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Abstract

Distributed server systems allow many configuration
settings and support various application workloads. Of-
ten performance anomalies, situations where actual per-
formance falls below expectations, only manifest under
particular runtime conditions. This paper presents a new
approach to examine a large space of potential runtime
conditions and to comprehensively depict the conditions
under which performance anomalies are likely to occur.
In our approach, we derive our performance expecta-
tions from a hierarchy of sub-models in which each sub-
model can be independently adjusted to consider new
runtime conditions. We then produce a representative
set of measured runtime condition samples (both nor-
mal and abnormal) with carefully chosen sample size and
anomaly error threshold. Finally, we employ decision
tree based classification to produce an easy-to-interpret
depiction of the entire space of potential runtime condi-
tions. Our depictions can be used to guide the avoid-
ance of anomaly-inducing system configurations and it
can also assist root cause diagnosis and performance
debugging. We present preliminary experimental results
with a real J2EE middleware system.

1 Introduction

Distributed software systems are increasingly com-
plex. It is not uncommon for the actual system perfor-
mance to fall significantly below what is intended by the
high level design [1, 3, 7, 16]. Causes for such anomalies
include overly simplified implementations, mis-handling
of special cases, and configuration errors. Performance
anomalies hurt the system performance predictability,
which is important for many system management func-
tions. For instance, quality-of-service (QoS) manage-
ment relies on predictable system performance behaviors
to satisfy QoS constraints [2, 15]. More generally, opti-
mal resource provisioning policies can be easily deter-
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mined when the system performance under each candi-
date policy is predictable [4, 9, 17].

The detection, characterization, and debugging of per-
formance anomalies have been investigated by many re-
cent works [1, 5, 6, 7, 8, 11, 13]. In general, these studies
focus on anomaly-related issues under the specific run-
time conditions encountered during a particular execu-
tion. However, complex systems (esp., distributed server
systems) often allow many configuration settings (e.g.,
cache coherence protocol, thread pool size) and they sup-
port a variety of workload conditions (e.g., concurrent
users, read-to-write ratio). It is desirable to explore per-
formance anomalies over a comprehensive set of runtime
conditions. Such exploration is useful for quality assur-
ance or performance debugging without the knowledge
of exact runtime conditions.

This paper presents a new approach to examine a large
space of potential system runtime conditions and depict
the conditions under which performance anomalies are
likely to occur. In particular, we investigate techniques
to build scalable performance models over a wide range
of runtime conditions, to acquire a representative set of
sample runtime conditions, to isolate anomalies due to
similar causes, and to generate easy-to-interpret anomaly
depictions.

The result of our approach is a probabilistic depiction
of whether the system performs anomalously under each
potential runtime condition. Our depiction can be used
to guide the avoidance of anomaly-inducing system con-
figurations under given input workload conditions. Ad-
ditionally, we can identify the runtime conditions which
are most correlated with anomaly manifestations. We
can then narrow the search space for performance de-
bugging to the system functions which are affected by
the problematic conditions.

In principle, our proposed anomaly depiction ap-
proach can be applied to any software system that allows
many configuration settings and supports various appli-
cation workloads. In this paper, we focus on component-
based distributed server systems. A typical example
of such systems may be built on a J2EE platform and
it may support various application components, pro-
vide common services (possibly remotely), and manage



application-level protocols to access storage and remote
services. Additionally, these systems are often deployed
in distributed environments with high-concurrencywork-
load conditions.

2 Performance Expectations for Wide
Ranges of Configuration Settings

It is challenging to produce accurate performance ex-
pectations for distributed server systems due to their in-
herent complexity. Recent work by Urgaonkaret al.
models the performance of multi-tier distributed services
using a network of queues [20]. Our own past work con-
structed performance prediction models for component-
based distributed systems [17]. However, neither of
these models consider the performance effects of wide
ranges of configuration settings. Configuration settings
can have complex effects on the workload of individ-
ual system functions (e.g., component invocation, dis-
tributed caching, etc.) which can significantly affect the
overall system performance.

To consider wide ranges of configuration settings, we
derive performance expectations from a hierarchy of sub-
models. Each sub-model predicts a workload property
from lower-level properties according to the effects of
system functions under given configuration settings. At
the highest level of our hierarchy, the predicted workload
properties are the desired performance expectations. The
workload properties at the lowest-levels in our model
are canonical workload properties that can be indepen-
dently measured with no concern of the system functions
or their configuration settings. These properties include
component CPU usage and inter-component communi-
cation in terms of bandwidth usage and blocking send/re-
ceive count.

The architecture of hierarchical sub-models allows us
to manage increasing system complexity with multiple
independent smaller modules. More specifically, sub-
models can be independently adjusted to accommodate
new system configuration settings. Further, the interme-
diate workload predictions can also be examined for per-
formance anomalies. In particular, an anomalous work-
load detected in one sub-model but not in its input sub-
models can narrow the scope of potential problematic
system functions during debugging.

Figure 1 illustrates our model that considers several
system functions and configuration settings that have sig-
nificant impact upon performance. The system functions
we consider include distributed caching, remote compo-
nent invocation, distributed component placement, and
server concurrency management. Implementation and
configuration errors related to these functions are most
likely to cause large performance degradation. While our
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Figure 1: A hierarchy of sub-models. Low-level work-
load properties are assembled into higher-level proper-
ties according to the performance impact of configura-
tion settings.

high level model should be generally applicable to most
component-based distributed server systems, our specific
model construction targets J2EE-based distributed sys-
tems and our effort builds on our earlier work in [17].
We omit modeling details in this paper due to space lim-
itation.

3 Anomaly Sample Collection

For complex distributed server systems, there is of-
ten a large space of possible runtime conditions in terms
of system configurations and workload condition. Con-
ceptually, the runtime condition space has multiple di-
mensions where each system configuration and workload
condition that can be independently adjusted is a dimen-
sion. We choose sample conditions from the space of
potential runtime conditions in a uniformly random fash-
ion. We then compare measured system performance
with our model-based expectation under these condi-
tions. Anomalous conditions are those at which mea-
sured performance trails the expectation by at least a
certain threshold. Below we present techniques to de-
termine the size of our random sample and to select the
anomaly error threshold.

#1. Sample size.Anomaly checking at too many sam-
ple conditions may consume an excessive amount of time
and resource (due to performance measurement and ex-
pectation model computation at all sampled conditions).
At the same time, we must have a sufficient sample size
in order to acquire a representative view of performance
anomalies over the complete runtime condition space.
Our approach is to examine enough sample conditions
so that key cumulative sample statistics (e.g., average
and standard deviation of sample performance expecta-
tion errors) converge to stable levels.

#2. Anomaly error threshold.Another important ques-
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Figure 2: Response time and throughput expectation er-
rors of 2000 sampled runtime conditions sorted in de-
creasing order. We mark knee points on the two curves
for possible identification of the anomaly error threshold.

tion is ”How much deviation between the measured per-
formance and the expectation counts for an anomaly?”
The determination of anomaly error threshold depends
on the eventual purpose of anomaly depiction. When the
depiction result is used for the avoidance of anomaly-
inducing conditions, the anomaly error threshold is usu-
ally specified at a tolerance level of expectation error by
the system administrator. When the depiction result is
used for performance debugging, it is important for the
anomaly sampling to contain minimal noises that are not
related to targeted bugs.

To minimize the noises, we utilize an observation
that performance anomaly manifestations due to the
same cause (e.g., an implementation bug or a mis-
configuration) are more likely to share similar error mag-
nitude than unrelated anomaly manifestations do. In
our approach, we sort all sampled conditions accord-
ing to their performance expectation errors. We then
look for knee points on the performance expectation er-
ror curve, which serve as likely thresholds attributing
anomaly manifestations to different hidden causes. One-
dimensional clustering algorithms (e.g., k-means [10])
can be used to determine knee points in a given set of
expectation errors — the knee points are those thresh-
olds that separate different error groups generated by the
clustering algorithm.

Figure 2 illustrates an example of knee points discov-
ered on the error curves of sample conditions sorted in
the order of expectation errors. When multiple knee
points are available, we can choose a low error thresh-
old to capture multiple bugs in one anomaly depiction.
Alternatively, we can choose a high error threshold in or-
der to focus on a few severe bugs in one depiction, fix
them, and then characterize more bugs in later rounds of
anomaly depiction. Conceivably, we can choose a max-
imum and minimum error threshold to target a specific
bug, however we have not yet investigated noise reduc-

tion using this approach.

4 Performance Anomaly Depiction

From a representative set of sampled runtime condi-
tions (each labeled “normal” or “anomalous”), we study
the problem of deriving a comprehensive performance
anomaly depiction. The depiction is essentially a classi-
fier of system and workload configurations that partitions
the runtime condition space into normal and anomalous
regions of hyper-rectangular shapes. There has been a
great number of well-proven classification techniques,
such as naive Bayes classifiers, perceptrons, decision
trees, neural networks, Bayesian networks, support vec-
tor machines, and hidden Markov models. We use de-
cision trees to build our performance depiction because
they have the following desirable properties.

• Easy interpretability. Compared with other “black-
box” classification techniques (e.g., neural net-
works, support vector machines) where the expla-
nation for the results is too complex to be compre-
hended, decision trees can be easily understood as
IF-THEN rules or graphs, which provide great as-
sistance to further debugging efforts.

• Prior knowledge free. Decision trees do not require
any prior knowledge on underlying models, data
distributions, or casual relationships, which are of-
ten not available in our studied systems. In compari-
son, hidden Markov models and Bayesian networks
typically need to have a preliminary model before
they learn to parameterize the model.

• Efficiency and robustness. Decision trees can
quickly handle a large amount of noisy data with
both numerical and categorical elements, requiring
little preparation work such as normalization, miss-
ing value prediction,etc. Such ease of implementa-
tion is especially desirable when we consider a large
number of factors on the system performance.

We use the Iterative Dichotomiser 3 (ID3) algo-
rithm [12] to generate our performance anomaly depic-
tion. Our depiction is a decision tree that classifies a
vector of workload conditions and system configurations
into one of two target classes — “normal” or “anoma-
lous”. In ID3, the decision tree is generated in a top-
down way by iteratively selecting an attribute that best
classifies current training samples, partitioning samples
based on their corresponding values of the attribute, and
constructing a subtree for each partition until current
samples all fall into the same category. Specifically, the
tree-generation algorithm usesinformation gainto select
an attribute that is most effective in classifying training
samples. The information gain of an attributea over
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Figure 3: Decision tree-based performance anomaly depiction.

datasetS is defined as follows.

Gain(S, a) = H(S) −
∑

v∈values(a)

|Sv|

|S|
· H(Sv)

whereSv is the subset ofS whose values of attributea
arev. H(S) is the information entropy ofS. Intuitively,
information gain measures how much data impurity is
reduced by partitioningS based on attributea.

As illustrated by Figure 3, the primary usage of our
performance anomaly depiction falls into the following
two categories.

• White-box depiction usage — performance debug-
ging. Performance anomaly depiction is used to
make correlations between performance problems
and system functions. For this usage, human inter-
pretability of the depiction is most important. As a
result, we stop growing the decision tree at a certain
depth so that the result can be easily understood.

• Black-box depiction usage — anomaly avoidance.
Performance anomaly depiction is used as an oracle,
which answers whether a given system configura-
tion (with current input workload) leads to anomaly
or not. For this purpose, the depiction accuracy is
paramount.

5 Preliminary Experimental Results

We experiment with JBoss — a commercial-grade
open-source J2EE application server. We consider 8
runtime conditions: cache coherence protocols, compo-
nent invocation method, component placement strategy,

thread pool size, application type, concurrent users, read-
/write mix, and database access mix. These conditions
combine to form over 7 million potential runtime condi-
tions. In our experiments, JBoss may service the appli-
cation logic of RUBiS [14], StockOnline [18], or TPC-
W [19] depending upon runtime settings. Our tests run
on a small cluster of four machines each with a 2.66 GHz
P4 processor and 512 MB of memory.

Avoidance Figure 4 provides an illustration of full de-
piction result for the purpose of anomaly avoidance. We
evaluate the accuracy of our decision tree by compar-
ing the prediction result with measured result on some
additional randomly chosen system runtime conditions.
We examine two metrics:precision(the proportion of
real depicted anomalies in all depicted anomalies) and
recall ( the proportion of real depicted anomalies in all
real anomalies). There is a fundamental trade-off be-
tween precision and recall in that attempts to increase re-
call tend to enlarge the depicted anomaly region, which
may mistakenly include normal settings and hence re-
duce precision. Attempts to increase precision typically
exclude some real anomalous points from the depicted
anomaly region and thus decrease recall. Such a trade-
off can be exploited by setting different anomaly error
threshold. At the anomaly error threshold of 30% (i.e.,
performance deviation of 30% or more from the expec-
tation is considered an anomaly), our depiction precision
is 89% and recall is 83%. This result indicates a high
accuracy of our depiction result.
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Figure 4: The full depiction tree for anomaly avoidance.

Performance Debugging We also explore the debug-
ging use of our depiction result. For each anomalous leaf
node, the path leading back to the decision tree root rep-
resents a series of anomaly-correlated conditions (system
configurations and workload conditions). Such knowl-
edge may narrow down the debugging scope and pro-
vide hints to human debuggers. As noted in Section 4,
the decision trees we generated for debugging have arti-
ficially low depths. This is to make the depiction results
amenable for human understanding. Even with the aid of
anomaly depiction, it is important to note that the actual
discovery of each anomaly root cause is still a substan-
tially manual process. In our investigation, the human
debugger has at his disposal a set of system tracing and
debugging tools at both the EJB application server level
and inside the operating system kernel.

Our depiction-aided debugging has uncovered three
performance problems in the system: a component place-
ment configuration error due to ambiguous J2EE spec-
ification, a mis-handled exception in the JBoss thread
management, and a potential deadlock in distributed con-
currency management. Due to space limitation, we only
show the debugging of the first problem in this paper.

Figure 5 shows the three-level decision tree produced
for debugging. We observe a strong correlation be-
tween performance anomaly and four specific compo-
nent placement strategies. A closer look revealed that
in all of these correlated placement strategies, a major-
ity of the components were placed on node #2 in our
testbed. We inserted trace points into the system to mon-
itor the network traffic and component lookup behaviors
concerning node #2. We noticed that component lookup
procedures executed correctly, but that subsequent invo-
cations were never performed on node #2 and were in-
stead routed to node #1. We traced the abnormal be-
havior of the lookup function to a mis-understood J2EE
specification by the programmer. The component lookup
procedure returns a pointer to a component instance in
the system, but not necessarily at the node upon which
the lookup is performed. In particular, our node #2 was
mis-configured to route component invocations to node
#1 despite the programmer intention for components to
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Figure 5: A three-level decision tree produced for debug-
ging. Non-leaf nodes represent system configurations or
workload conditions while leaf nodes represent decision
points. The value inside each decision point indicates the
likelihood of performance anomalies within that decision
point’s region. For brevity, we only show the decision
points in the tree that are substantially anomalous.

execute on node #2. The increased queuing delay at node
#1 caused response time and throughput degradation be-
yond what was expected by our performance models.

6 Conclusion and Discussions

This paper presents a new approach to comprehen-
sively depict performance anomalies over a large space
of potential runtime conditions. We also demonstrate
the practical benefits of such comprehensive anomaly de-
piction, in terms of avoiding anomaly-inducing runtime
conditions and of assisting performance debugging. Be-
low we discuss several additional issues.

First, our configuration-dependent anomaly depiction
approach targets performance anomalies that are cor-
related with static system configurations and workload
conditions. For instance, our approach may find a RMI
(remote method invocation) performance anomaly that is
triggered under a particular component placement policy.
However, a performance bug that only manifests when
several different types of RMIs are made in a particular
order may not be discovered by our methods. Although
this is an important limitation, we believe the proposed
approach is still effective for discovering many existing
performance anomalies, as demonstrated in our experi-
mental results.

Second, constructing performance expectations over
many system configurations for a target system is still a
substantially manual effort in our approach. The perfor-
mance expectation model itself may not be accurate at all
considered runtime conditions and such inaccuracy may
also be a source for “performance anomalies”. While
these “anomalies” may overshadow or even conceal real
problems in system implementation and configuration,



we argue that our anomaly depiction can similarly assist
the discovery and correction of the expectation model
inaccuracies. Since the performance model is typically
much less complex than the system itself, its analysis and
debugging should also be much easier.

Our work is ongoing. In the short-term, we plan to ex-
tend the range of runtime conditions (esp.system config-
urations) supported by our performance model. We also
hope to expand our empirical study to comprehensively
depict anomalies for other systems. Further anomaly de-
pictions may shed more light into common areas of per-
formance problems in distributed server systems. In the
long-term, we will investigate systematic methods to de-
pict the correlation between performance anomalies and
source code level system components or parameter set-
tings. This capability could further narrow the investiga-
tion scope in depiction-driven performance debugging.
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