
Abort, Retry, Litigate: Dependable Systems and Contract Law

Hany E. Ramadan
University of Texas at Austin

The law will play an increasingly important role in the
design of dependable systems, and designers of such sys-
tems will need to familiarize themselves with fundamen-
tal legal concepts. This note focus on Contract Law in
the context of distributed systems.1

Nodes in distributed systems are constantly making
promises to one another. While promises are generally
kept, they may also be broken, either intentionally (e.g.
for malicious or economic reasons), or unintentionally
(e.g. hardware or software failure). An example is one
node promising to store a file for another node, and to
provide future access to it when requested. Traditional
distributed systems were deployed within a single admin-
istrative domain (e.g. a bank) and thus the motivations to
break promises were limited. The emergence of the In-
ternet brought multi-party systems, usually organized as
a server servicing multiple clients. Many of these ser-
vices, such as IRC servers and web-mail sites, were pro-
vided at no cost. These free services were provided on a
best effort basis, and broken promises were not a serious
design constraint on such systems; clients simply retried.

A recent trend is Peer-to-Peer and Multiple Admin-
istrative Domain (MAD) systems, such as cooperative-
backup and file sharing networks. Nodes in such sys-
tems are no longer simply clients, but also play a role in
the provision of the service. The idea is that every node
plays its part in serving the other nodes, in return for the
benefits it receives from the service as a whole. There is
often no centralized authority that owns or controls the
system. One of the problems that can occur in such sys-
tems is that a node can become a free rider, where it
enjoys the benefits of the service while refusing to con-
tribute its own resources to the service.

This problem has been the focus of recent research.
For example, the BAR model2 treats nodes as rational ac-
tors, and provides them with incentives to behave prop-
erly. The assumption is that ”without appropriate punish-
ment, nodes may find it in their interest to misbehave”.
Thus, rational nodes are forced to keep their promises to
avoid the severe sanctions that would befall them.

We approach the same problem from a different an-
gle. We observe that the environment is not anarchic, and
that enforcement mechanisms exist for certain promises.
This approach is not incompatible with other approaches
(e.g. BAR), but simply takes into account the legal con-

1See Farnsworth. Contracts (Aspen, 2003), Radin et al. Internet
Commerce (West, 2006), and Restatement of Contracts (ALI, 1981).

2Aiyer et al. BAR Fault Tolerance (SOSP, 2005).

text of the node’s environment. The enforcement mech-
anism of interest is Contract Law, the main benefit and
goal of which is the facilitation of transactions between
entities which might have no other reason to trust each
other. It is this benefit that we seek to take advantage of
in dependable systems design.

A Contract is “a promise or a set of promises for the
breach of which the law gives a remedy, or the perfor-
mance of which the law in some way recognizes as a
duty”. In the U.S.3 the ability to enter binding con-
tracts is no longer limited to humans. The Uniform
Electronic Transactions Act (UETA), enacted recently in
most states, gives legal recognition to electronic records,
signatures and contracts. It also declares that “A contract
may be formed by the interaction of electronic agents
of the parties, even if no individual was aware of or
reviewed the electronic agents’ actions or the resulting
terms and agreements” (§14-b). This note reviews con-
tract law and then considers the following questions for
dependable systems: how are contracts entered, how are
they breached, and what remedies are available? Of
course, each system is unique and requires its own anal-
ysis to evaluate the contractual obligations arising in it.

A contract requires a bargain in which a promise is
exchanged for a consideration. The consideration is ei-
ther a return promise, or a performance 4. The contract
is formed when there is a manifestation of mutual assent
to the exchange, which “requires that each party either
make a promise or begin or render a performance”.

One concern is: how exactly are contracts formed in
a distributed system? Should they be between pairs of
nodes, or multi-party contracts? Are two-phase commit
protocols suitable for creating contracts? One principle
that guides the law around offers and counter-offers is
that periods where one party can speculate at the ex-
pense of the other should be minimized. Does this prin-
ciple affect choice of agreement protocol, for example
are coordinator-less protocols (e.g. Paxos-Commit) more
suitable? The validity of a contract can be challenged
on various grounds (e.g. misrepresentation, undue in-
fluence, duress, or public policy). Do these also occur
in electronic contracts? For example, since nodes (un-
like humans) may be able to analyze each other’s code
and foresee the consequences of not entering a contract,
could this lead to duress claims in some circumstances?

3International contracts are outside the scope of this note.
4A performance is “a) an act other than a promise, or b) a forbear-

ance, or c) the creation, modification or destruction of a legal relation”.

1



Another concern is: what are the terms that define the
scope of the contract? Will most contracts in the system
be identical, with perhaps only a small number of “types”
of contracts? Or will more numerous, fine-grained, cus-
tomized contracts arise? Will contracts be standardized
(fill-in-the-blanks), or will there be a process of negotia-
tion? Humans are adept at creating new options in nego-
tiations, what will computers do? Will there be a role for
statistical machine learning, where nodes learn from past
experiences? The most basic element of any contract are
what the promise and consideration are. In a simple two-
node cooperative backup system, perhaps the considera-
tion is a return promise to store a similar amount of data,
although more elaborate designs are possible.

How well specified will the contracts be? Usually con-
tracts only account for the major contingencies, with the
parties dealing with other issues as they arise. This is
likely to remain the case for electronic contracts, as not
only would the contingencies be too many to enumer-
ate, but software has to be written to interpret and exe-
cute the terms, making it all the more unrealistic. Re-
garding contingencies, not every unexpected behavior is
a breach. For example, if a party’s private key is stolen,
it may appear to breach its contractual obligations (es-
pecially if the thief is malicious). But if the theft is due
to no fault of its own, this could provide grounds for de-
fense to breach accusations. A system should be able
to handle unanticipated contingencies, either by allow-
ing humans to be “looped in” if and when such problems
arise, or through some automated resolution mechanism.
Immediately imposing sanctions on any breaching node
can lead to increased liability, and may lead to a sys-
tem that is not desirable to join in the first place (if these
sanctions are irreversible), due to the many unforeseen
circumstances that can occur.

A challenge in electronic contracts will be detecting,
classifying and proving breaches. Breaches may be ma-
terial or immaterial, and total or partial. We stress that
freedom to contract goes hand in hand with freedom to
breach contracts, and some so-called ”efficient breaches”
are even economically desirable5, so systems should de-
sign for them accordingly.

One party may be at a significant advantage to estab-
lish the (non-)occurrence of a breach event. Perhaps the
system should be designed such that such evidence must
be made available to the other party to adjust the burden
of proof. Trusted third parties that act as witnesses, may
be helpful in system design. Such an approach was used
in BAR, where a virtual witness was created out of the
state machine. Perhaps real witness nodes (in the spirit
of public notaries; or eNotarization) outside of the sys-
tem can also be used. These can help mitigate certain

5Such as when the value of exploiting a sudden new opportunity
outweighs the cost of compensating the injured party.

forms of repudiation, help provide evidence for claims,
as well as play a role during contract formation.

Cryptographic means to prove claims are also being
put forward. BAR’s Proof of Misbehavior can be gen-
erated by the ”virtual witness”, or may be generated by
the breaching node (a signed confession). Other creative
techniques to prove occurrence of events need to be in-
vestigated. To prove that a node possessed a file during a
specific time period, perhaps it must produce portions of
that file specified by a random, or an unpredictable data
source (e.g. a stock market index). However, such an ap-
proach would not work if the file is publicly available at
other sites, such that the breaching party could compute
this data after the fact in response to a claim.

A primary principle of Contract Law is that remedies
are aimed ”not at compulsion of promisors to prevent
breach, but for relief of promisees to redress breach”.
The relief usually comes in the form of payment of dam-
ages (cash), and occasionally in the form of specific per-
formance (compelling performance). Penalties and other
punitive damages are generally prohibited.

Damages are valued based on the cost to put the in-
jured party in the position he would have been had the
contract not been breached, the position he was in before
entering the contract, or at a minimum to avoid unjust
enrichment of the breaching party. We note that remedy
valuation places constraints on how a system can respond
to a breach: in general the remedy should be in propor-
tion to the breach. In violation of this principle, a system
which imposes severe sanctions in response to a minor
breach, may be liable to the original breaching node, for
the extra damage inflected upon it.6

What types of remedies will dependable systems use
in practice: damages, specific performance, or both? Is
dollar form the only acceptable form of damages or are
there other forms of value 7. Typically remedies are de-
termined by litigation, but to avoid costly litigation most
parties settle on their own, or rely on other processes such
as Alternative Dispute Resolution. Automated resolution
techniques would clearly be desirable for electronic con-
tracts. Parties are guided during settlement by their es-
timate of the strength of their claims. How will nodes
communicate with each other the strength of their claims,
or the evidence they posses? When humans need to be
involved, nodes should be able to provide the informa-
tion needed to effectively handle the situation. Finally,
class-action-like mechanisms may be needed, to pool to-
gether multiple small claims from many nodes against a
breaching party, to provide a credible threat of litigation.

6For example, the BAR-B backup system scheme of severe sanc-
tions, could result in all of a node’s owned data being deleted as a result
of a minor error by that node, e.g. returning even a single wrong byte.

7For example, in a file-sharing system, would a remedy perhaps be
a transfer of file quota from the breaching to the injured party?

2


