
Statistical Machine Learning Makes Automatic Control Practical for
Internet Datacenters

Peter Bodı́k, Rean Griffith, Charles Sutton, Armando Fox, Michael Jordan, David Patterson
RAD Lab, EECS Department, UC Berkeley

Abstract
Horizontally-scalable Internet services on clusters of

commodity computers appear to be a great fit for au-
tomatic control: there is a target output (service-level
agreement), observed output (actual latency), and gain
controller (adjusting the number of servers). Yet few
datacenters are automated this way in practice, due in
part to well-founded skepticism about whether the sim-
ple models often used in the research literature can cap-
ture complex real-life workload/performance relation-
ships and keep up with changing conditions that might
invalidate the models. We argue that these shortcomings
can be fixed by importing modeling, control, and anal-
ysis techniques from statistics and machine learning. In
particular, we apply rich statistical models of the applica-
tion’s performance, simulation-based methods for find-
ing an optimal control policy, and change-point methods
to find abrupt changes in performance. Preliminary re-
sults running a Web 2.0 benchmark application driven by
real workload traces on Amazon’s EC2 cloud show that
our method can effectively control the number of servers,
even in the face of performance anomalies.

1 Introduction
Most Internet applications have strict performance re-
quirements, such as service level agreements (SLAs) on
the 95th percentile of response time. To meet these re-
quirements, applications are designed as much as possi-
ble to be horizontally scalable, meaning that they can add
more servers in the face of larger demand. These addi-
tional resources come at a cost, however, and especially
given the increasing popularity of utility computing such
as Amazon’s EC2, applications are incented to minimize
resource usage because they incur cost for their incre-
mental resource usage. A natural way to minimize usage
while meeting performance requirements is to automat-
ically allocate resources based on the current demand.
However, despite a growing body of research on auto-

matic control of Internet applications [2, 11, 6, 5, 4, 10],
application operators remain skeptical of such methods,
and provisioning is typically performed manually.

In this paper, we argue that the skepticism of datacen-
ter operators is well founded, and is based on two key
limitations of previous attempts at automatic provision-
ing. First, the performance models usually employed,
such as linear models and simple queueing models, tend
to be so unrealistic that they are not up to the task of
controlling complex Internet applications without jeop-
ardizing SLA’s. Second, previous attempts at automatic
control have failed to demonstrate robustness to changes
in the application and its environment over time, includ-
ing changes in usage patterns, hardware failures, changes
in the application, and sharing resources with other ap-
plications in a cloud environment.

We claim that both problems can be solved using
a suite of modeling, control, and analysis techniques
rooted in statistical machine learning (SML). We pro-
pose a control framework with three components. First,
at the basis of our framework are rich statistical per-
formance models, which allow predicting system per-
formance for future configurations and workloads. Sec-
ond, to find a control policy that minimizes resource us-
age while maintaining performance, we employ a con-
trol policy simulator that simulates from the performance
model to compare different policies for adding and re-
moving resources. Finally, for robustness we employ
model management techniques from the SML literature,
such as online training and change point detection, to ad-
just the models when changes are observed in application
performance. Importantly, control and model manage-
ment are model-agnostic: we use generic statistical pro-
cedures that allow us to “plug and play” a wide variety
of performance models.

Our new contributions are, first, to demonstrate the
power of applying established SML techniques for rich
models to this problem space, and second, to show how
to use these techniques to augment the conventional

!"#$%&'()
*+&,-./0(",'

1.'.2'"(,

0.)34/5(6.%

!78'.#

*(,')(%%.)

9&%:+&;/<.'&=

5.&8$).6/>()?%(&6

&,6/:.)3()#&,2.

&%:+&;/<.'& *(,')(%/8"-,&%@

A$#<.)/(3

5&2+",.8

0.)34/5(6.%

0.)34/5(6.%

Figure 1: Architectural diagram of the control framework.

closed-loop control framework, making automatic con-
trol robust and practical to use in real, highly variable,
rapidly-changing Internet applications.

2 Modeling and Model Management
Controllers must adapt to multiple types of variation in
the expected performance of a datacenter application.
“Expected” variations, such as diurnal or seasonal work-
load patterns and its effects on performance, can be
measured accurately and captured in a historical model.
However, unexpected sustained surges (“Slashdot ef-
fect”) cannot be planned for, and even “planned” events
such as bug fixes may have unpredictable effects on the
relationship between workload and performance, or may
influence the workload mix (e.g., new features). Fur-
thermore, the controller also must handle performance
anomalies and resource bottlenecks.

We propose a resource controller (see Figure 1) that
uses an accurate performance model of the application
to dynamically adjust the resource allocation in response
to changes in the workload. We find the optimal control
policy in a control policy simulator and adapt the per-
formance model to changes via change-point detection
techniques. The control loop is executed every 20 sec-
onds as follows:

Step 1. First, predict the next 5 minutes of workload
using a simple linear regression on the most recent 15
minutes. (More sophisticated historical workload models
could easily be incorporated here.)

Step 2. Next, the predicted workload is used as in-
put to a performance model that estimates the number of
servers required to handle the predicted workload (Sec-
tion 2.1). However, many complex factors affect appli-
cation performance, such as workload mix, size of the
database, or changes to application code. Rather than
trying to capture all of these in a single model, we de-
tect when the current performance model no longer ac-
curately models actual performance, and respond by es-
timating a new model from production data collected
through exploration of the configuration space. We ex-
plain this model management process in Section 2.2.

Step 3. Servers are added or removed according the
recommendation of the performance model, which we
call starget. To prevent wild oscillations in the controller,
we use hysteresis with gains α and β. More formally, we
maintain s, a continuous version of the desired number
of servers that tracks starget by

snew ← sold+

{
α(starget − sold) if starget > sold

β(starget − sold) otherwise.
(1)

Here α and β are hysteresis parameters that deter-
mine how fast the controller is to add and remove servers.
Section 2.3 explains how optimal values of α and β are
found using the simulator.

The proposed change-point and simulation techniques
are model-agnostic, meaning that they work with most
existing choices of statistical performance model; any
model that predicts the mean and variance of perfor-
mance could be used. This makes the proposed frame-
work very flexible; progress in statistical machine learn-
ing can be directly applied to modeling, control, or model
management without affecting the other components.

2.1 Statistical Performance Models

The performance model estimates the fraction of re-
quests slower than the SLA threshold, given input of the
form {workload, # servers}. Each point in the train-
ing data represents the observed workload, number of
servers, and observed performance of the system over
a twenty-second interval. We use a performance model
based on smoothing splines [3], an established technique
for nonlinear regression that does not require specifying
the shape of the curve in advance. Using this method, we
estimate a curve that directly maps workload and number
of servers to mean performance (for an example, see Fig-
ure 3). In addition to predicting the mean performance,
it is just as important to predict the variance, because
this represents our expectation of “typical” performance
spikes. After fitting the mean performance, we estimate
the variance by computing for each training point the
squared difference to the model’s predicted mean perfor-
mance, resulting in one training measurement of the vari-
ance. Finally, we fit a nonlinear regression model (in par-
ticular, a LOESS regression [3]) that maps the mean per-
formance to variance. This method allows us to capture
the important fact that higher workload not only causes a
higher mean in performance, but also a higher variance.

2.2 Detecting Changes in Application Performance

Our performance model should be discarded or modified
when it no longer accurately captures the relationship
among workload, number of servers and performance.
In practice, this relationship could be altered by software
upgrades, transient hardware failures, or other changes in
the environment. Note that this is different from detect-

ing changes in performance alone: if the workload in-
creases by 10%, this may cause a performance decrease,
but we do not want to flag it as a change point.

The accuracy of a model is usually estimated from
the residuals, i.e., the difference between the measured
performance of the application and the prediction of the
model. Under steady state, the residuals should follow
a stationary distribution, thus a shift of the mean or in-
crease of variance of this distribution indicates that the
model is no longer accurate and should be updated. On-
line change-point detection [1] techniques use statisti-
cal hypothesis testing to compare the distribution of the
residuals in two subsequent time intervals of possibly
different lengths, e.g., 9 AM to 9 PM and 9 PM to 11 PM.
If the difference between the distributions is statistically
significant, we start training a new model. The magni-
tude of the change will influence the detection time; an
abrupt change should be detected within minutes, while
it might take days to detect a slow, gradual change.

Because we train the model on-line from produc-
tion data, rather than from a small-scale test deploy-
ment, our approach is under pressure to quickly col-
lect necessary training data for the new model. To ad-
dress this constraint, we use an active exploration pol-
icy until the performance model settles. In exploration
mode, the controller is very conservative about the num-
ber of machines required to handle the current workload;
it starts with a large number of machines to guarantee
good performance of the application and then slowly re-
moves machines to find the minimum required for the
current workload level. As the accuracy of the perfor-
mance model improves, the controller switches from ex-
ploration to optimal control.

2.3 Control Policy Simulator

An accurate performance model alone doesn’t guarantee
good performance of the control policy in the produc-
tion environment because the various parameters in the
control loop, such as the hysteresis gains α and β, sig-
nificantly affect the control. This is a standard problem
in control theory called gain scheduling, however, it is
very difficult to find the optimal values of the parame-
ters in complex control domains such as ours because
of delays in actions and different time scales used in the
controller and the cost functions. To solve this problem,
we use Pegasus [8], a policy search algorithm that com-
pares different control policies using simulation. We use
a coarse-grained simulator of the application to evaluate
various values of α and β parameters using the workload
and performance models. The simulator uses real, pro-
duction workloads as observed in the past several days or
any other historic workloads such as spikes. Given par-
ticular values of the α and β parameters, the simulator
executes the control policy on the supplied workloads,

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

workload [req/s]

%
 s

lo
w

 re
qu

es
ts 2 servers 5 servers

8 servers

Figure 3: The smoothing spline performance model estimated
from observed data; the circles and crosses represent observed
data for two and five servers, respectively. Each curve repre-
sents the mean performance estimated by the model. The error
bars in the eight-servers line represent our estimate of the stan-
dard deviation of performance.

estimates performance of the application using the per-
formance model, and returns the amount of money spent
on machines and the number of SLA violations. By us-
ing a local search heuristic such as hill-climbing, we can
find the optimal values of α and β that minimize the total
cost of running the application.

3 Preliminary Results
In this section we present early results demonstrating
our approach to automatic resource allocation. We
first present a resource management experiment using
a smoothing-splines based performance model as de-
scribed in Section 2.1. Next, we demonstrate that the
simulator is effective for selecting the optimal value of
the β hysteresis parameter. Finally, we use change-point
detection techniques to identify a change in performance
during a performance anomaly.

In all of the experiments, we used the Cloudstone Web
2.0 benchmark [9], written in Ruby on Rails and de-
ployed on Amazon EC2. Cloudstone includes a work-
load generator called Faban [7], which we use to re-
play three days of real workload data obtained from
Ebates.com. We compress the trace playback time to 12
hours for the sake of efficiency.

3.1 Automatic Resource Allocation

First we demonstrate that an SML performance model
can be used for automatic resource allocation.1 We
model the business cost of violating an SLA as a $10
penalty for each 10-minute interval in which the 95th

percentile of latency exceeds one second. We trained
an initial performance model using data from an offline

1Although Amazon EC2 costs 10 cents per server per hour, we ad-
just this to 10 cents per 10 minutes to account for our faster replay of
the workload.

time [hours]

%
 s

lo
w

 re
qu

es
ts

0.
00

0.
04

0.
08

fraction > 1sec (20-sec period)
fraction > 1sec (10-minute period)
SLA threshold (5%)

0 2 4 6 8 10 12

0
20

60
10
0

time [hours]

w
or

kl
oa

d
[re

q/
s]

2
4

6
8

10throughput
machines

Figure 2: Results of a 12 hour long experiment replaying a three-day workload. The bottom graph shows the workload and the
number of servers requested by the controller (thick, step curve). The top graph shows the fraction of requests slower than one
second during 20-second intervals (thin, gray line) and during the ten-minute SLA evaluation intervals (thick, step curve). Because
the fraction of slow requests during the ten-minute intervals is always below 5%, the SLA was not violated. During the whole
experiment 0.52% of the requests were slower than one second. The controller performed 55 actions.

benchmark and used it to derive the relationship between
the workload and the optimal number of servers. (We
leave online training of the performance model to fu-
ture work.) The controller attempts to minimize the total
cost in dollars that combines a cost for hardware with a
penalty for violating the SLA. We set α = 0.9 to quickly
respond to workload spikes and β = 0.01 to be very con-
servative when removing machines. Figure 2 shows that
these choices led to a successful run, with no SLA vio-
lations and few controller actions to modify the number
of servers. However, as Figure 4 shows, the controller
is very sensitive to the values of α and β, so we next
describe how we use a simulator to automatically find
optimal values for these parameters.

3.2 Control Policy Simulator

In this section, we demonstrate using the control policy
simulator (Section 2.3) to find the optimal value for the
parameters of the controller. In this experiment, we use
the simulator to find the optimal value of β, the hysteresis
gain when removing machines, while keeping α = 0.9.
For each value of β, we executed ten simulations and
computed the average total cost of that control policy
(dashed line in Figure 4). The minimum average total
cost of $78.05 was achieved with β = 0.01. To vali-
date this result, we measured the actual performance of
the application on EC2 with the same workloads and the
same values of β (solid line in Figure 4). The results
align almost perfectly, confirming that the simulator finds
the optimal value of β.

3.3 Detecting Changes in Performance

In this section we demonstrate the use of change-point
detection on a performance anomaly that we observed
while running Cloudstone on Amazon’s EC2. Although

70

80

90

100

110

0.001 0.01 0.1

to
ta
l c
os
t =

 V
M
 c
os
t +

 S
LA

 p
en

al
2
es

beta

experiments

simula4on

Figure 4: Comparison of the total cost for different values
of the β parameter. The solid line represents actual measure-
ments, the dashed line represents the average simulated values
(Section 2.3). The simulation runs for all values of β were
completed in less than an hour.

the workload and the control parameters were identical
to the experiment described in Figure 2, we observed
a three hour long performance anomaly during which
the percentage of slow requests significantly increased
(hours 6 to 8 in the top graph of Figure 5). The result of
the change-point test for each t is a p-value; the lower the
p-value, the higher the probability of a significant change
in the mean of the normalized performance signal. The
bottom graph on Figure 5 shows the computed p-values
in logarithmic scale; the dips do indeed correspond to the
beginning and the end of the performance anomaly pe-
riod. Furthermore, outside of the performance anomaly,
the p-values remain flat. This result shows promise that
the dips in p-value could indeed be used in practice to
direct model management.

4 Related Work

Most previous work in dynamic provisioning for Web
applications uses analytic performance models, such as

0
5

%
 s

lo
w

x.range[i]

0.
5

0.
9

no
rm

. p
er

f.

0 2 4 6 8 10 12-1
00

0
lo

g(
p

va
ls

)

hours

Figure 5: Top graph: performance of the application during a
12-hour experiment with a performance anomaly during hours
six to eight. Center graph: observed performance normalized
using the predictions of the model. Bottom graph: p-values
reported by the hypothesis test.

queueing models, and doesn’t consider adaptation to
changes in the environment. In contrast, our statistical
models are numerical in character, which allows us to
more naturally employ statistical techniques for optimiz-
ing control parameters and for model management.

Muse [2] uses a control strategy that adds, removes,
powers down or reassigns servers to maximize energy
efficiency subject to SLA constraints on quality of ser-
vice for each application in a co-hosted services scenario.
Muse assumes that each application already has a util-
ity function that expresses the monetary value of addi-
tional resources, which includes the monetary value of
improved performance. In our work, we learn the perfor-
mance impact of additional resources.

In [6] the authors devise an adaptive admission-control
strategy for a 3-tier web application using a simple queu-
ing model (a single M/G1/1/Processor Sharing queue)
and a proportional integral (PI) controller. However, a
single queue cannot model bottleneck effects, e.g., when
additional application severs no longer help, that a statis-
tical model can incorporate naturally.

[11] uses a more complex analytic performance model
of the system (a network of G/G/1 queues) for resource
allocation. [5] presents a controller for virtual machine
consolidation based on a simple performance model and
lookahead control – similar to our simulator. [10] applies
reinforcement learning for training a resource allocation
controller from traces of another controller and improves
its performance. The system learns a direct relation-
ship between observations and actions; however, because
we model the application performance explicitly, our ap-
proach is more modular, interpretable, and allows us to
simulate hypothetical future workloads.

[4] provides an example of using change point detec-
tion in the design of a thread-pool controller to adapt to
changes in concurrency levels and workloads. In our
control strategy, change-point detection is used to indi-

cate when we need to modify our performance model.

5 Conclusion
We have demonstrated that the perceived shortcomings
of automating datacenters using closed-loop control can
be addressed by replacing simple techniques of modeling
and model management with more sophisticated tech-
niques imported from statistical machine learning. A key
goal of our framework and methodology is enabling the
rapid uptake of further SML advances into this domain.
We are encouraged by the possibility of increased inter-
action among the research communities of control the-
ory, machine learning, and systems.

References
[1] M. Basseville and I. V. Nikiforov. Detectiong of Abrupt

Changes. Prentice Hall, 1993.
[2] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,

and R. P. Doyle. Managing energy and server resources
in hosting centers. In Symposium on Operating Systems
Principles (SOSP), 2001.

[3] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning. Springer, August 2001.

[4] J. L. Hellerstein, V. Morrison, and E. Eilebrecht. Opti-
mizing concurrency levels in the .net threadpool: A case
study of controller design and implementation. In Feed-
back Control Implementation and Design in Computing
Systems and Networks, 2008.

[5] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang. Power and performance management of virtu-
alized computing environments via lookahead control. In
ICAC ’08: Proceedings of the 2008 International Confer-
ence on Autonomic Computing, pages 3–12, Washington,
DC, USA, 2008. IEEE Computer Society.

[6] X. Liu, J. Heo, L. Sha, and X. Zhu. Adaptive con-
trol of multi-tiered web applications using queueing pre-
dictor. Network Operations and Management Sympo-
sium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 106–
114, April 2006.

[7] S. Microsystems. Next generation benchmark develop-
ment/runtime infrastructure. http://faban.sunsource.net/,
2008.

[8] A. Y. Ng and M. I. Jordan. Pegasus: A policy search
method for large mdps and pomdps. In UAI ’00: Proceed-
ings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 406–415, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[9] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, S. Patil, A. Fox, and D. Patterson. Cloudstone:
Multi-platform, multi-language benchmark and measure-
ment tools for web 2.0, 2008.

[10] G. Tesauro, N. Jong, R. Das, and M. Bennani. A hybrid
reinforcement learning aproach to autonomic resource al-
location. In International Conference on Autonomic Com-
puting (ICAC), 2006.

[11] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dy-
namic provisioning of multi-tier internet applications. In
ICAC, 2005.

