Administering Access Control
in Dynamic Coalitions

Rakesh Bobba' — NCSA, University of Illinois, Urbana-Champaign, IL
Serban Gavrila — VDG Inc., Chevy Chase, MD
Virgil Gligor — University of Maryland, College Park, MD
Himanshu Khurana — NCSA, University of Illinois, Urbana-Champaign, IL
Radostina Koleva — University of Maryland, College Park, MD

ABSTRACT

Dynamic coalitions enable autonomous domains to achieve common objectives by sharing
resources based on negotiated resource-sharing agreements. A major requirement for administering
dynamic coalitions is the availability of a comprehensive set of access control tools. In this paper we
discuss the design, implementation, evaluation, and demonstration of such tools. In particular, we
have developed tools for negotiating resource-sharing agreements, access policy specification, access
review, wholesale and selective distribution and revocation of privileges, and policy decision and

enforcement.

Introduction

In various collaborative environments such as
alliances for research and development, health care,
airline route management, public emergency response,
and military joint task forces, autonomous domains
form coalitions to achieve common objectives by
sharing resources (e.g., objects and applications).
Coalition resources may be privately or jointly admin-
istered and resource sharing is achieved by the distri-
bution of permissions for coalition resources to coali-
tion members based on negotiated resource-sharing
agreements, or common access states. These coalitions
are dynamic in that member domains may leave or
new domains may join after coalition establishment.
The focus of this work is on providing tools for
administering access control in such coalitions.

Consider the following example of a coalition. Ini-
tially, three DoD/Intelligence domains form a coalition
to respond to a threat situation relating to national secu-
rity (e.g., monitoring transport of nuclear material, activ-
ities of terrorist groups). Examples of such domains can
be Defense Intelligence Agency (DIA), National Secu-
rity Agency (NSA), Defense Threat Reduction Agency
(DTRA) and Central Intelligence Agency (CIA). These
three domains decide to share privately owned resources
(e.g., NSA shares a database of intercepted communica-
tion and the CIA shares intelligence reports) as well as
jointly administered resources (e.g., integrated intelli-
gence data and operation reports). Jointly administered
resources are typically critical to coalition objectives
and remain with the coalition even after the departure of
member domains [16]. Access to jointly administered
resources is one of the benefits individual domains
derive from their membership in the coalition.

To obtain assistance from local authorities for a
specific threat the DoD/Intelligence domains invite a

1 Author names listed in alphabetical order.

civilian domain, say the Threat/Emergency Response
Division of County C, to join the coalition. Upon reso-
lution of the specific threat, County C leaves the coali-
tion. Such domain join and leave events should not
require the breakdown and setup of coalitions from
scratch. Instead, access control tools must support
dynamic domain joins and leaves — Dynamic Coalitions
(DC) — in a seamless manner with ease and efficiency.

In this example, all four domains are collaborat-
ing to achieve a common objective (i.e., addressing
threats to national security) that is desired by all
domains and achievable by none of them individually.
To achieve the common objective, each domain has a
set of resources that are of interest to the others and is
willing to share some or all of its resources with some
or all of the other members.

It is important to note that the domains may not
be willing to share these resources in the absence of
this common objective; e.g., the DoD domains may be
competitors for military tasks and would compete
based on their available resources. Resource sharing
by a domain with other domains means that the
domain (administrator) grants access privileges for the
resource being shared to the other domains. The shar-
ing relationships among these domains are defined by
the access state of the coalition. An access state is
defined by the permissions each member domain has
to the shared resources of that coalition.

Thus negotiating a common access state (CAS)
means obtaining the agreement of each domain to share
some of its data and applications with the other domains
of the coalition. In addition, a CAS? of a coalition may
include some jointly owned resources created during
coalition operations, and a common policy for access-
ing these resources must also be negotiated.

2Appendix B lists acronyms used in this paper.

19th Large Installation System Administration Conference (LISA °05) 249

Administering Access Control in Dynamic Coalitions

The negotiation result is not merely a union of the
contributed resources necessary to achieve a coalition
objective. Instead, the negotiated CAS must satisfy
both resource and permission constraints. In this work
we consider all constraints that arise in the Role-Based
Access Control (RBAC) model [8, 9, 10, 2]. For exam-
ple, when the DoD domains initially form a coalition
they may agree on a obligation constraint that requires
at least one user from each domain to have administra-
tive privileges for jointly administered resources.

Typically, these constraints arise from coalition
objectives, access policies that are either jointly or pri-
vately enforced by autonomous domains, and
resource-access requirements of coalition applications.
The specification of negotiation constraints is an
important part of any access-policy specification and
drives the negotiation process; e.g., it determines the
number of negotiation rounds and the convergence to
and commitment of CAS. Hence, it must be defined in
a precise manner [17].

A typical negotiation for this example would
begin with the three DoD domains joining the coali-
tion, specifying negotiation constraints, contributing
resources that they are willing to share, proposing
desired CAS, voting on the proposals based on satis-
faction of constraints and extra-technological prefer-
ences, and committing to an agreed proposal. This
negotiation process would be repeated when the civil-
ian domain joins and leaves the coalition. Since the
number of objects being negotiated and the number of
rounds of negotiation could be large even in this small
example, the negotiation process would be time-con-
suming and error-prone if undertaken manually. (In
large coalitions such as those compromising tens of
domains sharing hundreds of resources [22] this point
is further emphasized.) Consequently, tools that fully
(or at least partially) automate the negotiation process
are needed. Automated negotiation tools would enable
domain administrators to easily compose proposals for
a CAS, verify that these proposals satisfy negotiation
constraints, and commit them to production systems
once agreed upon. Furthermore, for large-sized coali-
tions tools that enable administrators to visualize the
CAS and to administer coalition resources via a graph-
ical interface are very helpful.

In addition, access review tools are needed that
would enable individual domains to review their local
access state and verify that the state is secure prior to
negotiation; i.e., that the state satisfies all local domain
access policies. Based on this review, domains would
be able to contribute resources to the coalition and
compose proposals for CAS. Furthermore, access
review for coalition resources may be undertaken at
any point in time after coalition setup to (1) view the
CAS along desired lines (e.g., subject permissions for
a specific application, application access to specific
objects), and (2) verify satisfaction of policies and
constraints (e.g., Separation-of-Duty (SOD) policies,
obligation constraints).

Bobba, et al.

Once the CAS has been negotiated, tools that
provide wholesale, selective distribution and revoca-
tion of access privileges are needed. Tools for whole-
sale distribution/revocation are needed as privileges
must be granted to/revoked from all users of join-
ing/leaving domains. Granting/revoking privileges to
individual users would place undue overhead on
administrators and, more importantly, would make it
difficult to support coalitions where duration of
domain membership could be smaller than coalition
setup times using today’s deployed technologies (e.g.,
weeks or months). Tools for selective distribu-
tion/revocation are needed as the tools must selec-
tively target users of specific domains. One cannot, for
example, exclude a member domain simply by modi-
fying CA trust relations because those trust relations
may be needed to share resources with that domain as
part of another coalition.

There exists a need for coalitions in the commer-
cial world as well as in government settings. What fol-
lows are two examples of commercial coalitions,
taken from [15, 17]. First, consider a genetics research
firm that discovers a gene sequence associated with a
disease and establishes a coalition with a pharmaceuti-
cal company, two research hospitals and a Food and
Drug Administration review board (FDA board) to
find a cure using the gene sequence. Each domain
shares some of its local resources with the coalition
partners to achieve the coalition objective; e.g., the
genetics firm contributes its gene sequence database,
the pharmaceutical company provides a drug composi-
tion tool, the hospitals support clinical trials and give
access to their patient databases (while preserving
patient privacy by withholding sensitive patient infor-
mation such as name, social security number, etc.),
and the FDA review board shares a database of safety
regulations. Given the impact of finding a cure, the
coalition decides to jointly administer an application
for remote consultation and drug analysis. This
remote consultation and drug analysis application
relies on a jointly administered secure group commu-
nication service. As coalition operations proceed,
member domains may leave and new domains may
join the coalition.

Another example of a coalition would be airline
companies that collaborate to share various types of
airlines routes in order to expand their market cover-
age. Sharing an individual route of a certain type
implies that the airline domain that owns the route
grants access permissions required to execute the route
applications (e.g., reservations, billing, advertising)
for that route to users of a foreign airline domain.
Domains share routes (private resources) and may
choose to jointly administer an auditing application
that ensures adherence to coalition policies; e.g., poli-
cies on multi-hop route pricing and frequent flyer mile
programs. As the coalition proceeds airline partners
may leave or join the coalition.

250 19th Large Installation System Administration Conference (LISA °05)

Bobba, et al.

In this paper we describe a suite of access control
tools that we have developed for supporting dynamic
coalitions. The tools employ the RBAC model and
have been implemented in the Windows 2000 Server
environment using Java. We have extended? an exist-
ing RBAC tool, called Multi-Domain Role Control
Center (MDRCC), to provide access policy negotia-
tion (i.e., CAS negotiation), specification, and review.
The extended tool, MDRCC (Multi Domain Role
Control Center), has been integrated with the Win-
dows Active Directory for instantiating a negotiated
CAS and to provide a Policy Decision Point (PDP) for
resource providers. MDRCC provides a policy visual-
ization language and a Graphical User Interface (GUI)
that enables domain administrators to have a common
view of coalition operations and to administer those
operations directly from the interface. MDRCC has
been integrated with an Attribute Certificate Authority
(ACA) to provide wholesale, selective distribution and
revocation of privileges. We use the Windows IIS web
server as an example of a resource provider that
enforces access policies for shared web pages. We
have conducted experiments with our tools to show
that they scale to support reasonable size dynamic
coalitions and provide results of these experiments.
We demonstrated the tools at Joint Warrior Interoper-
ability Demonstration (JWID) 2004 and obtained
valuable feedback.

The rest of this paper is organized as follows: We
discuss related work, present the architecture of our
system and discuss the salient features on our access
control tools, describe the implementation of the tools,
present experimental results, discuss lessons learned,
and then conclude.

Related Work

Access control in distributed systems, in general,
and in DCs, in particular has been extensively studied
in the past. However, to the best of our knowledge
ours is the first complete set of tools for access control
in DCs that provide (1) support for negotiating access
policies among domains for coalition set up, (2)
wholesale selective distribution and revocation of priv-
ileges, (3) access review capabilities, and (4) support
for jointly administering coalition critical resources.
Access Control in Dynamic Coalitions

The Secure Virtual Enclaves (SVE) [23] infra-
structure allows multiple organizations to share
resources while retaining organizational autonomy
over local resources. SVE provides tools for (1) access
policy specification via RBAC and (2) policy decision
and enforcement via Access Calculators and Intercep-
tor/Enforcers respectively. The SVE infrastructure is
implemented in Java. Java RMI is used for intra-
enclave communication and Ensemble group

3The initial version of MDRCC, called RCC, provided
RBAC policy administration for an individual domain and
was implemented in Visual Basic.

Administering Access Control in Dynamic Coalitions

communication via JavaGroups Interface is used for
inter-enclave communication. Resources in SVE are
distributed applications based on Java RMI, Microsoft
DCOM, Sun’s Java Web Server and Microsoft’s IIS.

The Yalta system [24] enables secure tuplespaces
distributed across administrative domains. A tuple-
space is a content-addressable shared memory. Entities
in Yalta share information through a shared tuplespace
that is distributed across administrative domains. Yalta
provides for policy specification via Java’s policy
objects, policy decision and enforcement via Java
Authentication and Authorization Service(JAAS) inter-
face, and privilege distribution and revocation via a
threshold CA and a Certificate Revocation Notification
(CRN) service respectively. Tuplespaces in Yalta are
implemented using JavaSpaces. The threshold CA is
implemented in Java using the Yalta JCE provider,
which, in turn, is implemented using Jini and Java RMI
over SSL.

dRBAC [7] is a decentralized trust management
and access control mechanism. The supporting infra-
structure is implemented in Java and enables resource
sharing across administrative domains. The tools pro-
vide for policy specification via RBAC, and provide
privilege distribution and revocation and policy
enforcement via a distributed network of wallets.

However, none of the above work (SVE, Yalta
and dRBAC) provide tools for negotiating access poli-
cies, wholesale and selective distribution and revoca-
tion of privileges, reviewing access policy and joint
administration of resources.

Phillips, et al. [21], describe a security model and
enforcement framework that controls access to APIs
of software that operate in a distributed environment
running middleware like JINI or CORBA. The frame-
work provides tools for policy specification via
RBAC, policy decision and enforcement and privilege
distribution and revocation via Unified Security
Resource (USR). USR is a set of middleware
resources (JINI and CORBA) that manage all manda-
tory access control (MAC) and RBAC meta-data for
users, user roles and resources. However, the frame-
work uses password based authentication that might
cause longer coalition set up times. This work pro-
vides tools for access review but does not provide
tools for negotiating access policies, jointly adminis-
tering resources or wholesale selective distribution
and revocation of privileges.

TrustBuilder [25] addresses the problem of cre-
dential negotiation for trust establishment between
clients and resource servers. This work assumes extra-
technological resource sharing agreement between
domains and deals only with credential negotiation.
This would not scale well in large coalitions where
users have to negotiate credentials on every access. In
our work we facilitate multi-party negotiations
between domains to come up with resource sharing

19th Large Installation System Administration Conference (LISA °05) 251

Administering Access Control in Dynamic Coalitions

agreements and policies for member domains to gain
access to those resources.

Access Control in Distributed Systems

Though the following work doesn’t deal with
coalitions explicitly, it is relevant to our work.
Herzberg et al. [11] presents a Trust Policy Language
(TPL) that allows organizations to define policies that
map users to roles based on credentials presented by
the user and those automatically retrieved by the sys-
tem from credential repositories. RT [19] is a family
of Role-Based Trust Management languages for repre-
senting policies and credentials in distributed autho-
rization. KeyNote [4] is a decentralized trust manage-
ment system that provides policy specification via Pol-
icyMaker, policy decision via Keynote policy inter-
preter that takes the application’s policy and creden-
tials presented in the request and outputs a decision. It
de-couples the application logic from access policy
and authorization logic. The RBAC model employed
by RCC may have fewer features when compared with
TPL, RT, KeyNote, and dRBAC. However, RCC has
an implementation that provides support for easy con-
straint specification and verification and an intuitive
GUI for policy specification, visualization and admin-
istration.

Architecture and Access Control Tools

In Figure 1, we outline the architecture for administra-
tion of access control in a dynamic coalition compris-
ing of two domains — which can easily be extended to
n domains. We assume that each autonomous domain
has its own Identity Certificate Authority (CA) that

Bobba, et al.

distributes identity certificates to users registered in
that domain, and a container of users, resources
(objects, applications), and privileges. To participate
in the coalition each domain (administrator) installs
the Coalition Resource Management (CRM) toolkit
that consists of MDRCC, an Attribute CA, and a
Secure Group Communication (SGC) toolkit.
MDRCC provides specification of access control poli-
cies in the RBAC model, partially automated negotia-
tion of the CAS, a visual common view of coalition
operations, and access review capability. Once the
CAS is instantiated on the container of users and
resources, MDRCC provides a PDP via the container
and administration of access policies for the users and
resources via an intuitive GUIL. The Attribute CA dis-
tributes (and revokes) attribute certificates (ACs) to
both local and foreign domain users authorizing access
to local domain resources. To jointly administer coali-
tion resources, member domains establish a Joint
Attribute Authority (JAA) that consists of an MDRCC
module and a Joint Attribute CA (JACA), that is, an
Attribute CA whose private key is shared among the
member domains in a threshold manner [5]. As an
example of a resource provider, coalition domains also
establish local domain and coalition web servers that
manage local and jointly administered applications
(e.g., App O). The SGC component enables domains
to communicate securely; e.g., to establish a CAS.

Policy Specification

MDRCC uses the RBAC access control model
for policy specification. We chose the RBAC model
for two reasons. First, it simplifies administration of
access control for large systems by separating the

Joint Attribute Authority (AA)

Joint Attribute CA

Coalition Resource Server

App
0
‘Web

(JACA)
RBAC Tool Server Jointly
(MDRCC) Administered
Joint
/ \ Administration
CRM CRM
omain 1 vomain 2
Identity| \ Acr. || Attr.CA Attr. CA Identity
Certs)/ (ACA . ACA
CA Ay Negotiate Ay CA
Identity RBAC & Import RBAC
Cert. Cert.
Iil Tool Tool
User i- i- User
Domain Common Domain
Access [———
Role Role
Users . State Users
Resources Control Control Resources
Privileges Center) Center) Privileges
SGC SGC

Figure 1: Architecture for access control in dynamic coalitions.

252 19th Large Installation System Administration Conference (LISA °05)

Bobba, et al.

assignment of resource privileges to roles and users to
roles [6]. Second, it supports easy specification and
verification of constraints; e.g., Separation of Duty,
and obligation constraints [8, 9, 2]. Though there are
several policy specification tools based on RBAC
(e.g., [7, 19, 11]) we chose MDRCC because it has
been implemented, supports constraint specification
and verification, and has a policy visualization lan-
guage as well as an intuitive GUI that allows domain
administrators to have a common view of coalition
operations and to administer those operations from the
GUI (e.g., add/remove users from roles).

Common Access State Negotiation

We use MDRCC and the SGC tool for partial au-
tomation of the process of negotiating a CAS among
member domain. Administrators use MDRCC’s GUI
to encode negotiation constraints that can be either
global, in which case they are known and agreed upon
by all member domains, or local, in which case the
constraints may remain private to some member
domains. Types of constraints include Separation-of-
Duty policies and cardinality constraints. Each domain
administrator then uses MDRCC’s intuitive GUI to
specify access policies of resources they are willing to
share and provides a view of these resources to other
member domains. Any domain administrator then
composes a proposal of a CAS (again using MDRCC'’s
GUI) and sends the proposal to the other member
domains. On receiving this proposal, domain adminis-
trators can view it and verify that it satisfies both
global and local domain constraints (local constraints
are also encoded using MDRCC’s GUI). Domain
administrators either register their vote on a given pro-
posal or propose alternative CAS. Once all domains
agree on a given proposal it is committed in that all
domain administrators use MDRCC to instantiate the
negotiated CAS on the local system; i.e., abstract
objects and permissions in the CAS are mapped to
actual objects and permissions of target systems.

Several approaches (e.g., agent-based) that fully
automate multi-party access policy negotiations have
been proposed (e.g., [3]) but have not yet been fully
implemented. Though we are exploring such
approaches, for the current system we chose the par-
tially automated approach with MDRCC because, in
practice, domain administrators would need to get
involved in the negotiation as they would be responsi-
ble for administering the coalition and MDRCC pro-
vides these administrators with an intuitive GUI for
the negotiation and administration.

Policy Decision and Enforcement

When a resource provider gets an access request
it needs to verify the request against a specified access
policy. To do so, the resource provider sends a request
to a PDP and obtains the policy decision. In our solu-
tion this PDP is provided by the container where
MDRCC instantiates the negotiated CAS. (As we will

Administering Access Control in Dynamic Coalitions

see later, Windows Active Directory is the container in
our implementation that allows resource providers to
send Lightweight Directory Access Protocol(LDAP)
queries for policy decisions). This approach is scalable
and is employed by many large-scale distributed sys-
tems; e.g., the XACML specification for web services
[20]. After the resource provider obtains the policy
decision it must enforce it. In our system we use a web
server as an example resource provider and after
obtaining a policy decision from the PDP the web
server enforces it by allowing or denying access to the
requested web page.

Distribution and Revocation of Privileges

Once a CAS is negotiated and instantiated, access
privileges sanctioned in the CAS need to be distributed
and we use attribute certificates to do so. We assign
role memberships in attribute certificates and use a
Public Key Infrastructure (PKI) for distribution and
revocation of attribute certificates. Coalition users send
requests to domain Attribute CAs for attribute certifi-
cates that grant them privileges to access the domain’s
resources. These requests includes the users’ identity
certificates. Attribute CAs verify the validity of the
identity certificate and send requests to the PDP to ver-
ify the user’s certificate request; i.e., to verify that the
user has been assigned to the requested role in the
CAS. Based on the reply from the PDP, Attribute CAs
issue the attribute certificates. When users send access
requests to resource providers with their attribute cer-
tificates, the resource providers verify the validity of
the attribute certificates and query the PDP to verify if
the roles assigned in the attribute certificates have the
necessary privileges to access the requested resources.
To revoke privileges, Attribute CAs simply revoke the
attribute certificates and resource providers will no
longer be able to validate the attribute certificates
accompanying the access requests.

In addition to sharing privately owned resources,
coalition members also benefit from jointly administer-
ing certain resources. Examples of such resources
include intelligence reports, purchase orders for equip-
ment, and financial data. In some coalitions, jointly
administered resources may include auditing applica-
tions that are used to ensure that all domains are adher-
ing to predefined access policies. These resources are
typically critical for the coalition objectives and, there-
fore, must remain with the coalition even after the
departure of member domains. To ensure the continuity
of access to jointly administered resources in the pres-
ence of coalition dynamics, member domains setup a
JAA. Since joint administration is consensus-based it is
important to ensure that no single domain should be
able to unilaterally define and modify access policies
of a jointly administered resources [16]. To achieve
this, the JAA comprises a Joint Attribute CA whose
private key is distributed among the member domains;
i.e., it uses threshold cryptography with each domain
maintaining a share of the private key and using that

19th Large Installation System Administration Conference (LISA ’05) 253

Administering Access Control in Dynamic Coalitions

share for generating distributed signatures on attribute
certificates [26]. The process of distributing and
revoking privileges for jointly administered resources
is similar to that for private resources except that sig-
natures on the certificates are computed in a distrib-
uted manner with all domains participating to ensure
consensus.

MDRCC is integrated with the domain Attribute
CAs in each domain and with the Joint Attribute CA
at the JAA to provide wholesale, selective distribution
and revocation of attribute certificates. Administrators
grant privileges to all users of a joining domain by just
instantiating the CAS via MDRCC. MDRCC updates
the container that acts as a PDP (w.r.t. certificate
issuance) for the Attribute CA. Users of the joining
domain can then request the Attribute CA (of the
domain administering the shared resource) for
attribute certificates before their first access to the
resource and use the issued attribute certificate to
access the resource there after. Whenever a user is
issued an attribute certificate the Attribute CA regis-
ters it with its local MDRCC. Domain administrators
can revoke all privileges of all users of a leaving
domain just as easily as revoking the privileges of an
individual user — with just a few clicks. When an
administrator revokes user privileges via MDRCC'’s
GUI, a request is sent to the local Attribute CA to
revoke the respective attribute certificates. The
Attribute CA revokes the attribute certificates and
publishes a CRL.

Access Review

MDRCC uses the capabilities of the underlying
RBAC language and a user-friendly GUI for access
review and visualization. Domain administrators can (1)
perform an access review along the desired lines (e.g.,
per-subject review, per-object review), and (2) verify the
satisfaction of policies and constraints (e.g., Separation-
of-Duty policies, obligation constraints) using MDRCC’s
interface. Also, once a policy is specified in MDRCC
using the interface, MDRCC continuously monitors all
future administrative actions for compliance.

Component Design and Implementation

Our tools are primarily implemented in Java and
have been tested in Windows 2000 server environ-
ment. In this section we describe the implementation
of the main components of our tools and the interac-
tion between those components. In order for all the
above components to inter-operate in a coalition envi-
ronment, inter-domain trust relations must be estab-
lished. For example, for MDRCC to verify signatures
on CAS before instantiating it, MDRCC needs to have
public-keys/certificates of the administrators and also
trust them. These trust relations are set up manually
before coalition set up using Windows Certificate
Trust Lists that are easily composed and shared among
the various components.

Bobba, et al.

Multi-Domain Role Control Center (MDRCC)

MDRCC is a Java implementation of a Role-
Based Access Control (RBAC) model [1] extended
with general role hierarchies across multiple domains,
static separation of duty and cardinality constraints,
and advanced access review facilities. In MDRCC,
each user or role is owned by a particular domain and
the roles owned by a domain form a hierarchy based
on the specified role inheritance relation. In each
domain, the base of the role hierarchy is a special role
called the domain base role. Users of any domain can
be assigned to a role in a given domain. Roles are
assigned abstract permissions to abstract objects. In
addition, MDRCC includes data structures for (1)
mapping selected portions of a role hierarchy within a
domain to user accounts and groups on the domain
controller, and (2) mapping the authorization informa-
tion at the enterprise level (that is in terms of abstract
objects and abstract permissions) to actual objects and
permissions on the resources resident in various het-
erogeneous systems in the format required by native
access control structures.

MDRCC is a three-tiered component that is
made up of the following tiers: a Presentation Layer,
an Application Logic Layer, and a Data Layer. The
presentation layer comprises the MDRCC client(s),
the application layer comprises the MDRCC server
and MDRCC agents (resident in various target sys-
tems), and the data layer comprises the data reposi-
tory. An MDRCC client provides a GUI for displaying
the multi-domain RBAC model graph (or role graph),
capturing user (Administrator) actions and sending
them to the (remote) MDRCC server. The MDRCC
server receives user (administrative) commands from
the client, and executes them by accordingly updating
the data layer. The MDRCC server is also responsible
for mapping selected sub-graphs of the role graph
(called views) to user accounts and groups on hetero-
geneous hosts (called also target systems), and for
mapping abstract objects and role permissions to
actual objects and permissions structures (e.g., ACLs)
on those hosts. For these tasks, MDRCC uses agent
software running on each host to create/delete groups
and user accounts, and set up ACLs, according to
commands received from the MDRCC server. The
data layer consists of a directory service, which stores,
retrieves, and protects the actual multi-domain RBAC
data; i.e., the domain information, the user and role
sets, the various relations, the abstract objects, and the
mappings between multi-domain RBAC data and tar-
get system data. In our system, the Windows 2000
Active Directory provides the directory service; i.e., it
is the data layer. The communication between
MDRCC client and server is via SSL and is imple-
mented using JSSE packages.

An MDRCQC client not only provides visual access
policy representation (see Figure 2) by displaying the
role graph but also provides a very intuitive and user

254 19th Large Installation System Administration Conference (LISA ’05)

Bobba, et al.

friendly GUI for administrative actions; e.g., creating
roles, assigning permission to roles. For negotiating a
CAS, domain administrators use an MDRCC client to
build a role graph (a CAS proposal) from the known set
of resources that domains are willing to share and export
the role graph into a compact, machine readable access
state file. Other domain administrators then import the
proposed CAS file and visualize it. They can verify that
the proposed CAS satisfies local permission-based con-
straints using MDRCC'’s constraint verification facilities,
and then either vote upon it or propose a new CAS.
MDRCC currently supports the specification and verifi-
cation of Static Separation of Duty (SSD) and cardinality
constraints [8].

Once a CAS has been agreed upon all the admin-
istrators sign it with their private keys; i.e., to enforce
agreement. The signed CAS is then imported into
MDRCC at each domain and also at JAA. The CAS is
then instantiated; i.e., abstract objects and permissions
in the CAS are mapped to actual objects and permis-
sions of target systems after verifying the signatures
on the CAS.

Figure 2 shows a typical view of MDRCC’s GUI
and the Attribute CA GUI. MDRCC represents users
and roles of the CAS as ovals of different colors, each
color corresponding to a different domain. Roles are
represented with solid ovals and users with solid ovals
enclosed in an outer oval. Here we see two users from
county C and a user from domainl assigned to role

Administering Access Control in Dynamic Coalitions

“Manager”. By right-clicking on any oval a drop-
down menu is displayed which allows different opera-
tions for manipulating the MDRCC graph, setting and
viewing role and user permissions, revoking user and
viewing Separation-of-Duty constraints. Further
options are available from the menu bar at the top
which allow for changing the domain view, so that any
domain can have a view of the entire CAS.

For access review administrators can perform
either a per-subject review (reviewing all the permis-
sions a subject has to all objects) or a per-object
review (reviewing all users who have access permis-
sions to a given object) with just a few clicks. For
example, by right clicking on a user node in the graph
and clicking “view permissions” in the drop down
menu performs a per-subject review. Figure 3 shows
how MDRCC allows for easy per-subject review of
privileges. By left-clicking on the oval of a particular
user, MDRCC displays all of the user’s memberships
to roles across all domains of the coalition. By right-
clicking on each role and selecting view permission
we can see the resources the user gets access to
through that particular role and also the operations the
user is allowed to perform on the resource. In some
cases there is a need to view all of the user’s accesses
to coalition resources directly without viewing his role
memberships, and MDRCC allows for viewing those
accesses by right-clicking on the user name and select-
ing view permissions.

B4 Multi-Domain Role Control Center

=10l x|

File Display Operations Coalition Configuration

Server: domaini

Displaying view fnr domain: domaini

Running as: super

Bﬁmdhs@dumam'! 3 1//‘"‘_ \\ T_Br]

%Set prlm‘ary
Add ascendant...
Add descendant...

—

Manager
Inherit this

Uninherit this

Instantiate...

Remaove

Revoke users

Set privileges...

JACA

(Issued Certificates | Revoked Certificates |

Set permissions on... %]

View permissions
View privileges

A | B |

| [View SSD relations

1277958026081 ... CN=T_Brown,0..

2541978198390, CHN=C_Mills,0lU=.. E=admin@JAf.c.. Sun Ma_\,rl View user count)
24342':'8581 855 CN=S_MEr‘[In,OUE=admIn@JMESun Ma'y' L= U =P = - = = PO
2432844280673, CN=E Hanks,O.. E=admin@@JAs.c.. SunMay 16 16:0... Mon May 16 16:0...
E=admin@ AA c.. Sun May 16 16:0... Mon hay 16 16:0...

Figure 2: General view of MDRCC and Attribute CA during coalition operation.

19th Large Installation System Administration Conference (LISA °05) 255

Administering Access Control in Dynamic Coalitions

Figure 4 shows MDRCC’s interface for viewing
and defining static Separation-of-Duty (SSD) permis-
sions. The upper left quarter shows a list of defined
constraints. A constraint is defined by a role set and a
threshold. In this case we have one constraint with a
role set called ssdl and a threshold of two. When a
constraint is selected from the list, the roles that the
role set of this constraint encompass are shown in the
upper right quarter. The meaning of the constraint,
ssdl:2, shown in the figure is the following: no more
than two roles of the role set ssdl can have a common
user. In Figure 3 we can see that this constraint is vio-
lated as user J Doe@domain3 belongs to more than
two roles of the role set ssd/ and MDRCC shows an
appropriate error message and does not proceed fur-
ther until the conflict is resolved. On the lower right
quarter of Figure 4 are the coalition roles, for selection
when creating new constraints.

Certification Authorities

Our system comprises three different kinds of
CAs namely, domain Attribute CA, Joint Attribute CA
and domain Identity CA. We assume that every coali-
tion member has an Identity CA prior to coalition for-
mation and hence do not deal with it here. However,
for our testing and experiments we configured the CA
service in windows 2000 server environment to act as
an identity CA for member domains.

Attribute CA. Each coalition member domain
has an Attribute CA that issues attribute certificates to
both local domain and foreign domain users authoriz-
ing access to local domain resources. Attribute CA is a

Bobba, et al.

three-tiered component comprising the following tiers:
a Presentation Layer, an Application Logic Layer, and
a Data Layer. The presentation layer comprises the
Attribute CA console (GUI), the application logic
layer comprises the CA logic, and the data layer con-
sists of key stores, issued certificates, published Cer-
tificate Revocation Lists (CRLs) and persistent data
structures. The Attribute CA console provides an
interface for administrative actions (e.g., starting the
CA, stopping the CA, generating new keys, viewing
currently issued certificates, viewing revoked certifi-
cates) and is implemented using javax.Swing package.
The Application Logic Layer deals with issuing cer-
tificates, revoking certificates, and generating keys
and is implemented using the Bouncy Castle Crypto
API [13] and Java JCE packages.

Joint Attribute CA. Joint Attribute CA resides at
JAA and issues attribute certificates to coalition users
authorizing them access to jointly administered
resources. Similar to Attribute CA, Joint Attribute CA
is a three-tiered tool that comprises a Presentation
Layer, an Application Logic Layer, and a Data Layer.
But unlike Attribute CA, which uses a standard RSA
cryptosystem, Joint Attribute CA uses a shared-RSA
cryptosystem [5] and hence its Application Logic
Layer and Data Layer are distributed among the coali-
tion member domains. (In shared public-key cryp-
tosystems the public key is owned by multiple princi-
pals with each principal having a share of the corre-
sponding private key. The shared private key is gener-
ated in a distributed manner by all the participating
domains (principals) and each domain retains a share

¥ Multi-Domain Role Control Center

File Display Operations Coalition Configuration

Server: domain1

Displaying view for domain: domain1

=lof x|

Running as: super

Set primary
Add ascendant...
Add descendant...

Inherit this
Uninherit this

Instantiate...

Remove
Revoke users

Set privileges...

Set permissions on...
View permis Srﬁs

View privileges

J_Doedomaing

Officer Auditor ' thac@dom3

N/

rhac

4] | View SSD relations

View user count

Figure 3: Per-subject review capability of MDRCC.

256 19th Large Installation System Administration Conference (LISA °05)

Bobba, et al.

of the private key). These layers consist of (1) signa-
ture servers that reside in each domain for maintaining
shares of the private key and signing certificates and
CRLs and (2) a coordinator that resides at the JAA for
coordinating the operations of the signature servers;
i.e., the signature operation is distributed and is per-
formed by the signature servers but is composed into a
valid RSA signature by the Joint Attribute CA coordi-
nator (see Appendix A for details on the employed
shared-cryptosystem). The application logic layer is
implemented using the Bouncy Castle Crypto API
[13] and the Yalta JCE provider [24], which imple-
ments Boneh and Franklin’s shared-RSA cryptosystem
[26] with signature servers that communicate over
Java RMI. We augmented the signature servers with a
policy module (i.e., to enable policy checking capabil-
ities). The Attribute CA/Joint Attribute CA GUI in
Figure 2 displays the issued and revoked attribute cer-
tificates issued to both local users (in case of Attribute
CA) and users from other domains. It also has menu
options that allow the operation of Attribute CA to be
suspended and started as needed.

Certificate issuance for Attribute CA and Joint
Attribute CA is provided via a web server. Users
authenticate to the web server using their domain iden-
tity certificates and upload their certificate request files,
which are PEM encoded PKCS 10 files. Users then
download issued PEM encoded X.509 V3 certificates.
Both Attribute CA and Joint Attribute CA check with
local MDRCC (which acts as a PDP for certificate
issuance) and register issued and revoked certificates
with MDRCC. In Joint Attribute CA the signature
servers are also capable of checking certificate requests
with local MDRCC to ensure that they comply with the
CAS. Communication between the CAs (Attribute CA
and Joint Attribute CA, both coordinator and signature

Administering Access Control in Dynamic Coalitions

servers) and MDRCC is via LDAP. When an admin-
istrator instantiates a negotiated CAS on the Active
Directory, a PDP is automatically created that allows
both Attribute CA and Joint Attribute CA to verify cer-
tificate requests providing wholesale distribution of
privileges. If the instantiated CAS includes the depar-
ture of a domain then the administrator can revoke all
users of that domain using the MDRCC client’s GUI.
This action results in the MDRCC Server sending a
signed list of serial numbers (of certificates) that need to
be revoked to the Attribute CA/Joint Attribute CA.
Attribute CA/Joint Attribute CA process the request and
publish a CRL on the web server, the URL for which is
included in all certificates issued by the CAs. Attribute
CA/Joint Attribute CA then register the revoked certifi-
cates with MDRCC via LDAP. Thus MDRCC and
Attribute CA/Joint Attribute CA provide wholesale,
selective distribution and revocation of privileges.

Figure 5 shows MDRCC’s interface that allows
for selective privilege revocation. Any domain (admin-
istrator) can selectively revoke the users from another
domain (or all other) in a single operation. This figure
in particular shows the MDRCC’s ability for selective
revocation where the privileges of users from another
domain are revoked only for a specific role and not all
roles in general.

Resource Server

In our implementation we use web pages as
example resources and use the Windows IIS 5.0 web
server as the resource server. To access web pages
users submit attribute certificates to the web server,
which checks the validity of the certificates by verify-
ing the signature, checking the expiry time, and check-
ing against the CRL for revocation information. After
verifying the certificate (using the certificate verifica-
tion functions built-in with IIS 5.0), the web server

4 static Separation of Duty Policies 5]
Role sets and thresholds: _ Members:
ss1:2 IntelligenceAnalyst@domain2

x

55D error: User "1_Doe@domain3” is in too many roles of the set ssdl

e’

X

=

SecuritySpecialist@domainz
Auditor@domainl

IntellOfficer@domain3
Auditor@domainl
DataAnalyst@domain3
SecuritySpecialist@domain2
IntelligenceAnalyst@domain2
Officer@domainl

-

Figure 4: RCC’s interface for specifying Separation-of-Duty constraints.

19th Large Installation System Administration Conference (LISA ’05) 257

Administering Access Control in Dynamic Coalitions

queries MDRCC (via LDAP) and grants or denies the
request based on the authorization reply from MDRCC.

Secure Group Communication (SGC)

Secure group communication is needed in
dynamic coalitions to aid administrators in negotiation
during coalition set up and for smooth operation of the
coalition after it is set up. Since the SGC requirement
is not unique to dynamic coalitions we chose to use
existing SGC tools. We use both Secure Spread [14]
and Secure E-mail List Service [18]. The former pro-
vides secure, reliable multicast while the latter pro-
vides ease of use of e-mail in a secure manner.

Experimental Setup and Results

We set up experiments to measure the time taken
for setting up a coalition of three domains and for
domain join and leave events using our access control
tools. Each domain in the experiment has ten applica-
tions that it shares with the coalition (private
resources), ten roles that have permissions for the
shared applications, and fifty users that get assigned to

Bobba, et al.

foreign domain roles and jointly administered roles for
access to shared applications. Coalition members set up
a JAA with ten jointly administered applications and
ten roles with permissions for these applications. Coali-
tion setup time is shown in Table 1 and includes time
for importing a negotiated CAS (we do not include the
time for negotiating a CAS as it is largely influenced
by extra-technological decisions and actions), shared-
key generation (since distributed shared-key generation
is probabilistic the key generation times shown in the
table are averaged generation times averaged over
10-15 runs), and certificate generation and distribution.

For coalition dynamics, we measured the time
taken for a domain to join an existing coalition of
three domains and for a domain to leave a coalition of
four domains. The results are shown in Table 1. In
case of domain departure we assume that the departing
domain relinquishes its share of private key and hence
there is no need to generate a new key. Note that this
assumption only holds as long as the number of mem-
ber domains that have left the coalition after the last
key generation is not greater than floor(n/2) where n is

=
-‘(' ol

File Display Operations Coalition Configuration

=0l x|

Server: game@domain2. Role view: RCC

Running as: super

Bl Revoke Users

Roles Domain:

Users Domain: User:

|:dumaiﬁ2 . |

| hﬂel[ﬂfﬁoer@i-omainz v jay |

]

| Revoke | | Close |

Figure 5: MDRCC'’s interface for wholesale, selective revocation.

Shared-key Cert. Dist./
generation | Exporting | Importing | Cert. Dist. Revok. by Total time
(1024 bits) CAS CAS by JACA domain ACAs
Coalition set- . .
. . . 14 min 3 * 6 min .
ggr;v;itzsfs 41 min N/A 11 min (500 certs) | (3 * 500 certs) 84 min
Lo . . 17.5 min 4 * 2 min .
Domain Join 46 min 10 sec 16 min 600 certs (4 * 125 certs) 88 min
Domain . 3 * 2 min .
Leave N/A 10 sec 11 min N/A (3 * 125 certs) 17 min

Table 1: Experiments for Coalition Setup, Domain Join and Domain Leave.

258 19th Large Installation System Administration Conference (LISA °05)

Bobba, et al.

number of domains in the coalition at the time of key
generation. Otherwise the member domains that left
the coalition can collude to compromise the private
key [5]. A domain leave event with key generation
takes about the same amount of time as a domain join
event. As can been seen from the measured times
coalition set up and dynamics take only few hours at
most for moderate sized coalitions there by illustrating
the scalability of our access control tools.

Lessons Learned

The tools were demonstrated at various DARPA
Principal Investigator (PI) meetings and most recently
at the Joint Warrior Interoperability Demonstrations
(JWID) in June 2004 [12]. JWID is an annual Chair-
man of the Joint Chiefs of Staff event that enables U. S.
Combatant Commands and the international community
to investigate command and control, communications
and computer (C4) solutions that focus on selected core
objectives. JWID 2004 assessed capabilities and tech-
nologies that allow information sharing with Homeland
Security and Homeland Defense partners. This particu-
lar demonstration experience gave us a lot of useful
feedback on our tools. JWID 2004 was conducted in a
simulated operational environment. Our goal was to
train users to use our tools who, in turn, demonstrated
the usability of the tools to military personnel.

Our training experiences can be summarized in
the following four lessons. First, we could train users
(who had little security knowledge) in a very short
amount of time to use our tools because 1) the tools
enable visual representation of the CAS and provide
an intuitive GUI and 2) we had generated and pro-
vided the users with extensive documentation in the
form of task guides that take the users through execu-
tion of common coalition administrative operations
step by step with the aid of images and animations.
Second, the lack of security knowledge combined with
multiple windows/interfaces of our tools intimidated
the users. The users were expecting one unified tool
(interface) but in reality we have a set of tools that
integrate functionally and have individual interfaces.
Third, in spite of our best efforts to test the system
prior to the demonstration we still over looked flaws
that were (inadvertently) detected in user training. For
example, we did not prevent against multiple instanti-
ations of MDRCC and users started multiple instances
of MDRCC leaving the data layer in unknown states.
Fourth, though our set of tools demonstrated the func-
tional capabilities expected of them by the evaluators
at JWID 2004, they were not as effective as we would
have liked largely because users of the tools need to be
knowledgeable of the underlying technologies in order
to use them effectively. Our efforts in making them
user friendly and providing good documentation
helped us to a certain extent but did not eliminate the
necessity to educate the users about the underlying
technologies.

Administering Access Control in Dynamic Coalitions

Conclusions

We have developed tools for administering
access control in dynamic coalitions. In particular,
tools for negotiating resource-sharing agreements,
access policy specification, access review, wholesale
and selective distribution and revocation of privileges,
and policy decision and enforcement. Our experiments
demonstrate that these tools scale to handle reasonable
size coalitions. Demonstrations of the tools at JWID
2004 provided an opportunity for user training and
obtaining useful feedback. Though we demonstrated
our tools in Windows environment they can easily be
ported to other platforms. In the future, we plan to
implement the tools over web services for platform
independence and rapid prototyping of enhanced fea-
tures and capabilities.

Acknowledgements

We would like to thank Adam Moskowitz and
the anonymous reviewers for their helpful comments
and suggestions. Part of the first and fourth authors’
work was funded by the Office of Naval Research
under contract N00014-04-1-0562. The second, third
and fifth authors’ work and part of the first and fourth
authors’ work was funded by the Defense Advanced
Research Projects Agency and managed by the U. S.
Air Force Research Laboratory under -contract
F30602-00-2-0510. The views and conclusions con-
tained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the Office of
Naval Research, Defense Advanced Research Projects
Agency, U. S. Air Force research Laboratory or the
United States Government.

Bibliography

[1] ANSI INCITS 359-2004, Information technol-
ogy: Role based access control, 2004.

[2] Ahn, Gail-Joon and Ravi Sandhu, “Role-based
authorization constraints specification,” ACM
Transactions of Information System Security,
Vol. 3, Num. 4, pp. 207-226, 2000.

[3] Bharadwaj, Vijay G., and John S. Baras,
“Towards automated negotiation of access con-
trol policies,” POLICY '03: Proceedings of the
4th IEEE International Workshop on Policies for
Distributed Systems and Networks, p. 111, IEEE
Computer Society, Washington, DC, 2003.

[4] Blaze, Matt, Joan Feigenbaum, and Angelos D.
Keromytis, “Keynote: Trust management for
public-key infrastructures (position paper),” Pro-
ceedings of the 6th International Workshop on
Security Protocols, pp. 59-63, Springer-Verlag,
London, 1999.

[5] Boneh, Dan, and Matthew Franklin, “Efficient
generation of shared RSA keys,” Lecture Notes
in Computer Science, Vol. 1294, 1997.

19th Large Installation System Administration Conference (LISA °05) 259

Administering Access Control in Dynamic Coalitions

[6] Ferraiolo, David, Janet Cugini, and Richard
Kuhn, “Role-based access control (rbac): Fea-
tures and motivations,” Proceedings of 1lth
Annual Computer Security Application Confer-
ence, pp. 241-248, Springer-Verlag, New
Orleans, LA, 1995.

[7] Freudenthal, Eric, Tracy Pesin, Lawrence Port,
Edward Keenan, and Vijay Karamcheti, “drbac:
Distributed role-based access control for dynamic
coalition environments,” Proceedings of Interna-
tional Conference on Distributed Computing Sys-
tems, pp. 411-420, Vienna, Austria, 2002.

[8] Gligor, Virgil, Serban Gavrila, and David Fer-
raiolo, “On the formal definition of separation-
of-duty policies and their composition,” RSP:
19th IEEE Computer Society Symposium on
Research in Security and Privacy, Oakland, CA,
1998.

[9] Gligor, Virgil D. and Serban 1. Gavrila, “Appli-
cation-oriented security policies and their com-
position (position paper),” Proceedings of the
6th International Workshop on Security Proto-
cols, pp. 67-74, Springer-Verlag, London, UK,
1999.

[10] Gligor, Virgil D., Himanshu Khurana, Radostina
K. Koleva, Vijay G. Bharadwaj, and John S.
Baras, “On the negotiation of access control
policies,” Revised Papers from the 9th Interna-
tional Workshop on Security Protocols, pp.
188-201, Springer-Verlag, London, UK, 2002.

[11] Herzberg, Amir, Yosi Mass, Joris Michaeli, Yif-
tach Ravid, and Dalit Naor, “Access control
meets public key infrastructure, or: Assigning
roles to strangers,” SP '00: Proceedings of the
2000 IEEE Symposium on Security and Privacy,
p. 2, IEEE Computer Society, Washington, DC,
2000.

[12] https://www.cwid.js.mil/public/cwid05fi/START _
HERE.html .

[13] http://www.bouncycastle.org/ .

[14] http://www.cnds.jhu.edu/research/group/secure
spread/ .

[15] Khurana, Himanshu, Serban Gavrila, Rakesh
Bobba, Radostina Koleva, Anuja Sonalker, Emil-
ian Dinu, Virgil Gligor, and John Baras, “Inte-
grated security services for dynamic coalitions,”
An extended exposition abstract in Proceedings
of the 3rd DARPA Information Survivability Con-
ference and Exposition (DISCEX II1), 2003.

[16] Khurana, Himanshu, Virgil Gligor, and John
Linn, “Reasoning about joint administration of
access policies for coalition resources,” ICDCS
'02: Proceedings of the 22nd International Con-
ference on Distributed Computing Systems
(ICDCS’02), p. 429, IEEE Computer Society,
Washington, DC, 2002.

[17] Khurana, Himanshu and Virgil D. Gligor, “A
model for access negotiations in dynamic

Bobba, et al.

coalitions,” WETICE °'04: Proceedings of the
13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WETICE 04), pp. 205-210, IEEE
Computer Society, Washington, DC, 2004.

[18] Khurana, Himanshu, Adam Slagell, and Rafael
Bonilla, ““Sels: a secure e-mail list service,” SAC
'05: Proceedings of the 2005 ACM symposium
on Applied computing, p. 306-313, ACM Press,
New York, NY, 2005.

[19] Li, Ninghui, John C. Mitchell, and William H.
Winsborough, “Design of a role-based trust-
management framework,” SP '02: Proceedings
of the 2002 IEEE Symposium on Security and
Privacy, p. 114, IEEE Computer Society, Wash-
ington, DC, 2002.

[20] Moses, Tim, “Core specification: extensible
access control markup language (xacml) version
2.0,” OASIS Specification Document, http://docs.
oasis-open.org/xacml/access_control-xacml-2_0-
core-spec-cd-04.pdf, 2004.

[21] Phillips, Charles E., Steven A. Demurjian, and T.
C. Ting, “Information sharing and security in
dynamic coalitions,” Proceedings of IEEE Infor-
mation Assurance Workshop, 2002.

[22] Phillips, Charles E., T. C. Ting, and Steven A.
Demurjian, “Information sharing and security in
dynamic coalitions,” SACMAT °02: Proceedings
of the seventh ACM symposium on Access con-
trol models and technologies, p. 87-96, ACM
Press, New York, NY, 2002.

[23] Shands, Deborah, Richard Yee, Jay Jacobs, and
E. John Sebes, “Secure virtual enclaves: Sup-
porting coalition use of distributed application
technologies,” Proceedings of the Network and
Distributed System Security Symposium (NDSS),
2000.

[24] Smith, T. J., G. T. Byrd, W. Xiaoyong, X. Hongjie,
K. Thangavelu, R. Wang, and A. Shah, “Yalta: A
dynamic pki and secure tuplespaces for distrib-
uted coalitions,” Proceedings of 3rd DARPA
Information Survivability Conference and Expo-
sition, Washington, DC, 2003.

[25] Winslett, Marianne, Ting Yu, Kent E. Seamons,
Adam Hess, Jared Jacobson, Ryan Jarvis, Bryan
Smith, and Lina Yu, “Negotiating trust on the
web,” IEEE Internet Computing, Vol. 6, Num. 6,
pp- 30-37, 2002.

[26] Wu, Thomas, Michael Malkin, and Dan Boneh,
“Building intrusion tolerant applications,” Pro-
ceedings of the 8th USENIX Security Symposium,
pp. 79-91, Washington, DC, 1999.

Appendix A: Shared RSA Public-Key Cryptosystem

In this section we discuss the use of shared pub-
lic key techniques for generation and distribution of
attribute certificates granting access to jointly owned
resources.

260 19th Large Installation System Administration Conference (LISA °05)

Bobba, et al.

Shared RSA Public Key Generation Algorithm

Here we review some of the features of the
shared RSA public-key generation algorithm of
[5].-The algorithm enables n domains to generate a
modulus N = pq and exponents e and d. At the end of
the computation all domains are convinced that N is
the product of two primes, however none of them
know the factorization of N. The public exponent e is
made public while d is shared among the domains in a
way that enables m-out-of-n threshold signature gener-
ation. That is, m domains are able to issue a certificate
without reconstructing the key d. This also implies
that an attacker who penetrates at most m-1 domains is
unable to obtain any information about the private key.
From the point of view of collusion the algorithm is
(n-1)/2 private. That is, even if (n-1)/2 domains share
the information they learn during the protocol, they
will still not be able to recover the factorization of N
or the private key d.

Joint Signatures with Distributed Private Key
Shares

For joint administration of access policies, the
public key K, of Joint Attribute CA (see Figure 1) is
generated using the shared key generation algorithm
resulting in private key shares that are distributed
among all member domains (i.e., a n-of-n threshold
sharing of the private key K3}). Once the public-key
K, has been generated, all domains must apply a
joint signature algorithm with their private key shares
in order to sign attribute certificates with the private
key K. The joint signature algorithm involves the
Joint Attribute CA coordinator sending a message (the
attribute certificate) to all the signature servers (co-
signers) with the message M to be signed and a key ID
comprising the hash of N and the public exponent e.
Each of the co-signers then apply their corresponding
private key shares d; to compute S; = M% mod N and
send the computations back to the coordinator. The
coordinator then computes the message signature

S =]1]S; mod N. This joint signature protocol is illus-

i=1
trated in [26]. Using this joint signature algorithm, the
domains sign threshold attribute certificates (and
CRLs) distributed by Joint Attribute CA. The joint
signature algorithm also works for a threshold sharing
of the private key; i.e., the private key K7, is shared in
a t-of-n manner among the member domains. The
algorithm is similar to the case above except that when
the coordinator only needs computations from ¢
servers and can compute the message signature

t
S=T11S; mod N.
i=1
Appendix B: List of Acronyms
This appendix contains a list of acronyms used in
the paper.

ACA Attribute Certificate Authority
ACL(s) Access Control List(s)

Administering Access Control in Dynamic Coalitions

CAC(s) Certificate Authority(ies)

CAS Common Access State

CRL(s) Certification Revocation List(s)

GUI Graphical User Interface

IIS Internet Information Service

JAA Joint Attribute Authority

JACA Joint Attribute Certificate Authority
LDAP Lightweight Directory Access Protocol
MDRCC Multi-Domain Role Control Center
PDP Policy Decision Point

PKI Public Key Infrastructure

RBAC Role-Based Access Control

SGC Secure Group Communication

19th Large Installation System Administration Conference (LISA °05) 261

