
Towards a Deep-Packet-Filter Toolkit
for Securing Legacy Resources

James Deverick and Phil Kearns – The College of William and Mary

ABSTRACT

Users of a network system often require access to legacy resources. Providing this access is a
difficult task for system administrators because the access protocols for those resources are typically
insecure. A common approach is to develop a custom wrapper or proxy that securely processes user
requests before forwarding them to the legacy server. The problem with this approach is that
administrators must develop a custom solution for every resource. We believe that there are common
requirements for managing these resources that can be addressed from a more centralized model.
The userspace queuing extensions of the Netfilter firewall modules provide a generic environment in
which protocol-aware deep packet filters can be constructed to enhance the security of resource
access protocols. We employ this environment to strengthen two commonly used legacy protocols,
and compare their requirements. We show that it is possible to secure legacy resources with minimal
degradation in performance. We also discuss considerations for development of a deep packet filter
toolkit to aid system administrators in securely managing legacy network resources.

Introduction

It has been our experience that, for a variety of
reasons, production networks typically house several
legacy resources. It may be the case that an applica-
tion critical to the users of a network is no longer
under active development, and no adequate substitute
has been found. If a newer solution is available, other
factors such as deployment cost or compatibility con-
cerns may prevent its installation. The result is that
system administrators must provide access to
resources that employ inherently insecure protocols, a
concept in conflict with their responsibility to main-
tain the security of the network and its resources.

By developing a way to manage these resources
securely, administrators can continue to provide the
needed services without endangering other compo-
nents of the system or risking the integrity of the
resources themselves. Currently, the only way to
achieve this is to develop a custom environment in
which to ‘‘wrap’’ each resource. No toolkit or frame-
work exists that allows administrators to secure exist-
ing protocols with minimal effort. We believe that
despite the arbitrary complexity of a protocol, certain
common requirements exist for administrators that
allow the development of such a toolkit.

As the basis for this toolkit, we employ the
userspace queuing extensions of the Netfilter firewall
[17] distributed with the Linux operating system. The
processing capabilities provided by the userspace
extensions allow us to collect any information deemed
appropriate for a resource request before determining if
the traffic should be allowed to contact the server. We can
delay, alter, or reroute packets, interactively challenge
authenticity, collect system status information, or anything
else dictated by the protocol and administrative require-
ments of the resource at hand.

To illustrate both the power and flexibility of this
approach, we consider two common protocols and the
weaknesses they contain. In both cases, newer versions
or extensions exist that address those problems, but we
assume that some other consideration such as cost or
compatibility prevents them from being deployed. This
provides an example of what we believe to be a com-
mon issue in typical network system environments.
Specifically, we discuss the lpr line printer protocol as
defined by RFC 1179 [9] and the Network File System
(NFS) protocol, version 3 [2]. Both of these systems
provide essential resources to users, yet neither pro-
vides any strong authentication of those users.

Using the Netfilter userspace queuing extensions,
we develop strong user authentication for each of these
protocols. In the case of lpr, we employ public-key
cryptography to ensure that users can only submit print
jobs under their own identities. This prevents users
from constructing raw print job control files in order to
print under a false identity, possibly bypassing quota
enforcement. Our technique also directly authenticates
users, allowing administrators to open the print server
to outside domains, such as wireless networks, provid-
ing users the ability to print securely from their lap-
tops. For the NFS example, we use symmetric-key
challenge-response authentication to secure filesystem
mount requests. In order to mount a secured filesys-
tem, a client must be in possession of the current key
and know the format of the challenge issued by the
firewall. This prevents unauthorized client machines
from mounting remote filesystems simply by pretend-
ing to be authorized hosts.

Both of our extensions significantly improve the
security of the original protocols, while introducing mini-
mal overhead. They demonstrate how two vastly differ-
ent protocols can be secured by the same basic technique,

19th Large Installation System Administration Conference (LISA ’05) 237

To w a r d s a Deep-Packet-Filter Toolkit for Securing Legacy Resources Deverick and Kearns

and suggest a set of tools that could be used by adminis-
trators to secure legacy applications and protocols with
significantly less effort than is currently required.

c
o
n
t
r
o
l

c
l
i
e
n
t

e
x
p
e
r
i
m
e
n
t
a
l

c
l
i
e
n
t

e
x
p
e
r
i
m
e
n
t
a
l

c
l
i
e
n
t

e
x
p
e
r
i
m
e
n
t
a
l

c
l
i
e
n
t

switch switch

switch

lab server

f
i
r
e
w
a
l
l

s
e
r
v
e
r

Figure 1: Prototype testbed.

Design Goals

Faced with the problems of securing and manag-
ing legacy resources in a network, we define the fol-
lowing requirements for a useful solution:

• Neither client nor server components of any
application should require modification to take
advantage of the features we provide. Many
existing approaches, such as application prox-
ies, are not always feasible since they require
application code to be rewritten or expanded.

• The solution must be generic enough to support
any application with minimal overhead. Each
application will impose different requirements
on the solution. It should allow administrators to
develop complex management systems without
developing entire filtering applications from
scratch.

• The system must be able to adapt to changing
conditions in the environment, adjusting its filter-
ing behavior accordingly. For example, depend-
ing upon application requirements, traffic from
authenticated clients might not need to be filtered
for a given period of time.

General Related Work

Because we deal with protocol-specific traffic
filtering, the most relevant existing work relates to
deep packet filtering [7]. Several authors have
acknowledged that the basic address/protocol-based
filtering provided by traditional firewalls is not suffi-
cient for many applications. In cases where filtering
requirements are tied directly to a given protocol,
stock firewalls are not appropriate. Instead, a filter that
examines protocol-specific information contained in
the packet payloads provides the required service.

Because deep packet filtering incurs a higher cost than
traditional header-based filtering, much of the research
attention has been paid to improving performance of
these filters, even via hardware solutions [4, 6, 18].
Very recently, it has been suggested [5] that forthcom-
ing firewalls must include some level of deep packet
filtering capability, due to the increasing number of
application-level attacks. We agree, and the toolkit we
develop is an essential step toward integrating these
protocol-aware filtering capabilities in commonly
existing software-based firewalls.

Implementations

Here we describe two prototypical applications
chosen to demonstrate the capabilities of our tech-
nique. Each is exemplary of different components of
the system interacting with different protocols. Both of
them were implemented on a six machine testbed in a
secure laboratory [12]. Figure 1 illustrates the testbed
layout. The firewall separates two private subnets. On
one subnet resides three test clients that interact with a
server residing on the other subnet. They are con-
nected by a path that travels through the firewall. This
is designed to emulate a typical setup in which a
perimeter firewall protects a server or set of servers
from client traffic, whether it originates from an inter-
nal network or an outside internet. We also place a
client-class machine on the server subnet to provide
control data for performance analysis. Since it is on
the same subnet, the control client need not traverse
the firewall to interact with the server. The machine is
composed of the same hardware that constitutes the
other three clients. By running identical client-server
applications on the control client and the firewalled
client, we can derive the overhead imposed by our
toolkit. Note that a second path exists through which
traffic could possibly travel from clients to servers, but
this connection is not a part of the testbed. It is used
for administrative purposes in the lab environment.

238 19th Large Installation System Administration Conference (LISA ’05)

Deverick and Kearns Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources

iptables has a modular extension interface that
allows developers to introduce additional features.
One module included in the distribution introduces a
QUEUE target that stores packets in a kernel data struc-
ture until they are retrieved by a userspace daemon.
This daemon can then analyze the packet and its con-
tents, and determine an appropriate course of action
using the resources provided to userspace programs.
Figure 2 illustrates the components of a firewall sys-
tem that uses this approach. Since it allows us to
implement more detailed packet analysis than the
built-in features of iptables, we employ this module in
the implementation of our deep packet filter daemons.

NFS Prototype Implementation

The Network File System [2] allows filesystems
on a sever to be exported over a network to multiple
clients. Clients can mount the filesystem, which then
appears as part of the local directory structure; net-
work operations are transparent to the user as he inter-
acts with the remote files.

192.168.2.5

1. Client generates pakcet and sends to server. 2. Packet matches queue target; sends to userspace daemon.

−p all −s 192.168.2.5 −j QUEUE

server

4. Application receives packet.

3. Daemon processes packet; sends to application.

Figure 2: Packet filtering with userspace queues.

IPTABLES -A FORWARD -p TCP -s $CLNTNET --dport sunrpc --tcp-flags syn syn -j ACCEPT
IPTABLES -A FORWARD -p TCP -s $CLNTNET --dport nfs --syn -j ACCEPT
IPTABLES -A FORWARD -p UDP -s $CLNTNET --dport nfs -j ACCEPT
IPTABLES -A FORWARD -p UDP -s $SERVER --sport nfs -j ACCEPT

IPTABLES -A FORWARD -p TCP -s $SERVER --tcp-flags ack ack -j QUEUE
IPTABLES -A FORWARD -p TCP -s $CLNTNET --dport sunrpc --tcp-flags ack ack -j QUEUE
IPTABLES -A FORWARD -p TCP -s $CLNTNET --dport sunrpc --tcp-flags urg urg -j QUEUE
IPTABLES -A FORWARD -p TCP -s $CLNTNET --dport sunrpc --tcp-flags fin fin -j ACCEPT
IPTABLES -A FORWARD -p UDP -s $CLNTNET --dport sunrpc -j QUEUE

Figure 3: Initial ruleset for authenticated NFS.

Since the filesystems being exported to remote
clients may contain sensitive information, we must
ensure that only authorized clients are able to mount
them. The stock implementations of NFS provide sim-
ple host-based authentication by comparing the IP
address of a client from which a mount request origi-
nates against a table of pre-authorized client addresses.

To further increase security, some environments employ
client MAC address filtering at the network switch level.

Even in this case, however, a malicious user can
gain unauthorized access to the filesystem. He needs
only to set manually the MAC address for his network
interface, configure his client with an authorized IP
address, and unplug a legitimate system. He can then
connect to the switch, replacing the connection of the
system whose MAC and IP addresses are being
spoofed. By taking these steps, the user presents a
client to the system that, in most configurations of the
currently prevalent protocols, is indistinguishable
from a valid, authorized client. These considerations
dictate the need for stronger authentication of clients
wishing to mount remote filesystems.

Related Work
Despite the presence of new, more secure, file

sharing paradigms [13, 3], traditional NFS is still
widely used. Accordingly, some attempts have been
made to strengthen authentication in the NFS protocol
itself. Ashley, et al. [1] introduced role based access
control to the protocol. O’Shanahan [15] replaced the
UID-based authentication in NFS with a public-key
cryptosystem. A less intrusive modification was pro-
posed by Goh, et al. [8]. In their system, the client
intercepts all filesystem operations and encrypts them
on the fly so that they are secure when stored on the
server. The underlying NFS structure isn’t changed,

19th Large Installation System Administration Conference (LISA ’05) 239

Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources Deverick and Kearns

but the data being stored within that structure are mod-
ified transparently to the user. Our approach is differ-
ent in that no components of the system require modi-
fication of any kind. Server and client daemon behav-
ior is unchanged, as are the data and metadata stored
in the remote filesystem. The only component we
introduce is a client-side authentication daemon that
responds to challenges issued from the firewall during
mount attempts. Assuming that clients are not able to
bypass the mount process, we gain a more secure NFS
environment. If, however, a client successfully
guesses a remote filehandle, it can modify the associ-
ated file by manually constructing NFS packets and
interacting directly with the server daemon. Our
approach, like any system that does not authenticate
every client-server interaction, cannot prevent this
form of compromise.

mount request

NFS Server Firewall NFS Client NFS Server Firewall NFS Client

NFS filesystem operations

NFS umount request

NFS file handle

NFS operation results

NFS umount acknowledgement

auth challenge

auth response

NFS umount request

111: portmapper listing request

mount request

portmapper listing

111: portmapper listing request

portmapper listing

auth challenge

auth response

Figure 5: Authenticated NFS service.

Connection Life Cycle
In order to challenge traffic destined for NFS

mount daemons, we must first learn the port at which
those daemons are running. Since the portmapper
query for this information will always be destined for
the sunrpc port of the server, we can easily intercept
this traffic, remember that a client has requested this
port information, then allow the request to proceed.
Dynamic Rules

Our obligation to intercept any portmapper
request defines the initial iptables ruleset, illustrated in
Figure 3.

When the server responds, we also intercept that
information before forwarding it to the client, and
extract from the reply the ports on which client’s mount
request will be made. We then inject a new rule into the
firewall that QUEUEs the client’s forthcoming mount
request to the authentication daemon. The system can
handle requests from multiple clients simultaneously,

provided that the Netlink queue buffers do not overflow.
If this occurs, packets are dropped as though the firewall
discarded them, or network congestion occurred.

Authentication Mechanism

We include an encrypted challenge-response
scheme to authenticate remote clients. When a client
issues a mount request, it is intercepted by the
userspace daemon on the firewall and queued in a data
structure to be either accepted or dropped depending
on the result of the authentication process. The filter-
ing daemon maintains a state variable for each packet
that records that packet’s sequential arrival order at the
firewall. Since the value of this variable is effectively
unique for each packet over the lifetime of the system,
we can use it to key a data structure that records all
unanswered challenges. Our prototype uses a linked
list to store this information, allowing multiple simul-
taneous client connections. Figure 4 illustrates the
structure of a single list node.

struct list_element
{

ipq_packet_msg_t *packet;
long packet_id;
long nonce;
struct list_element *prev;
struct list_element *next;

};

Figure 4: NFS packet queuing structure.

The userspace daemon issues a challenge to the
client consisting of a symmetrically encrypted id-
nonce pair, and waits in the background for additional
traffic to arrive. This traffic may be another mount
request that triggers the same process, lengthening the
queue, or it may be a client’s response, determining
the fate of the mount request. The daemon can apply

240 19th Large Installation System Administration Conference (LISA ’05)

Deverick and Kearns Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources

to a packet the same primitive filtering targets as the
kernel firewall. A library interface provided by the
queueing extension module described earlier provides
these targets, allowing the daemon to ACCEPT or
DROP a packet. If the client’s response is satisfactory,
an ACCEPT verdict is issued on the original packet,
and the mount request is processed by the server. If
not, then the packet is dropped, and the server never
sees the request. With encryption keys pre-loaded on
systems and restricted to root access, a malicious user
must successfully root-compromise a legitimate client
to subvert the protocol. Spoofing network addresses of
any type is no longer sufficient to gain access to the
remote filesystem.

Assuming that authentication succeeds, the fire-
wall simply forwards all other NFS traffic between
these two systems; no further intervention is imposed
until the session ends. Since unmount requests are also
processed by mountd, an authentication challenge will
be issued at this stage as well. This is a desirable
behavior, as it prevents an unauthorized user from
unmounting a filesystem from beneath a legitimate
user. Figure 5 illustrates the message passing in the
authenticated system.

Host Failures
In the event that the server crashes, the client

loses connectivity with the remote file system, but
only while the server is down. Since authentication
only happens during mounts, a reboot of the server
simply delays NFS calls until the reboot is complete.
The client does not have to remount the filesystem
unless something catastrophic enough to change the
filehandle on the server side has occurred.

Should the client crash, all mount information is
lost during the reboot. the client will need to remount
the remote filesystem, requiring that the authentication
process be repeated. The firewall and server have no
way of knowing that the client crashed, and assuming
that the mount request is legitimate would open the
system to attack.

Performance
To measure the performance overhead associated

with the system, we run benchmarks from two client
machines and determine achieved bandwidth in the
filesystem. One client mounts the NFS share through
the firewall, while the control client resides on the
same subnet and has a locally switched connection to
the server. Figure 1 illustrates the distinction.

Measurements were taken using the IOZone
Filesystem benchmark suite [10]. First, a 32 MB file is
written to the NFS share. The suite records the amount
of time required to write the file and calculates the
achieved bandwidth. A similar approach is used to
measure reading performance. We present benchmark
results for sequential and random writing and reading
of records ranging from 2KB to 1024KB in a randomly
generated 32 MB file. Data are presented within 95%

confidence intervals generated from 30 independent
measurements of the system’s performance.

The benchmark suite allows us to compensate for
many caching effects. We employ some of these fea-
tures to present clearer results. Between every test, the
filesystem is unmounted; this clears the filesystem
buffer cache, and forces the next test to interact
directly with the filesystem instead of a faster cached
copy. We also employ a setting that flushes the proces-
sor caches between each test to ensure that no data are
cached locally during read tests.

It is important to note that the benchmarks mea-
sure achieved bandwidth in the filesystem only after it
is mounted. Time required to mount and unmount the
filesystem is not included the results. This means that
the authentication mechanisms used must be timed
separately. What we measure here is how much the
presence of the firewall between the client and server
slows down normal operations.

First, we consider the slowdown imposed by the
firewall on sequential read and write operations. Fig-
ures 6 and 7 illustrate the performance difference
between the firewalled and control clients. In both
cases, the slowdown is likely to be less than 1% for
any record size. We consider this a negligible amount
of overhead.

Next, we examine the random read and write
cases. Figure 8 illustrates another negligible slow-
down. In this case, the worst slowdown is just under
3%, with most cases falling well below 1%. The only
case in which we see a significant slowdown imposed
by the firewall is randomly reading records from the
file, as illustrated in Figure 9. Here, the extreme case
imposes a slowdown of about 11%, with most cases
incurring a slowdown near 6%. Given that only one
type of operation incurs a significant slowdown, and
that slowdown, on average, is only about 6%, we
argue that the overhead imposed by the system is
small enough to justify the additional security afforded
by our approach.

The time required to mount the remote filesys-
tem, including the encrypted authentication exchange,
was 268±11 µS on the firewalled client. The control
client, which has a direct connection to the server and
does not perform an authentication exchange, mounted
the filesystem in 16±0. 2 µS. Relative to the perfor-
mance of the control client, the firewall introduces sig-
nificant overhead in mount the remote filesystem.
Note, however, that this overhead is encountered only
when the filesystem is mounted, and the real time
required to mount the directory is still extremely
small. Amortized over the lifetime of the directory
mount, the overhead is insignificant.

LPR Prototype Implementation

RFC 1179 [9] defines the widely used lpr printing
protocol. It contains no support for secure authentication
of users. In environments where printing is monitored

19th Large Installation System Administration Conference (LISA ’05) 241

To w a r d s a Deep-Packet-Filter Toolkit for Securing Legacy Resources Deverick and Kearns

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1 10 100 1000

pe
rc

en
t c

ha
ng

e

record size

Figure 6: Firewall performance relative to control
client. Sequential read of 32MB file. 95% confi-
dence intervals.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1 10 100 1000

pe
rc

en
t c

ha
ng

e

record size

Figure 7: Firewall performance relative to control
client. Sequential write of 32MB file. 95% confi-
dence intervals.

monitored or under quota enforcement, this issue is
significant. It means that a user can easily submit
printing jobs under another user’s ID, thereby bypass-
ing the cost associated with his job request. This same
issue complicates the matter of allowing authorized
users to print without restriction based on network
topology. Ideally, an associate of a department should
be able to print to that department’s printers whether
using his desktop workstation or his laptop from
home. Since, however, the protocol doesn’t support
strong authentication of users, allowing such open
access would certainly result in numerous unautho-
rized printing requests.

Related Work

Many approaches exist to solve this problem.
LPRng [16] introduced a new implementation of the pro-
tocol that supports the RFC 1179 interface while provid-
ing additional functionality such as Kerberos authentica-
tion [14] and public-key cryptography support. Most

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1 10 100 1000

pe
rc

en
t c

ha
ng

e

record size

Figure 8: Firewall performance relative to control
client. Random read of 32MB file. 95% confi-
dence intervals.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 1 10 100 1000

pe
rc

en
t c

ha
ng

e

record size

Figure 9: Firewall performance relative to control
client. Random write of 32MB file. 95% confi-
dence intervals.

secure printing protocols that conform to the lpr speci-
fications are extensions of LPRng. While this
approach does solve the authentication problems we
outline, LPRng is only compatible with UNIX-like
operating environments. Windows clients, while capa-
ble of printing to RFC 1179 lpr servers, do not under-
stand the extensions in LPRng. Accordingly, they can-
not take advantage of the authentication attributes pro-
vided by the implementation. We offer an enhance-
ment to the standard RFC 1179 protocol that requires
no changes on either the client or server side, yet still
introduces a strong authentication scheme.

A common approach to strengthening the secu-
rity of a legacy protocol is to tunnel all of its traffic
through an encrypted channel, usually with SSH. This
does provide stronger security, but the degree of
improvement is highly application specific. In this
case, it only partially authenticates the user. An SSH
tunnel authenticates the connection, but not the use of

242 19th Large Installation System Administration Conference (LISA ’05)

Deverick and Kearns Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources

the protocol at hand. Suppose a legacy line printer sys-
tem is protected by an SSH tunnel, through which end
users must forward jobs.

IPTABLES -A FORWARD -p TCP -d $SERVER --dport printer -j QUEUE
IPTABLES -A FORWARD -p TCP -s $SERVER -j ACCEPT

Figure 10: Initial ruleset for authenticated remote printing.

struct client_element
{

// together these should indicate a TCP connection
__u32 sourceip; //source address of client
__u16 sourceport; //origin port on client

ipq_packet_msg_t *syn; //syn packet for connection
//will challenge this

// timeouts are needed to allow reuse of ports
struct timeval lasttime; //last activity time

// authentication attributes
long nonce, id; //to prevent replay attacks
unsigned char user[32]; //username from challenge

//control file must match
int checked;

// RFC 1179 defines the command protocol
unsigned char current_command; //last level 1 cmd rec’d

// control file is subcommand 02 after "receive job"
unsigned char current_subcommand; //last level 2 cmd rec’d

long ctl_length, ctl_consumed; //ctl file length
long data_length, data_consumed; //data file length

int fin;

// list operators
struct client_element *prev, *next;

};

Figure 11: lpr packet queuing structure.

The result is that only authorized users will be
able to submit jobs, but there is no enforcement that
those jobs be submitted in the correct name. A user
may have an account on the system, allowing her to
establish an SSH tunnel to the print server, but nothing
stops her from submitting the job under false identifi-
cation (as described below) once that tunnel is in
place. A similar property holds true for any encryption
or tunneling scheme, including virtual private net-
works or IPSec tunnels. If the underlying protocol
doesn’t directly support user-specific strong authenti-
cation, then secure channels do not provide robust
authentication in typical production environments.

RFC 1179 requires that clients submit a print job
control file to the server in order to process a new job.
Contained in this control file is the username of the
entity submitting the job. The problem is that this field
in the control file is presented in cleartext. Nothing
prevents a malicious user from altering the contents of
this file before the job is submitted, thereby tricking
the server into printing the job under someone else’s
userid. The scheme that we offer forces the user to
demonstrate with very high probability that he or she
is, in fact, the user designated in the control file for the
job being submitted.

Simply put, we intercept the TCP syn packet
associated with the connection to lpd, the print server
process, and delay it at the firewall until we receive a
digitally signed message from the client informing us
of the owner of the incoming job. Once this informa-
tion is stored, the TCP connection is allowed to pro-
ceed, and when the control file begins to arrive at the
firewall, the daemon extracts the job user information
from the file and compares it to the signed username
previously received. If they match, then we know that
the user for this job is authentic, so we allow all other
traffic on this connection through. If not, then we
immediately tear down the connection. The server will
abort the job, and the client’s only option is to restart
the job submission process.

User Authentication in Advance

The initial ruleset for our approach is as illus-
trated in Figure 10.

This small ruleset simply propagates all lpd-
bound packets to our userspace daemon for process-
ing, including the TCP packets used to construct the
connection over which the job transfer will take place.

A client sends a print job to the print server in the
standard fashion. Between the client and the print
server is the firewall, listening for connection attempts
destined for the print server’s spooling ports. When a
TCP connection request is made, the firewall intercepts

19th Large Installation System Administration Conference (LISA ’05) 243

To w a r d s a Deep-Packet-Filter Toolkit for Securing Legacy Resources Deverick and Kearns

the syn packet and stores it in a data structure until it
can confirm the identity of the client. Figure 11 illus-
trates the data structure used to store client information.

After storing the TCP syn packet, the firewall
issues a challenge to the client machine. A specialized
daemon on the client listens for and responds to these
challenges. The format of the challenge is simple; it
consists of a packet id and a random nonce to avoid
replay attacks. When the client-side daemon receives
this challenge it constructs a response consisting of the
same packet id, the incremented nonce, the userid of
the owner of the daemon (presumably the person sub-
mitting the job), and the digital signature for the mes-
sage as associated with the given userid. Figure 12
illustrates the response issued from the client upon
receiving a challenge from the firewall.

3
1

digital signature

packet id

nonce + 1

userid

0

Figure 12: Structure of the printing challenge
response.

When the firewall daemon receives the client’s
response, it first verifies that the signature on the
response is valid. To accomplish this step, enterprise
environments will require the employment of a scal-
able public key infrastructure. The details of of such a
system are beyond the scope of our discussion. The
prototype we present simply assumes that the public
keys for legitimate users are located in a directory to
which the firewall daemon has read access. The dae-
mon searches that directory for a key with the name
<userid>.pem, where <userid> is extracted from the
cleartext portion of the client’s response. If the signa-
ture is not valid for the message, then we do not allow
the TCP connection request to reach the server at all.

To enhance the performance of the system and
reduce unnecessary network traffic, we do not free the
allocated data structures for the connection right away.
Because the daemon must only assume a strict con-
formity to RFC 1179, we do not know what to expect
from the client in response to the initial connection
packet being dropped. LPRng version 3.8.19 will issue
three connection attempts, each timing out at 10 sec-
onds, before giving up on the connection. Alternate
implementations of the protocol may use different

approaches. Some may even depend solely on the reli-
ability components of TCP to establish the connection.
Once the data structures are de-allocated, syn packet
retransmissions from the client will be seen by the
firewall as new connection attempts, resulting in a rep-
etition of the authentication process. We avoid this by
leaving the data structures in place long enough to
ensure that the syn packets are re-transmissions and
not new connection requests; having this information
allows us to silently discard those packets without
consuming additional bandwidth and processor time.
In the prototype implementation, this timeout variable
is static. For a production release, we would allow a
configurable runtime option to set this variable, since
the administrator would have the context information
needed to optimize it.

At this point, the firewall has created an instance
of the data structure illustrated in Figure 11 and loaded
it with with client IP address/port number combination
and the verified username of the entity submitting the
request. By indexing the data structure on host IP/port
pairs, we can handle inbound packets from a number
of different connections simultaneously.

Administrative Jobs

The LPR protocol allows the superuser signifi-
cantly more control over job submission and administra-
tion than regular users. For example, an administrative
user can issue or remove a print job with a manually
specified username as the owner of that request. The
benefit of this is that system administrators can delete
pending print jobs through the LPR interface without
having to assume the identity of the actual owner or
manually modify the state of the printing system.

This means that for connections submitted by the
root user of a client machine, the embedded user infor-
mation may not match the credentials presented during
authentication of the connection. Suppose that Mary
needs to print a large document, and the department in
which she works has a specially designated printer for
large jobs. She sends the job to the print server with-
out specifying the correct printer, and the job lands in
the queue for the default printer, which can’t correctly
handle the large job. The system administrator notices
the problematic job, and sends an lprm command for
that job to the print server as the root user on Mary’s
machine. The server deletes the pending job, and
Mary can be informed that her job was canceled and
she should submit it to the correct printer.

If we absolutely require that requests be submit-
ted in the name of the user whose credentials were
presented during authentication, we break this compo-
nent of the protocol. Accordingly, we must make a
special case for jobs submitted from root users. If the
challenge response packet contains root as the userid,
and is properly signed, then we can make no assump-
tions about what user information the actual job
request will contain. With a valid signature on the

244 19th Large Installation System Administration Conference (LISA ’05)

Deverick and Kearns Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources

challenge response, we know that the client must be
an authorized administrative user. Therefore, we place
no restrictions on what can be done over the lifetime
of that connection.
lpr Job Interception

Once the authentication process is complete (and
assuming the authenticated user is not root), the
userspace daemon still intercepts the traffic, because it
must confirm that job is actually submitted as the user
who authenticated with the firewall. It observes the
stream as it passes through, watching for the octet that
indicates the user field of the control file. The control
file consists of commands, subcommands, and data,
exactly one combination of which indicates the user
for the current job. Specifically, we let everything
through until we reach command 2 (receive job), sub-
command 2 (receive control file), at which point we
begin parsing the control file.

Each line in the control file has a specific format:
some character indicates what data will appear on the
line, then the rest of the line is that data. For our pur-
poses, we skip lines in the control file until we see one
that beings with the character 0x0A, which indicates
the ascii username of the owner of the job being sub-
mitted. If this user matches the user that previously
authenticated, we forward all remaining traffic to the
server. Because there may be additional packets
already queued in the Netlink buffers, we leave the
userspace data structures in place and set a flag indi-
cating that everything else on that connection should
immediately be forwarded.

To enhance performance, we also inject two rules
into the kernel firewall tables. One forwards every-
thing except the TCP fin packet for the connection
directly to the server. By bypassing the userspace
propagation for the remaining packets, we signifi-
cantly reduce the amortized cost of the authentication
process. The second rule matches the TCP fin packet
from the client, indicating the end of the connection.
This packet is forwarded to the userspace daemon,
which de-allocates the data structures for this client,
then forwards the final packet to the server.

If the user in the control file does not match the
authenticated user, no further data will be sent to the
print server, and the connection between the server
and client will be aborted. Since the job is not actually
processed until all of the control file is received, the
document will never print.
Authentication Failure and Cleanup

When the firewall denies a print job that has
failed the authentication process, the server already
has begun receiving the print job. Once the job is
denied, these connections must be destroyed so that
the server can process additional jobs in its queue. If
we do nothing, eventually, both the server and client
will timeout and the job will be aborted. The problem
with this approach is that in the meantime, jobs accu-
mulate in the queue and are delayed while the server

waits for additional data that will never arrive. A bet-
ter approach is to actively destroy the connection,
resulting in an immediate abortion of the job on the
server side. We employ the techniques of Lowth [11]
to accomplish this. Excerpts from his TCP/IP connec-
tion cutter software, available under GNU Public
License, satisfy our requirements that both ends of the
connection be shut down upon seeing an invalid user
for a print job.

Performance Analysis

We measure the impact the filter has on two
aspects of the printing system: connections and band-
width. We present these data separately because there
is a significant amount of initial overhead on a per-
connection basis due to the asymmetric encryption
used for advance user authentication. Once that is
complete, the filter imposes minimal overhead on data
transmission. Measurements were conducted from
both firewalled and control clients, as in the NFS
benchmarks.

To calculate job submission times, we modified
the source code of the print server daemon to record
the arrival time of the first and last packets on the con-
nection, and present the difference in a log file. The
same file was printed from both the firewalled client
and the control client in these measurements. Submit-
ting a 17 byte text file from the control client took
47,719±3, 569 µS. As expected, the firewalled client
achieved a slightly slower rate of transmission, requir-
ing 202,420±21, 660 µS to complete.

-300000

-250000

-200000

-150000

-100000

-50000

 0

 1 10 100 1000 10000 100000 1e+06

m
ic

ro
se

co
nd

s

file size

difference of means

Figure 13: Firewall performance relative to control
client. Receipt of control and data files at print
server. 95% confidence intervals.

Unlike connection times, which experience a
small, static delay with respect to file size, we see in
Figure 13 the impact of channelling each packet
through the firewall. As files grow in size, more pack-
ets are required to contain them; each of these packets
must traverse the firewall, experiencing a small delay
that is cumulative for submitted job.

19th Large Installation System Administration Conference (LISA ’05) 245

Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources Deverick and Kearns

Future Work

Having constructed prototypes and described
potential uses of our system, we now outline specific
tasks that we intend to pursue in the next stages of the
project. We present our envisioned final product, com-
plete with additional examples of applications that can
take advantage of the services it provides. We are cur-
rently developing a firewall management toolkit for
the Netfilter system that uses the userspace queuing
extensions to allow more active participation from the
firewall in the system at large. Figure 14 illustrates the
proposed basic structure of the system. The toolkit
will include several built-in functions to achieve tasks
that we believe will be common in applications. Some
functions will be statically implemented; others will
be implemented via a pluggable module interface.
This allows implementations to be swapped out as
appropriate for specific applications.

Framework Library

Network

Services

Userspace Packet Queues

Netfilter Kernel Firewall

Filtering Daemon

Figure 14: Basic toolkit structure.

Service Layer

Userspace Queues
Queue Interface Modules

Library Interface Modules

Framework Library

Figure 15: Toolkit modules.

Illustrated in Figure 15, we plan to include a
module interface at both ends of the toolkit in the
interest of keeping the solution generic. The manner in
which the system interacts with filtering daemons is
defined by the library interface modules. Similarly, the
system’s interaction with the Netfilter queuing system
is defined by the queue-level modules, though the
variability in the latter should be less prominent given
the restrictive interface of the queuing system.

Note that services need not be placed behind pro-
tections provided by the firewall toolkit. They still
have access to basic services provided by the underly-
ing Netfilter system, should the administrators deem it
appropriate. Our proposed toolkit is an extension of
the firewall model, not a replacement for it. The
administrator can construct rulesets that direct traffic
for only some services through the system. Other ser-
vices can use traditional protections, since only those
rules that specify the QUEUE target will be propagated
to the toolkit.

Planned Toolkit Modules

The prototypes we have implemented dictate a
set of useful modules for the toolkit. They provide
basic functionality that we believe will be common in
several filtering applications. Here, we outline several
of the planned toolkit modules. The complete list of
included modules will be determined as we construct
the system and determine common needs among
potential applications. A systems administrator can
implement and supply additional modules as deemed
necessary for the desired application. This shields
application development from cryptographic imple-
mentations and allows the administrator to focus on
more abstract functions appropriate to the application
at hand.

Cryptographic Support for Authentication

Since nearly every application we have proposed
relies heavily on authentication and authorization, we
must provide direct support for those features in our
toolkit. Different forms of authentication require dif-
ferent types of cryptography, so the interface should
be generic and configurable, providing support for
arbitrary cryptographic modules.

Common paradigms such as RSA digital signa-
tures and fast Blowfish encryption will be included
toolkit modules in the system we build. Instead of
relying on high-level generic interfaces provided by
the standard cryptographic libraries, the administrator
will have access to a suite of cryptographic functions
tailored to packet-level encryption and challenge-
response authentication schemes.

Connection Destruction

In most cases where an authentication challenge
fails, we envision the need to abort any pending con-
nections to the server. In the NFS case, this is trivial,
since authentication failure is detectable before a
client actually connects to the server, and subsequent
application traffic is sent over the connectionless UDP
protocol. A failed authentication simply means that
the firewall blocks all application traffic from the sus-
picious client, and none reaches the server.

The lpr example demonstrates a more difficult case,
however, where authentication cannot be detected until
after the server connection is in place. Here, we must
forcefully terminate the open connection to prevent the

246 19th Large Installation System Administration Conference (LISA ’05)

Deverick and Kearns To w a r d s a Deep-Packet-Filter Toolkit for Securing Legacy Resources

client from sending any additional data to the server. The
prototype includes code to accomplish this based on
[11], but it adds unnecessary complexity to the filtering
daemon. Such a common function is exemplary of the
modules our toolkit will include.
Ruleset Modifications

Both of the prototypes we preset modify the ker-
nel firewall’s ruleset over the lifetime of the system.
The NFS example injects a rule to QUEUE incoming
mount requests after it learns the port location of the
file server’s mount daemon. The LPR prototype
injects a rule to accept all remaining traffic on a con-
nection if authentication succeeds. The first case is
functional in nature; the second is a performance
enhancement.

Both implementations achieve this via invoca-
tions of the userspace iptables utility. Since that utility
interacts with the kernel firewall through system calls
that modify network sockets, we can achieve the same
functionality directly. We will include a module that
provides a library interface to the underlying firewall
ruleset, allowing direct modification of the rules in
response to changing system conditions. This will sig-
nificantly reduce the overhead required to provide a
dynamic ruleset.
Implementations and Evaluations

With a toolkit in place, we intend to revisit the
two prototypes presented earlier, and re-implement
them using the firewall toolkit. This will allow us to
offer a comparison of brute force implementations
with toolkit assisted constructions. We can compare
the ease and efficiency of implementations, and ana-
lyze the differences in performance overhead obtained
in each method.

Because we are dealing with a real-time environ-
ment, performance is of paramount concern. We must
take steps to ensure that our toolkit introduces minimal
overhead. In order to achieve this, careful measure-
ments must be taken on each module that we introduce.

Conclusions

We have presented two prototypical applications
that illustrate how the userspace queuing extensions of
a commonly available firewall can be used to secure
legacy protocols. The performance imposition of our
system is minimal, and certainly justified in light of
the increased security and functionality the system can
introduce. We have discussed how this approach can
be extended into a toolkit that system administrators
can use to secure additional legacy protocols and
introduce additional arbitrary functionality at the fire-
wall. We believe that the toolkit we discuss will allow
administrators to balance more easily the need to pro-
vide existing services to users with the need to main-
tain security features in a networked environment.
Finally, we have outlined a larger, more general appli-
cation to which our toolkit will be useful, demonstrat-
ing the flexibility of our approach.

Author Biographies

James Deverick is currently a Ph.D. candidate
and systems administrator at The College of William
and Mary’s Department of Computer Science. His
research focuses on building active firewalls that
enhance the security of legacy systems. Reach him at
jwdeve@cs.wm.edu .

Phil Kearns is an Associate Professor of Computer
Science at the College of William and Mary. His research
interests lie in the general area of computer systems.

Bibliography

[1] Ashley, Paul, Bradley Broom, and Mark Vanden-
wauver, ‘‘An implementation of a secure version
of NFS including rbac,’’ Australian Computer
Journal, Vol. 31, Num. 2, 1999.

[2] Callaghan, Brent, Brian Pawlowski, and Peter
Staubach, ‘‘NFS version 3 protocol specifica-
tion,’’ RFC 1813, Internet Engineering Task
Force, 1995.

[3] Cattaneo, Giuseppe, Luigi Catuogno, Aniello
Del Sorbo, and Pino Persiano, ‘The design and
implementation of a transparent cryptographic
filesystem for UNIX,’’ Proceedings of the
FREENIX Track: 2001 USENIX Annual Techni-
cal Conference, USENIX, 2001.

[4] Cho, Young H. and William H. Mangione-Smith,
‘‘Specialized hardware for deep network packet
filtering,’’ 12th International Conference on
Field-Programmable Logic and Applications,
ACM, 2002.

[5] Cho, Young H. and William H. Mangione-Smith,
‘‘ D e e p packet filtering with dedicated logic and
read only memories,’’ Proceedings of the 12th
Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. IEEE, 2004.

[6] Dharmapurikar, Sarang, Praveen Krishnamurthy,
Todd Sproull, and John Lockwood, ‘‘Deep
packet inspection using parallel bloom filters,’’
Proceedings of the 11th Symposium on High Per-
formance Interconnects. IEEE, 2003.

[7] Dubrawsky, I., Firewall evolution – deep packet
inspection, http://online.securityfocus.com/infocus/
1716, 2003.

[8] Goh, Eu-Jin, Hovav Shacham, Nagendra
Modadugu, and Dan Boneh, ‘‘SiRiUS: Securing
Remote Untrusted Storage,’’ Proceedings of the
Tenth Network and Distributed System Security
(NDSS) Symposium, Internet Society (ISOC), pp.
131-145, February, 2003.

[9] McLaughlin III, Leo J., ‘‘Line printer daemon
protocol,’’ RFC 1179, Internet Engineering Task
Force, 1990.

[10] IOzone, IOzone filesystem benchmark, http://www.
iozone.org , 2005.

[11] Lowth, Chris, TCP/IP connection cutter, http://
www.lowth.com/cutter , 2003.

19th Large Installation System Administration Conference (LISA ’05) 247

Towards a Deep-Packet-Filter Toolkit for Securing Legacy Resources Deverick and Kearns

[12] Mayo, Jean and Phil Kearns, ‘‘A secure
untrusted advanced systems laboratory,’’ Pro-
ceedings of the 30th SIGCSE Technical Sympo-
sium on Computer Science Education, 1999.

[13] Miltchev, Stefan, Vassilis Prevelakis, Sotiris Ioan-
nidis, John Ioannidis, Angelos D. Keromytis, and
Jonathan M. Smith, ‘‘Secure and flexible global
file sharing,’’ Proceedings of the FREENIX Track:
2003 USENIX Annual Technical Conference.
USENIX, 2003.

[14] Neuman, B. Clifford and Theodore T’So, ‘‘Ker-
beros: An authentication service for computer
networks,’’ IEEE Communications Magazine,
Vol. 32, Num. 9, pp. 33-38, 1994.

[15] O’Shanahan, Declan Patrick, CryptoFS: Fast
cryptographic secure NFS, Master ’s thesis, Uni-
versity of Dublin, 2000.

[16] Powell, P. and J. Mason, ‘‘Lprng – An enhanced
printer spooler system,’’ Proceedings of the
Ninth USENIX Systems Administration Confer-
ence, pp. 17-22, USENIX, 1995.

[17] Russell, R., The netfilter project, http://www.
netfilter.org , 2005.

[18] Vlachos, K., N. Nikolaou, T. Orphanoudakis, S.
Perissakis, D. Pnevmatikatos, G. Kornaros, J. A.
Sanchez, and G. Konstantoulakis, ‘‘Processing
and scheduling components in an innovative net-
work processor architecture,’’ Proceedings of the
16th International Conference on VLSI Design,
IEEE, 2003.

248 19th Large Installation System Administration Conference (LISA ’05)

