
Secure, Archival Storage with POTSHARDS
Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, Kaladhar Voruganti

There are many factors motivating the need to securely store
private data for long periods of time. These range from re-
quirements on business data demanded by recent legislationto
the push towards digital creation of cultural and family her-
itage data. This information often needs to be stored securely;
data such as medical and legal documents that could be impor-
tant to future generations must be kept indefinitely but must
not be publicly accessible. Unfortunately, existing storage so-
lutions have yet to prove their ability to store data securely for
long periods of time. To this end, the goal of secure, archival
storage is to provide long-term data security and reliability.

Archival storage has a unique usage model that is poorly
served with techniques commonly found in conventional stor-
age. The usage model of secure, long-term archival storage
is write-once, read-maybe and thus stresses throughput over
low-latency performance. This is quite different from the top
storage tier of a hierarchical storage solution that stresses low-
latency access or even bottom-tier backup storage. The usage
model of long-term archives also have the unique property that
the reader may have little knowledge of the system’s contents
and no contact with the original writer; while file lifetimesmay
be indefinite, user lifetimes certainly are not.

One of the common mechanisms used to provide data
secrecy is encryption. This can be seen in systems such
as OceanStore, FARSITE, SNAD, Plutus and many others.
While sufficient for short-term protection, it is ill-suited for
long data lifetimes as encryption is only computationally se-
cure. To combat the problem of key loss a lot of attention has
been payed to key management. Archival storage exacerbates
this problem because in order to prevent a single archive from
obtaining the unencrypted data, re-encryption must occur over
the old encryption, resulting in a long key history for each file.
Since these keys are all outside data, a problem with any of
the keys in the key history can render the data inaccessible
when it is requested. Additionally a compromised archive is
a problem regardless of the encryption algorithm that is used.
An adversary who compromises an archive need only wait for
cryptanalysis techniques to catch up to the encryption usedat
the time of the compromise.

Another mechanism used to provide secrecy is secret split-
ting [1]. This is seen in systems such as PASIS, GridSharing
and Cleversafe. Using this technique the data is split into a
set of shares where, depending on the algorithm, either all or
a subset of the secrets are recombined to reconstruct the data.
While provably secure, the use of secret splitting in a stor-
age system must consider the danger of an inside attacker that
knows the location of each of the secret shares. Few systems
are designed to prevent attacks by insiders at one or more of
the archives who can determine which pieces they need from
other archives and steal those specific blocks of data, enabling
a breach of secrecy with relatively minor effort. This problem
is particularly difficult given the long time that data must re-
main secret, since such breaches could occur over years, mak-
ing detection of small-scale intrusions nearly impossible.

To address the many security requirements for long-term
archival storage, we are designing and implementing POT-
SHARDS (Protection Over Time, Securely Harboring And
Reliably Distributing Stuff). Since we are designing the sys-
tem specifically for secure, long-term storage, we identified
three basic design tenets to help focus our efforts. First, we
assumed that encrypted data could be read by anyone given
enough time and advanced cryptanalysis. Second, we aim to
ensure that data must be recoverable without any information
from outside the set of archives (such as encryption keys). Our
third assumption is that individuals are more likely to be ma-
licious than an aggregate. In other words, our system should
trust the consensus of groups of archives.

The basic architecture of POTSHARDS is a client com-
municating with a number of independent archives which uti-
lize secure, distributed RAID techniques for redundancy. The
client utilizes secret sharing algorithms to produce a set of
shards which are distributed to the archives in a manner that
ensures that no single archive receives enough shards to re-
build any of the user’s data. By using secret splitting tech-
niques, the secrecy in POTSHARDS has a degree of future-
proofing built into it—it can be proven that an adversary with
infinite computational power cannot gain any of the original
data, even if an entire archive is compromised. Each client pri-
vately maintains an index of their shards and the archive that
they are stored upon. This index is used during a normal read
operation in which the client requests shards from the archives
and reconstructs their data. If the client loses their indexthey
are still able to reconstruct their data, albeit more slowly, from
the shards alone. Each shard includes an approximate pointer
to the next shard. Unlike a traditional pointer which indicates
an exact location in a namespace, an approximate pointer is
less specific and only indicates a region. The use of approx-
imate pointers provides a great deal of security by prevent-
ing an intruder who compromises an archive or an inside at-
tacker from knowing exactly which shards to steal from other
archives. An intruder would have to stealall of the shards the
approximate pointer could refer to, and would have to steal all
of the shards they refer to, and so on. All of this would have
to bypass the authentication mechanisms of each archive, and
archives would be able to identify the access pattern of a thief,
who would be attempting to obtains shards that may not exist.

Our current implementation consists of roughly 15,000 lines
of Java 5.0 code. While there is further optimization to per-
form, it is currently capable of the system’s four basic oper-
ations: reading, writing, recovering from a lost archive, and
recovering data from shards. With these four operations func-
tioning, we have begun to explore other aspects of the system.
One key area we are looking at is the behavior of approxi-
mate pointers and how they relate to user’s namespace within
POTSHARDS. Understanding this relationship is important to
balancing the need between data security and data recovery.

References
[1] A. Shamir. How to share a secret.Communications of the ACM,

22(11):612–613, Nov. 1979.

1


