at a later

time. A reader can issue a challenge to verify that its

view of the server’s state is consistent with the server’s

digests, and therefore (by extension) consistent with the

views verified by the writers and seen by other readers.

3.4 Request Ordering and Consistency

The state of a stored object results from an ordered se-

quence of writes to the object. Accountability for object

values requires that the server and the object’s writers

agree on and certify a serial order of the writes.

Each stored object is annotated with a version stamp

consisting of a monotonically increasing integer and a

hash of the object’s value. The action record for an

object write must include the object’s previous version

stamp, certifying that the writer is aware of the object’s

state at the time of the write. The server rejects the write

if the version stamp does not match, e.g., as a result of

an intervening write unknown to the writer. The writer

may retry its write, possibly after completing a read and

adjusting its request.

Inspection of a sequence of write actions to an oidwill

reveal any attempt by the server to reorder writes, or any

attempt by a writer to deny its knowledge of an earlier

write.

3.5 Freshness and Auditing

It remains to provide a means to hold a server account-

able for “freshness”: an object’s value should reflect its

most recent update prior to the target time of the read.

A faulty server might accept a write and later revert it.

Freshness is a fundamental problem: a server can prove

that it does not conceal writes to an object over some

interval only by replaying the object’s complete write

history over the interval, including proofs that its value

did not change during any epoch without a valid write

action. Reverted writes are the most difficult form of the

“forking attack” to defend against; in essence, the fork

consistency assurance of SUNDR [17, 23] is that if the

server conceals writes, then it must do so consistently or

its clients will detect a fault.

Our approach in CATS is to provide a means for any

participant to selectively audit a server’s write histories

relative to its non-repudiable state digests. The strong

accountability property is that the server cannot conceal

any corruption of an object’s value from an audit, and

any misbehavior detected by an audit is verifiable by a

third party. Although reverted writes for objects or inter-

vals that escape audit may go undetected, a server cannot

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association82

!"#

$
%

$& $' $(

)*)+)!

Figure 2: At time tn the malicious operator reverts the

effect of the update performed at time tm and sets the

corresponding value to the one valid at time tk. An au-

dit that tracks the value through a sequence of snapshots

detects this violation, as long as a read is performed in

the interval [tm; tn).

predict or control what actions will be audited.

Figure 2 illustrates the auditing process. In this ex-

ample, an object receives an update at time tm, which is

correctly applied and the value of the object becomes v4.

However, at a later time, tn, the server reverts the value
of the element to a previous value v3, created at time

tk. As a result of this intervention, reads to the object

produce an incorrect result (v3 instead of v4).

To certify freshness, a client must challenge and ex-

amine the object’s value for every epoch in the interval

since the last reported update to present. We will refer

to this interval as the span of auditing ((tk, now) in our

example). If the audit confirms that the object and its

reported value were incorporated into all digests for the

interval, then the client can safely conclude that the re-

ported value is indeed fresh. On the other hand, if the

server cannot provide a membership proof for the object

and its value relative to some subsequent digest, then the

server is faulty.

Clients can reduce the overhead of certifying fresh-

ness at the expense of a weaker, probabilistic assur-

ance. Instead of inspecting every snapshot in a span,

the client may instead issue challenges for randomly se-

lected snapshots in the span. We refer to the number of

audited epochs as the depth of the audit. In the above

example, the client performs an audit of depth 4. The

audit successfully detects the misbehavior, since it in-

spects the service state in a snapshot created in the inter-

val [tm, tn), in which the object has the reverted value

v4.

The CATS toolkit and accountable storage service sup-

port probabilistic audits as described in the above exam-

ple. Clients can issue audit requests and specify a list

of randomly selected snapshots from a specified audit-

ing span. CATS then constructs a membership proof for

the object and its value in the specified snapshots and

returns the result back to the client.

The probability of detecting a reverted update for a

given state element depends on the lifetime of the re-

verted update relative to the span of auditing. Us-

ing the above example, as the number of snapshots in

[tn, now) increases, the probability of selecting a snap-

shot in [tm, tn) decreases. Thus, detecting an offense be-
comes more costly as more time passes since the offense

took place. If an incorrect update is not noticed earlier,

it may be difficult and expensive to detect it later.

One way to deal with this problem is to examine more

snapshots in the span (increase the depth of auditing)

when verifying older objects. More formally, if p is the

probability of selecting a snapshot that reveals misbe-

havior, the probability of detecting misbehavior after d
snapshot inspections isP (p, d) = 1−(1−p)d. If the life-

time of a reverted update decreases relative to the span,

then p decreases. Figure 3 shows the probability that au-

dits of fixed depth detect that the value of an element is

incorrect for different values of p and d.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 8 12 16 20

D
e
te

c
ti
o
n
 P

ro
b
a
b
ili

ty

Auditing Depth (number of snapshots)

p=0.9
p=0.7
p=0.5
p=0.3
p=0.1

Figure 3: The longer a reverted update remains unde-

tected (decreasing p), audits will have to inspect a larger

number of snapshots to ensure a certain probability of

detection.

Another possible solution is to have trusted auditors

periodically inspect every object and ensure its fresh-

ness. The auditors publish commit records visible to all

clients, certifying that the service state until the point of

inspection is consistent. An alternative, less expensive

form of auditing can impose a probabilistic bound on the

number of reverted updates. The core idea is to choose

objects at random and inspect their values in randomly

selected state snapshots. Using a sampling theory result

stating that the successful selection of n (n > 0) white
balls from an urn ensures that with probability 1 − 1/e
there are no more than an 1/n fraction of black balls in

the urn, we can prove the following two theorems:

Theorem 1. Examining the complete execution history

of n (n > 0) objects chosen uniformly at random from

all state objects present in a service’s state, and ensur-

ing the correctness of each update operation to these ob-

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 83

jects, guarantees that with probability at least 1 − 1/e
the service has maintained correctly at least (1 − 1/n)
fraction of all objects over its complete execution his-

tory.

Theorem 2. Examining n (n > 0) state update opera-
tions and ensuring that none of them reverts a previous

update, ensures that with probability at least 1−1/e, no
more than an 1/n fraction of all state updates have been

reverted.

We can further improve the effectiveness of audits us-

ing repetition. It takes O(log δ) repetitions of an au-

diting algorithm to boost the probability of detection to

(1 − δ) for any δ ∈ (0, 1).

Finally, another complementary approach is for each

writer to challenge periodically objects it has written to

ensure that its updates persist until another authorized

client overwrites them.

3.6 Data Structure Considerations

We considered two ways to compute a compact digest

over a dynamic set of elements and demonstrate that an

element with a given oid and value is or is not part of the

set: cryptographic accumulators [5] and authenticated

dictionaries [2, 21, 24]. Of the two, authenticated dic-

tionaries promise to be more practical as they have log-

arithmic update cost and produce proofs logarithmic in

the size of the set (both for inclusion and exclusion). The

advantages of authenticated dictionaries prompted us to

use them as a basis for the CATS toolkit.

3.6.1 Authenticated Dictionaries

An authenticated dictionary is a map of elements with

unique identifiers, and allows for efficient identifier-

based updates and retrievals. Most proposed schemes

are based on Merkle trees [24]. They organize the ele-

ments of the set in a binary search tree. Each node of

the tree is augmented with an authentication label—the

output of a one-way, collision-resistant hash function

applied on the contents on the node’s sub-tree. More

specifically, the label of a leaf node is equal to the hash

of its data and identifier, and the label of an internal node

is equal to the hash of the concatenation of the labels of

its left and right children. The recursive scheme labels

the root of the tree with an authenticator covering the

entire tree—its value is a digest computed over every el-

ement of the set.

A membership proof for an element constructed by an

authenticated dictionary consists of a sequence of sibling

hashes: one for each node on the path from the root of

the tree to the leaf node containing the element. Using

the sibling hashes and the hash of the element’s data, an

actor can recompute the root authenticator and compare

it to the known authenticator. It is computationally infea-

sible to fabricate a set of sibling labels that combine with

the element hash to yield the known root authenticator

(e.g., an epoch digest). Exclusion proofs require that the

hashes incorporate the key values for each node in the

search tree, so that each membership proof also certifies

that the path to the object reflects a proper sorted order

for the tree. If the tree is in sorted order, then an exclu-

sion proof for a given oid is given by the set of hashes

for any subtree that covers the portion of the key space

containing oid, but that does not contain that oid itself.

3.6.2 Practical Issues

A number of organizational issues impact the perfor-

mance of authenticated dictionaries. In this subsection

we describe the cost dimensions, the way they impact

performance, and the specific choices we made to de-

sign the state store.

Tree degree. It is possible to authenticate any search

tree simply by allocating extra space within each node

to store its authentication label. A naive application of

the same idea to a high-degree tree such as a B-Tree [4],

however, can have an adverse impact on authentication

performance. The high degree used by a B-Tree in-

creases the size of the sibling set needed to compute an

authentication label: a membership proof for a B-Tree

storing 1,000,000 four-byte identifiers with out-degree

of 100 is more than 7 times larger than a proof generated

by a binary tree storing the same data.

Theorem 3. Balanced binary search trees generate

membership proofs of minimal size.

Proof. A balanced tree of degree B storing N objects

has height at least logB N . A membership proof con-

sists of a constant size component for each sibling of

every tree node along a root to leaf path. Each tree node

has B − 1 siblings. Therefore, a membership proof

has at least f(B) = (B − 1) logB N components. This

function obtains its smallest value for B = 2.

The above result exposes a dilemma for building a

scalable authenticated state store: indexing large collec-

tions requires the use of an I/O efficient data structure,

e.g., a B-Tree, however, it will be costly to compute di-

gests and to generate, transmit, and verify proofs in such

a data structure. We address this challenge with a hybrid

approach consisting of a balanced binary tree mapped

to the nodes of a B-Tree for efficient disk storage (Fig-

ure 4). While this approach ensures the optimality of

search operations, updates can trigger a large number

of I/O operations to balance the binary tree. We relax

the requirement of global binary tree balance and trade

it for improved I/O performance: only the part of the

tree that is stored within a single B-Tree block should

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association84

be balanced. This restriction may increase the height of

the binary tree but offers an acceptable tradeoff between

membership proof size and I/O efficiency. This solution

is similar to the one of Maniatis [21]. Theorem 3 shows

that his choice of a binary tree is indeed optimal.

Figure 4: Mapping a binary search tree to disk blocks

for efficient storage.

Data layout. Data placement also impacts the perfor-

mance of authenticated search trees. Search trees pro-

vide two options for storing data. Node-oriented orga-

nizations store data at all nodes, while leaf-oriented de-

signs store data only at the leaves. These two choices

impact the space requirement, size of membership proof,

and authentication cost. Leaf-oriented trees require

more space but need less data and processing to com-

pute an authentication label [32]. In the context of a bi-

nary tree mapped to a B-Tree, the smaller size of internal

tree nodes in a leaf-oriented design results in a large por-

tion of the binary tree being mapped to a single B-tree

node. This organization reduces the I/O and authentica-

tion cost and we adopt it in our design.

Persistence. Since it is expensive to generate, pub-

lish, store, and audit epoch digests, it is desirable to min-

imize the number of epochs for a write stream by maxi-

mizing the epoch length, the average number of updates

within an epoch. While there exist methods for building

space-efficient persistent data structures [9] with con-

stant space overhead for epoch length of one update, per-

sistent authenticated search trees incur logarithmic space

overhead; each update invalidates a logarithmic number

of authentication labels. Using longer epochs reduces a

constant fraction from this overhead by amortizing the

cost of tree maintenance (including regenerating the au-

thenticators) across multiple update operations. For ex-

ample, since labels close to the root of the tree are af-

fected by every update operation, delaying label regen-

eration to the end of the epoch ensures that each label is

computed exactly once. Processing more updates within

a single epoch also decreases space utilization and the

disk write rate.

However, there are limits to the practical epoch

length. Longer epochs include more writes and mod-

ify more disk blocks; the number of dirtied blocks for

a write set also grows logarithmically with the size of

the tree. If the set of dirty blocks does not fit within

the I/O cache, then the system will incur an additional

I/O cost to regenerate the labels at the end of the epoch.

Longer epochs also increase the time to create a state

digest and acknowledge the completion of an operation.

Epoch length is an adjustable parameter in our design.

in order to reflect these complexities.

4 Implementation

We implemented the state store toolkit and the stor-

age service using C#, .NET framework 2.0, and Web

Services Enhancements (WSE) 2.0 for SOAP/Direct In-

ternet Message Encapsulation (DIME) communication.

The storage service toolkit consists of 12,413 lines of

code, and the service implementation took another 6,084

lines. The toolkit implementation consists of several lay-

ered modules. The lowest layer exports a block-level ab-

straction with a unified interface to pluggable underlying

storage implementations. The current implementation

uses files for storage media so it can easily use parallel

or replicated storage supported by the file system.

An intermediary block cache module controls access

to storage and buffering. The block cache provides in-

terfaces to pin and unpin blocks in memory. An asyn-

chronous background process monitors the block cache

and drains the cache to keep the number of blocks in use

between configured high-water and low-water marks.

Each block can be locked in shared or exclusive mode.

The current implementation does not perform deadlock

detection, and it maintains all versions of a given object.

The authenticated dictionary implementation uses the

block cache module to access storage blocks. The dic-

tionary is implemented as a B-Tree with the keys within

each block organized in a binary search tree. The cur-

rent implementation uses Red-Black trees and it allows

to use other algorithms if necessary. We use Lehman

and Yao’s B-link tree concurrency algorithm [16] to en-

sure optimal concurrency. The state store can correctly

recover after a failure using write-ahead logging.

The storage service is log-structured [27]. It consists

of an append-only log and an index for locating data on

the log. We use the toolkit for the index, and a vari-

ant of the toolkit’s write-ahead log for the append-only

log. Each log entry consists of two portions: the original

XML request, and the request payload. Clients identify

objects using 16-byte key identifiers.

The service is structured as a collection of stages (Fig-

ure 5) using a custom staging framework inspired by

SEDA [34]. A pool of worker threads services requests

for each stage. The size of the pool changes dynamically

in response to offered load. Stages have queues of fixed

capacity to absorb variations in load. Once queues fill

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 85

listener read index

read log

append log update index

send result

Figure 5: Storage service implementation. The storage service consists of an index and an append-only log. The

service is implemented as a collection of stages. Each stages is associated with a pool of worker threads. Pools can

grow and shrink depending on load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1!10
0

 5!10
5

 1!10
6

 2!10
6

 3!10
6

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Tree Size (unique keys)

Epoch = 100
Epoch = 1000

Epoch = 10000
Epoch = 100000

Epoch = 1000000

Figure 6: The time to apply an update to the authenti-

cated dictionary is logarithmic relative to the number of

unique keys in the index and increases as epoch length

decreases.

up, the service starts rejecting requests. Clients resubmit

rejected requests at a later time.

The service and its clients communicate via SOAP

over TCP. To limit the overhead of XML, we trans-

fer binary data using DIME attachments. Requests

and responses are digitally signed. The current imple-

mentation uses a custom XML canonicalization scheme

and RSA for signatures. Future releases will integrate

the service with web services standards such as XML-

Signatures and WS-Security.

The service processes update requests in epochs. The

service creates a new epoch as soon as it receives a valid

write request for an object that has already been modi-

fied in the current epoch. This approach allows for the

best granularity of accountability as it preserves every

version of an object. However, it has impact on perfor-

mance if workload has high contention (Section 5.4). An

alternative implementation choice is to limit the rate at

which new epochs are created by imposing a minimum

bound on the length of an epoch. To enforce this bound,

the service must reject a write if it will generate an epoch

ahead of its due time. Clients must buffer and coalesce

their writes, which will result in decreased data sharing.

 0

 10

 20

 30

 40

 50

 60

 70

 1!10
0

 5!10
5

 1!10
6

 2!10
6

 3!10
6

S
tr

e
tc

h
 F

a
c
to

r
(n

e
w

 n
o
d
e
s
/u

p
d
a
te

)

Tree Size (unique keys)

Epoch = 100
Epoch = 1000

Epoch = 10000
Epoch = 100000

Epoch = 1000000
Ephemeral

 0

 10

 20

 30

 40

 50

 60

 70

 1!10
0

 5!10
5

 1!10
6

 2!10
6

 3!10
6

S
tr

e
tc

h
 F

a
c
to

r
(n

e
w

 n
o
d
e
s
/u

p
d
a
te

)

Tree Size (unique keys)

Figure 7: The average number of new nodes introduced

per update operation, stretch factor, is logarithmic rel-

ative to the epoch length. Smaller epochs have signifi-

cantly higher stretch factors resulting in larger indexes.

5 Evaluation

In this section we present an evaluation study of our pro-

totype. Our goal is to understand how accountability im-

pacts performance under varying conditions. In partic-

ular, we study the impact of public key cryptography,

object size, request rate, workload contention, epoch

length, and auditing.

5.1 Methodology

We run all tests on IBM x335 servers running Windows

2003 Server Standard Edition operating system. Each

machine has 2 Pentium IV Xeon processors running at

2.8GHz, 2GB of RAM, 1GB Ethernet, and IBM SCSI

hard disks with rotation speed of 10,000 RPM, average

latency and seek time of 3 ms and 4.7 ms respectively.

We use a population of 1,000,000 unique objects and

pre-populate the server to have one version of each ob-

ject. Since the cost of index operations grows logarith-

mically with the size of the state store, a state store with

1,000,000 objects has already reached a steady state in

which increasing size has minor impact on performance

(doubling the size of the store will increase the cost of

operations by approximately 3%).

We use a community of clients to issue requests to the

service using the SOAP interface. Our workloads consist

of synthetic reads/writes of a controlled size. We vary

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association86

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1!10
0

 5!10
5

 1!10
6

 2!10
6

 3!10
6
 0

 200

 400

 600

 800

 1000

 1200

 1400

P
ro

o
f
S

iz
e
 (

b
y
te

s
)

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Tree Size (unique keys)

proof size
verification time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1!10
0

 5!10
5

 1!10
6

 2!10
6

 3!10
6
 0

 200

 400

 600

 800

 1000

 1200

 1400

P
ro

o
f
S

iz
e
 (

b
y
te

s
)

V
e
ri
fi
c
a
ti
o
n
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Tree Size (unique keys)

Figure 8: Membership proof size is logarithmic relative

to the number of unique keys in the index and is on the

order of 1KB. The time to verify a membership proof is

on the order of 550 µseconds.

the “heat” of the workload by biasing the probability of

selecting a given object as the target of a read/write op-

eration. We denote heat using the notationX : Y , which

we interpret to mean: X% of the requests go to Y % of

the objects. For example 100:100 is a uniform work-

load, and 80:20 is the typical hot/cold workload. All

tests last 3 minutes with initial 30 seconds for warming

the caches. We report averages and standard deviations

from 10 runs. Our test workloads are a rough approx-

imation of real storage workload and the magnitude of

the performance results we report may differ from that

of real systems. However, the focus of our study is the

cost of accountability and our workloads allow us to vary

the key parameters to quantify those effects.

We use SHA-1 to compute authentication labels. Ob-

ject keys are assigned randomly in the identifier space

(16 bytes). This is a conservative approach intended to

limit spatial locality and stress our implementation. In

practice, spatial locality can reduce the overhead of per-

sistence and the cost of state digest computation. We

store the index and the log in blocks of size 64KB. The

index cache has capacity 2000 blocks and the log cache

has capacity 8000 blocks. The cache sizes are chosen

so that neither the index, nor the append-only log fit in

memory. For storage medium we use files residing on

the local NTFS file system. The files are accessed using

the standard .NET I/O API. For improved performance

we place the append-only log and the index on separate

disks. We commit dirty blocks to disk every 2 seconds.

5.2 Toolkit Behavior

We first examine the behavior of the CATS toolkit. In

particular, we study membership proofs (size and time

to verify), and the impact of epoch length on update and

storage costs. We use a set of 3,000,000 random keys of

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 8 16 32 64 128 256 512
 0

 5

 10

 15

 20

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
o
n
d
)

Size (KB)

not signed
signed

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 8 16 32 64 128 256 512
 0

 5

 10

 15

 20

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
o
n
d
)

Size (KB)

Figure 9: Maximum achievable data bandwidth for stor-

age service RPC interface based on SOAP/DIME and

WSE 2.0. The results suggest that this interface has

high overhead and services using it will be potentially

communication-bound.

size 16 bytes and insert them consecutively in a CATS

index. We create new epochs at a controlled rate.

Figure 6 shows the time to apply an update to the

authenticated index as a function of the unique keys in

the index and epoch length. We observe that the update

cost is logarithmic with respect to the number of unique

keys. The cost also grows as epoch length decreases.

There are two primary reasons to explain this behavior.

First, smaller epochs amortize the cost of maintaining

the index and computing authentication labels among a

smaller number of updates. Second, smaller epochs pro-

duce larger indexes and cause higher write rate per up-

date operation.

Next we examine the impact of epoch length on stor-

age costs. We define the stretch factor for a given epoch

length to be the average number of new (Red-Black tree)

nodes introduces by an update operation. Ephemeral

trees have epoch length of infinity and stretch factor of

2. Figure 7 shows how the stretch factor changes with

epoch length. The stretch factor is logarithmic relative

to the number of unique objects in the index and grows

as epoch length decreases. Thus very small epochs can

produce very large indexes.

Finally, we examine membership proofs. Figure 8

shows the size of membership proofs and the time to

verify a membership proof as a function of the number

of unique keys in the index. Importantly, these metrics

do not depend on epoch size. As expected, membership

proof size is logarithmic relative to the unique keys in

the index. For our configuration, a proof is on the order

of 1KB and it takes about 550 µseconds to verify.
The important point to take away from these experi-

ments is that membership proofs are compact and rela-

tively cheap to verify. Update operations in our unop-

timized prototype have acceptable performance. Epoch

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 87

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 8 16 32 64 128 256
 0

 5

 10

 15

 20

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
o
n
d
)

Size (KB)

not signed
signed

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 8 16 32 64 128 256
 0

 5

 10

 15

 20

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
o
n
d
)

Size (KB)

Figure 10: Write saturation throughput for objects of dif-

ferent size using 80:20 workload for configurations with

and without digital signatures. As object size increases,

the relative cost of digital signatures decreases.

length has direct impact on space overhead and update

cost and is the primary factor that determines perfor-

mance.

5.3 Saturation Throughput

We now measure the saturation throughput of the stor-

age service prototype. The first experiment evalu-

ates the maximum bandwidth a storage service using

SOAP/DIME based on WSE 2.0 can achieve. We is-

sue write requests to the service to store objects of con-

trolled sizes. The client follows the full protocol, while

the server only extracts the object from the SOAP mes-

sage, validates it (when requests are signed) and sends

a response to acknowledge the operation. No storage

takes place. The server’s CPU is saturated. Figure 9

shows the saturation request rate and the resulting data

bandwidth for objects of different size with and without

using digital signatures. Although we are using 1Gbps

LAN, the observed data bandwidth peeks at approxi-

mately 15MB/s. This is the best possible request rate

that our storage service can achieve. Importantly, the

results show that digital signatures are expensive, how-

ever, the relative cost signing a request decreases as ob-

ject size increases.

In the next experimentswe measure the read and write

saturation throughput of our implementation under a tra-

ditional hot/cold workload (80:20). We use the load gen-

erator to fully saturate the server and measure the sus-

tained throughput. We vary object size to study its im-

pact. Figure 10 shows the performance for write and

Figure 11 for read operations. As object size increases,

the request rate decreases and the transfer rate increases.

With the increase of object size, write performance in-

creases relatively to the maximum achievable request

rate. The service offers better write than read perfor-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 8 16 32 64
 0

 5

 10

 15

 20

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
o
n
d
)

Size (KB)

not signed
signed

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 8 16 32 64
 0

 5

 10

 15

 20

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
o
n
d
)

Size (KB)

Figure 11: Read saturation throughput for objects of dif-

ferent size using 80:20 workload for configurations with

and without digital signatures. Performance is seek lim-

ited due to the log-structured design.

mance, which is due to its log-structured design.

As object size increases the relative penalty of using

digitally signed communication decreases. 4KB signed

writes achieve 42% of the request rate of writes with-

out signatures. This number increases to 86% for ob-

ject of size 256KB. The ratios are better for reads: 81%

for 4KB, and 90% for 64KB. The log-structured design

explains this observation: the read workload is seek-

dominated and the time spent signing a request is smaller

relative to the time spent obtaining the data from the stor-

age medium.

Overall, the experimental results show that our imple-

mentation offers reasonable performance for both read

and write operations and that the cost of digital signa-

tures is not prohibitive.

5.4 Workload Contention

In Section 5.2 we concluded that epoch length has sig-

nificant impact on performance. The storage service cre-

ates a new epoch if it receives more than one update op-

eration to the same object in the same epoch. As a result

of this design choice, the performance of the service will

be dependent on the contention present in its workload.

In the next experiments we study this relationship.

We use workloads of different heat, ranging from uni-

form (100:100) to highly skewed (80:1) and generate re-

quests at controlled rates bellow the server saturation

level. Figure 12 shows the observed epoch creation

rate. For a given workload heat, processing requests at

a higher rate creates new epochs more frequently. As

a result, well-provisioned services processing high vol-

umes of client requests will produce a large number of

state snapshots. Similarly, more skewed workloads cre-

ate new epochs at a higher rate. Clearly, mechanisms

are needed to allow services to discard state snapshots to

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association88

 0

 0.2

 0.4

 0.6

 0.8

 1

100:100 80:20 80:10 80:5 80:1

E
p
o
c
h
 r

a
te

 (
e
p
o
c
h
s
/s

)

Workload Heat

90 r/s
150 r/s
210 r/s

 0

 0.2

 0.4

 0.6

 0.8

 1

100:100 80:20 80:10 80:5 80:1

E
p
o
c
h
 r

a
te

 (
e
p
o
c
h
s
/s

)

Workload Heat

Figure 12: Rate of epoch creation as a function of re-

quest rate and workload contention. Higher request rates

and contention create new epochs faster and can affect

service longevity.

keep space overhead and auditing costs at an acceptable

level. Dealing with this problem is part of our future

work. Figure 13 shows the resulting epoch lengths. Im-

portantly, epoch length does not depend on request rate,

however, it can vary from 1400 updates for a uniform

workload, to 200 updates for a highly skewed workload.

These results suggest that for typical usage scenarios in-

dex update operations (the primary cost component of

accountability) will be in the range from 300 to 600

µseconds (Figure 6).

5.5 Challenges and Audits

Challenges and audits are the primary mechanisms to

ensure a service behaves correctly over time. In the next

experiments we study the impact of these mechanisms

on service performance. The metric of concern is sat-

uration throughput. For these experiments we populate

the service so that the 1,000,000 objects are distributed

among 100 epochs of length 10,000 updates. The result-

ing index is approximately 15 times larger than the index

with all objects stored in an epoch of length 1,000,000.

To isolate the impact of storage access on auditing, com-

munication is not signed.

The cost of auditing operations depends on their

depth, the number of inspected snapshots, span, the to-

tal number of snapshots in the examined interval, and

scope, the fraction of objects that are likely to be au-

dited, e.g., in our framework objects are audited only on

access, and stale objects may never be audited. Using

this terminology, a challenge is an audit of depth 1 and

span 1.

Figure 14 shows the auditing saturation throughput

for different combinations of span, scope, and depth. For

a fixed scope, auditing becomes more expensive as span

increases. Similarly, higher auditing depths are more ex-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

100:100 80:20 80:10 80:5 80:1

E
p
o
c
h
 L

e
n
g
th

 (
n
u
m

b
e
r

o
f
w

ri
te

s
)

Workload Heat

90 r/s
150 r/s
210 r/s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

100:100 80:20 80:10 80:5 80:1

E
p
o
c
h
 L

e
n
g
th

 (
n
u
m

b
e
r

o
f
w

ri
te

s
)

Workload Heat

Figure 13: Epoch length as a function of request rate and

workload contention. Epoch length is independent on

request rate and is determined by workload contention.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 25 50 75 100

T
h
ro

u
g
h
p
u
t
(a

u
d
it
s
/s

e
c
o
n
d
)

Span (number of snapshots)

scope=1,depth=1
scope=.2,depth=1
scope=1,depth=4
scope=.2,depth=4

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 25 50 75 100

T
h
ro

u
g
h
p
u
t
(a

u
d
it
s
/s

e
c
o
n
d
)

Span (number of snapshots)

Figure 14: Auditing saturation throughput for different

depths, spans, and scopes. Smaller spans show better

performance due to increased locality. The impact of

scope is less pronounced.

pensive. Larger scope is also more expensive, however,

its impact is less pronounced. We can explain the above

results with the fact that the span and scope determine

the locality of auditing operations: smaller spans and

scopes concentrate audits on a portion of the index. In-

creasing the depth queries more snapshots and reduces

the total audits/seconds rate.

Controlling the rate of auditing is an important prob-

lem as it can be used to mount denial of service attacks.

This is a resource control problem and solutions from

the resource management domains are applicable. For

example, clients can be allocated auditing budgets and

the service can reject audits from a client if the client

has exhausted her budget. Importantly, the services can

be challenged for such rejections, to which it can reply

with a collection of signed client requests to show that

the client has exhausted its budget.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 89

6 Related Work

Butler Lampson summarizes accountability as follows:

“Accountability means that you can punish misbehav-

ior”. Our community often uses the term to refer to a

means of enforcing an authorization policy by detect-

ing and punishing violations after the fact, as an alterna-

tive to incurring the cost of preventing them in the first

place [14]. More recent work seeks to enforce account-

ability for performance behavior as essential to effective

functioning of networking markets [15].

Our notion of “semantic” accountability is different

and complementary. We consider actors accountable if

they can demonstrate that their actions are semantically

correct as well as being properly authorized. An ac-

countable server can be held responsible if its responses

violate semantic expectations for the service that it pro-

vides. Accountability is “strong” if evidence of mis-

behavior is independently verifiable by a third party.

Clients of a strongly accountable server are also strongly

accountable for their actions, since they cannot deny

their actions or blame the server.

Designing networked systems for accountability com-

plements classical approaches to building trustworthy

systems such as Byzantine Fault Tolerance [8, 28], se-

cure hardware [31], and secure perimeters [14].

Secure perimeters attempt to prevent misbehavior by

means of authorization and authentication. However,

when actors reside in different administrative domains,

there is no common perimeter to defend. Once the in-

tegrity of the perimeter is violated, it offers no protec-

tion, and even authorized actors may abuse the system

to their own advantage.

Byzantine fault tolerance (BFT) is a general and pow-

erful technique to tolerate misbehavior through replica-

tion and voting. However, BFT is vulnerable to col-

lusion: a majority of replicas may collude to “frame”

another. Also, in its pure form, BFT assumes that fail-

ures are independent, and thus it is vulnerable to “group-

think” in which an attack succeeds against a quorum

of replicas. BFT offers limited protection when a ser-

vice (and hence its replica set) is itself acting on be-

half of an entity that controls its behavior (typical of

web services). Strongly accountable systems can pro-

duce proofs of misbehavior that do not depend on voting

or consensus, which makes statements of correctness or

misbehavior provable to an external actor.

Secure hardware offers foundational mechanisms to

ensure untampered execution at the hardware level.

While a secure hardware platform protects the integrity

of a programs code, it cannot ensure that its actions are

semantically correct. Secure hardware can help provide

a trusted path to the user by avoiding corruption of the

software stack trusted by the user to correctly represent

the user’s intent.

Secure logging and auditing can also be used to pre-

serve a tamper-evident record of events [29, 30]. In ad-

dition to maintaining a tamper-evident record of service

events, we address the question of representing service

state to make state management operations verifiable.

CATS embodies the state of the art from research in

authenticated data structures [2, 6, 21, 25], beginning

with the well-known technique of Merkle trees [24].

Relative to that work, it incorporates new primitives for

secure auditing and integrates concurrency and recovery

techniques from the database community. Our approach

is inspired by Maniatis [21].

Our work incorporates these techniques into a toolkit

that can act as a substrate for a range of accountable ser-

vices. The elements of CATS have been used in many

previous systems for similar goals of semantic account-

ability. Many systems require digitally signed commu-

nication and some maintain some form of signed ac-

tion histories [11, 21]. Long-term historic state trails

help establish provable causality in distributed sys-

tems [22]. Storage systems often reference data using

cryptographic hashes to ensure tamper-evidence [26].

State digests are used to prove authenticity in file sys-

tems [10], applications running on untrusted environ-

ments [19], and time-stamping services [7].

The CATS toolkit is based on the storage abstraction of

a binary search tree. The Boxwood Project [18] also pro-

vides a toolkit for building storage infrastructures from

foundational search tree abstractions. Boxwood does not

address the problem of accountability.

SUNDR [17, 23] and Plutus [13] are two recent

network storage systems that defend against attacks

mounted by a faulty storage server. These services are

safe in the sense that clients may protect data from the

server, and the clients can detect if the server modifies

or misrepresents the data. Plutus emphasizes efficient

support for encrypted sharing, while SUNDR defends

against attacks on data integrity, the most difficult of

which is a “forking attack”. In both Plutus and SUNDR

file system logic is implemented by clients: the server

only stores opaque blocks of data. In SUNDR the server

also participates in the consistency protocol.

Both SUNDR and Plutus can detect various attempts

by the server to tamper with the contents of stored

blocks. However, the papers do not attempt to define

precise accountability properties. In general, they blame

any inconsistencies on the server: it is not clear to what

extent clients are accountable for their actions or for

managing file system metadata correctly. For example,

SUNDR does not show how to defend against a client

that covertly deletes a file created by another user in the

same group.

We argue for a stronger notion of accountability in

which the guilt or innocence of the server or its clients

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association90

is provable to a third party. This is a subtle change of

focus as compared to SUNDR, where the primary con-

cern is to build a tamper-evident system and terminate

its use once misbehavior is detected. CATS file seman-

tics are implemented and enforced by the server in the

conventional way, rather than implemented entirely by

the clients. Clients can independently verify correct ex-

ecution relative to published digests, rather than “com-

paring notes” to detect inconsistencies. CATS uses simi-

lar techniques to SUNDR and Plutus to make the stored

data tamper-evident, but it also defends against false ac-

cusations against a server , e.g., a malicious client that

“frames” a server by claiming falsely that it accepted

writes and later reverted them. Accountability extends

to the clients: for example, if a client corrupts shared

data, the server can identify the client and prove its guilt

even after accepting writes to other parts of the tree.

The BARmodel [1] addresses the problem of building

cooperative peer-to-peer services across multiple admin-

istrative domains. This is a Byzantine Fault Tolerance

approach optimized for the presence of rational peers.

Since the underlying primitives depend on voting and

replication, BAR-based services are vulnerable to collu-

sion. However, BAR does not maintain history and does

not use auditing to deal with problems that may arise if

peers collude. Our approach shares similar goals with

BAR and is complementary. We address the problem

of building an accountable service, within the control of

a single authority, that is accessed by multiple clients,

who may reside in different administrative domains. In

this context, the service implements all logic, and vot-

ing and replication are not sufficient. Our methodology

forces the service to preserve a faithful record of its his-

tory to enable auditing in the future. BAR-based services

may be able to enforce performance guarantees, some-

thing we currently do not support, although accusations

are not provable outside the system.

7 Summary and Conclusions

This paper presents the design, implementation, and

evaluation of CATS—a storage service and state stor-

age toolkit with strong accountability properties. A dis-

tributed system is strongly accountable when partici-

pants have the means to verify semantically correct op-

eration of other participants, and assertions or proofs of

misbehavior are independently verifiable by a third party

based on cryptographically assured knowledge, without

reliance on voting or consensus.

CATS builds on a history of work on authenticated data

structures, and incorporates the state of the art in that

area into a prototype network storage service. Challenge

and audit interfaces allow clients, peers, or auditors to

verify the integrity of the storage service state through

time, providing probabilistic defense against reverted or

replayed writes or replayed requests and other attacks on

the integrity of the data or the write stream. The proba-

bility of detection of a reverted state update is a function

of the depth and rate of auditing.

Experimental results with the prototype show that the

CATS approach to strong accountability has potential for

practical use in mission-critical distributed services with

strong identity. The cost of authenticated communica-

tion is not prohibitive and its relative overhead decreases

with the size of the object set and the stored objects.

Workload write contention and write-sharing are the pri-

mary factors that affect the cost of accountable storage

in our prototype: contention and sharing increase the

storage, computation, and auditing costs. The cost of

auditing depends on object age and the desired level of

assurance.

The accountable storage service described in this pa-

per is a simple example of a strongly accountable service

built using the CATS state storage toolkit. It illustrates

a state-based approach to building accountable network

services that separates service logic from internal state

representation and management, associates state ele-

ments with the digitally signed requests of the clients

responsible for them, and supports verifiably faithful ex-

ecution of state management operations. In future work

we plan to explore use of the state-based approach to

build more advanced file services and application ser-

vices with strong accountability.

Acknowledgments

We thank the reviewers for their helpful comments, and

especially our shepherd, Erik Riedel. We also thank Pet-

ros Maniatis for his comments and assistance in under-

standing some subtleties of previous work on authenti-

cated data structures, including his own. Partial support

for this research was provided by Duke University and

by related funding from IBM and Network Appliance.

This research was not supported by the National Science

Foundation.

References

[1] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Mar-

tin, and C. Porth. BAR Fault Tolerance for Cooperative

Services. In Proceedings of the 20th ACM Symposium on

Operating Systems Principles, October 2005.

[2] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia.

Persistent Authenticated Dictionaries and Their Applica-

tions. In 4th International Conference on Information

Security, October 2001.

[3] R. J. Anderson. Why Cryptosystems Fail. Commu-

nications of the Association for Computing Machinery,

37(11):32–40, November 1994.

[4] R. Bayer and E. M. McCreight. Organization and Main-

tenance of Large Ordered Indices. Acta Informatica,

1:173–189, 1972.

FAST ’07: 5th USENIX Conference on File and Storage TechnologiesUSENIX Association 91

[5] J. Benaloh and M. de Mare. One-way Accumulators:

A Decentralized Alternative to Digital Signatures (Ex-

tended Abstract). In Proceedings of Advances on Cryp-

tology, pages 480–494, May 1997.

[6] A. Buldas, P. Laud, and H. Lipmaa. Accountable Certifi-

cate Management Using Undeniable Attestations. InPro-

ceedings of the 7th ACM Conference of Computer and

Communications Security, pages 9–17, November 2000.

[7] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-

stamping with Binary Linking Schemes. In Proceedings

of Advances on Cryptology, August 1998.

[8] M. Castro and B. Liskov. Practical Byzantine Fault Toler-

ance. In Proceedings of the Third USENIX Symposium on

Operating Systems Design and Implementation, Febru-

ary 1999.

[9] J. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Mak-

ing Data Structures Persistent. Journal of Computer and

System Sciences, 38:86–124, 1989.

[10] K. Fu, M. F. Kaashoek, and D. Maziéres. Fast and Secure

Distributed Read-only File System. In Proceedings of the

4th USENIX Symposium on Operating Systems Design

and Implementation, pages 181–196, October 2000.

[11] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.

SHARP: An Architecture for Secure Resource Peering.

In Proceedings of the 19th ACM Symposium on Operat-

ing System Principles, pages 133–148, October 2003.

[12] M. Goodrich, R. Tamassia, and A. Schwerin. Implemen-

tation of an Authenticated Dictionary with Skip Lists and

Commutative Hashing. In Proceedings of DARPA Infor-

mation Survivability Conference and Exposition, pages

68–82, January 2001.

[13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and

K. Fu. Plutus: Scalable Secure File Sharing on Untrusted

Storage. In Proceedings of the Second USENIX Confer-

ence on File and Storage Technologies, March 2003.

[14] B. W. Lampson. Computer Security in the Real World.

In Proceedings of the Annual Computer Security Appli-

cations Conference, December 2000.

[15] P. Laskowski and J. Chuang. NetworkMonitors and Con-

tracting Systems: Competition and Innovation. In Pro-

ceedings of SIGCOMM, September 2006.

[16] P. L. Lehman and S. B. Yao. Efficient Locking for Con-

current Operations on B-Trees. ACM Transactions on

Database Systems, 6:650–670, December 1981.

[17] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Se-

cure Untrusted Data Repository (SUNDR). In Proceed-

ings of the 6th USENIX Symposium on Operating Sys-

tems Design and Implementation, pages 91–106, Decem-

ber 2004.

[18] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath,

and L. Zhou. Boxwood: Abstractions as the Founda-

tion for Storage Infrastructure. In Proceedings of the 6th

USENIX Symposium on Operating Systems Design and

Implementation, pages 105–120, December 2004.

[19] U. Maheshwari, R. Vingralek, and W. Shapiro. How to

Build a Trusted Database System on Untrusted Storage.

In Proceedings of the 4th USENIX Symposium on Oper-

ating System Design and Implementation, October 2000.

[20] P. Maniatis. Historic Integrity in Distributed Systems.

PhD thesis, Stanford University, August 2003.

[21] P. Maniatis and M. Baker. Enabling the Archival Stor-

age of Signed Documents. In Proceedings of the First

USENIX Conference on File and Storage Technologies,

pages 31–45, January 2002.

[22] P. Maniatis and M. Baker. Secure History Preservation

through Timeline Entanglement. In Proceedings of the

11th USENIX Security Sysmposium, August 2002.

[23] D. Mazières and D. Shasha. Building Secure File Sys-

tems out of Byzantine Storage. In Proceedings of the 21st

Annual ACM Symposium on Principles of Distributed

Computing, pages 108–117, July 2002.

[24] R. C. Merkle. Protocols for Public Key Cryptosystems.

In Proceedings of the 1980 Sysmposium on Security and

Privacy, pages 122–133, April 1980.

[25] M. Naor and K. Nissim. Certificate Revocation and Cer-

tificate Update. IEEE Journal on Selected Areas in Com-

munications, 18(4):561–570, 2000.

[26] S. Quinlan and S. Dorward. Venti: a New Approach to

Archival Storage. In First USENIX conference on File

and Storage Technologies, January 2002.

[27] M. Rosenblum and J. K. Ousterhout. The Design and

Implementation of a Log-Structured File System. In Pro-

ceedings of the 13th ACM Symposium on Operating Sys-

tems Principles, July 1991.

[28] F. B. Schneider. Implementing Fault-Tolerant Services

Using the State Machine Approach: A Tutorial. ACM

Computing Surveys, 22(4):299–319, December 1990.

[29] B. Schneier and J. Kelsey. Cryptographic Support for Se-

cure Logs on Untrusted Machines. In Proceedings of the

7th USENIX Security Symposium, pages 53–62, January

1998.

[30] B. Schneier and J. Kelsey. Secure Audit Logs to Support

Computer Forensics. ACM Transactions on Information

and System Security (TISSEC), 2(2):159–176, May 1999.

[31] S. W. Smith, E. R. Palmer, and S. Weingart. Using a

High-Performance, Programmable Secure Coprocessor.

In Financial Cryptography, pages 73–89, February 1998.

[32] R. Tamassia and N. Triandopoulos. On the Cost of Au-

thenticated Data Structures, 2003.

[33] Trusted Computing Group. Trusted plat-

form module specification. https://www.

trustedcomputinggroup.org/groups/tpm/.

[34] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An

Architecture for Well-Conditioned, Scalable Internet Ser-

vices. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles, October 2001.

[35] A. Yumerefendi and J. S. Chase. Trust but Verify: Ac-

countability for Network Services. In Proceedings of

the 11th ACM SIGOPS European Workshop, September

2004.

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association92

