
Network Configuration
Management via Model Finding

Sanjai Narain – Telcordia Technologies, Inc.

ABSTRACT

Complex, end-to-end network services are set up via the configuration method: each
component has a finite number of configuration parameters each of which is set to a definite value.
End-to-end network service requirements can be on connectivity, security, performance and fault-
tolerance. However, there is a large conceptual gap between end-to-end requirements and detailed
component configurations. To bridge this gap, a number of subsidiary requirements are created
that constrain, for example, the protocols to be used, and the logical structures and associated
policies to be set up at different protocol layers.

By performing different types of reasoning with these requirements, different configuration
tasks are accomplished. These include configuration synthesis, configuration error diagnosis,
configuration error fixing, reconfiguration as requirements or components are added and deleted,
and requirement verification. However, such reasoning is currently ad hoc. Network requirements
are not even precisely specified hence automation of reasoning is impossible. This is a major
reason for the high cost of network management and total cost of ownership. This paper shows
how to formalize and automate such reasoning using a new logical system called Alloy.

Alloy is based on the concept of model finding. Given a first-order logic formula and a
domain of interpretation, Alloy tries to find whether the formula is satisfiable in that domain, i.e.,
whether it has a model. Alloy is used to build a Requirement Solver that takes as input a set of
network components and requirements upon their configurations and determines component
configurations satisfying those requirements.

This Solver is used in different ways to accomplish the above reasoning tasks. The Solver is
illustrated in depth by carrying out a variety of these tasks in the context of a realistic fault-tolerant
virtual private network with remote access. Alloy uses modern satisfiability solvers that solve
millions of constraints in millions of variables in seconds. However, poor requirements can easily
nullify such speeds. The paper outlines approaches for writing efficient requirements. Finally, it
outlines directions for future research.

Introduction

Complex, end-to-end network services are set up
via the configuration method: each component has a
finite number of configuration parameters each of
which is set to a definite value. End-to-end network
service requirements can be on connectivity, security,
performance and fault-tolerance. However, there is a
large conceptual gap between end-to-end requirements
and detailed component configurations. To bridge this
gap, a number of subsidiary requirements are created
that constrain, for example, the protocols to be used,
and the logical structures and associated policies to be
set up at different protocol layers.

By performing different types of reasoning with
these requirements, different configuration tasks are
accomplished. These include configuration synthesis,
configuration error diagnosis, configuration error fix-
ing, reconfiguration as requirements or components are
added and deleted, and requirement verification. How-
ever, such reasoning is currently ad hoc. Network
requirements are not even precisely specified hence

automation of reasoning is impossible. This is a major
reason for the high cost of network management and
total cost of ownership.1 This paper shows how to for-
malize and automate such reasoning using the new
concept of a Requirement Solver, as shown in Figure 1.

This Solver takes as input a set of network compo-
nents and requirements upon their configurations and

1‘‘. . . operator error is the largest cause of failures . . . and
largest contributor to time to repair . . in two of the three
(surveyed) ISPs . . configuration errors are the largest catego-
ry of operator errors.’’ [1]

‘‘Although setup (of the trusted computing base) is much
simpler than code, it is still complicated, it is usually done
by less skilled people, and while code is written once, setup
is different for every installation. So we should expect that
it’s usually wrong, and many studies confirm this expecta-
tion.’’ [2]

‘‘Consider this: ..the complexity (of computer systems) is
growing beyond human ability to manage it..the overlapping
connections, dependencies, and interacting applications call
for administrative decision-making and responses faster than
any human can deliver. Pinpointing root causes of failures
becomes more difficult.’’ [3]

19th Large Installation System Administration Conference (LISA ’05) 155

Network Configuration Management via Model Finding Narain

computes as output, component configurations satisfy-
ing those requirements. The requirements can be in first-
order logic (Boolean logic with quantifiers on individual
variables). This logic is highly expressive and captures a
very large class of practical network requirements.

The Requirement Solver is used in different
ways to accomplish the above reasoning tasks. The
Solver is illustrated in depth by carrying out a variety
of these tasks in the context of a realistic fault-tolerant
virtual private network with remote access. The rea-
soning tasks are accomplished as follows:

Set of Network Components
Network Requirements in First-Order Logic

At and Across Multiple Protocol Layers

Component Configurations Satisfying Requirements

Requirement

Solver

Figure 1: Requirement Solver.

1. Configuration Synthesis. To determine how to
configure a set of components so they satisfy a
system requirement R, submit the set of compo-
nents and R to the solver and take the output.

2. Requirement Strengthening. If a set of compo-
nents satisfies a system requirement R but must
now satisfy another requirement S, then to recon-
figure components, submit the set of components
and R∧S to the solver and take the output.

3. Component Addition. If a new component is
to be added to a set of components already sat-
isfying requirement R, then to configure the
new component and possibly reconfigure exist-
ing components, submit the new set of compo-
nents and R to the Solver and take the output.

4. Requirement Verification. To prove that it is
impossible for an undesirable requirement U to
be true when a set of components satisfies
requirement R, submit the set of components
and R∧U to the Solver. If the Solver cannot
find a solution, the assertion is proved. Other-
wise, the Solver produces a counterexample.

5. Configuration Error Detection. To check
whether configuration of a given set of compo-
nents is consistent with a requirement R, repre-
sent the configuration as a set C of constraints
each of the form P=V where P is a configura-
tion parameter and V its value. Then, submit
the set of components and R∧C to the solver. If
the solver cannot produce a solution, a configu-
ration error is detected.

6. Configuration Error Fixing. If the configura-
tion of a given set of components is inconsistent

with a requirement R, then submit the set of
components and R to the Solver and find a new
solution that is as ‘‘close’’ as possible to the
current configuration.

The Requirement Solver has been inspired by the
new logical system called Alloy [4]. While Alloy is
based in set theory, a subset of it also has an intuitive
object-oriented interpretation: it lets one specify object
types, their attributes and type of attribute values. It
also lets one specify first-order logic constraints on
these. Finally, it lets one specify a ‘‘scope’’ that
defines a finite number of object instances of each
type in a given system.

Given a specification and a scope, Alloy
attempts to find values of attributes of object instances
in the scope that satisfy the specification. These values
together constitute a ‘‘model’’ of the specification in
the system in the logical sense of the word ‘‘model’’.
Alloy first compiles a specification into a proposi-
tional formula in conjunctive normal form, then uses a
satisfiability solver such as Berkmin [5] or Zchaff [6]
to check whether the formula is satisfiable. If so, it
converts satisfying values of propositional variables
back into values of attributes and displays these.

Often, more than one solution is found. Even
though satisfiability is NP-complete in the worst case,
in the average case, solutions are efficiently found.
Modern satisfiability solvers can solve millions of con-
straints in millions of variables in seconds. However,
poor requirements can easily nullify such speeds. The
paper outlines approaches for writing efficient require-
ments. Finally, it outlines directions for future research.

The Solver has a direct implementation in Alloy.
Network component types, attributes and values are
directly modeled in Alloy. A set of network compo-
nents of different types is modeled as a scope. Net-
work system configuration is modeled as values of all
component attributes in a given scope. Network
requirements are modeled using first-order logic.
Solutions are found by the Alloy model finder.

Subsequent sections illustrate Alloy’s capabilities,
describe the design of a fault-tolerant VPN with remote
access and the challenges of setting it up, outline a

156 19th Large Installation System Administration Conference (LISA ’05)

Narain Network Configuration Management via Model Finding

formalization of the design in Alloy, describe how to
accomplish, respectively, tasks 1-4 above, outline
approaches for writing efficient requirements, outline
relationship with previous work, summarize this work
and the conclusions, and present directions for future
research.

Alloy By Example

The three lines in Display 1 declare three object
types: router, subnet and interface. The last type has
two attributes, the chassis (of type router) to which it
belongs, and network (of type subnet) on which it is
placed. These attributes model configuration parame-
ters of an interface.

sig router {}
sig subnet{}
sig interface {chassis: router, network: subnet}

Display 1: Declaring three object types.

pred spec ()
{all x:router | some y:interface | y.chassis = x}
{no disj x1,x2:interface |

x1.chassis=x2.chassis && x1.network = x2.network}
{#router=1 && #subnet=2 && #interface=2}

Display 2: A specification with three constraints.

run spec for 1 router, 2 subnet, 2 interface

Display 3: Alloy command to create a model.

chassis : = {interface_0 -> router_0, interface_1 -> router_0}
network : = {interface_0 -> subnet_1, interface_1 -> subnet_0}

Display 4: Results of command in Display 3.

chassis : = {interface_0 -> router_0, interface_1 -> router_0}
network : = {interface_0 -> subnet_0, interface_1 -> subnet_0}

Display 5: Less constrained solution.

The predicate spec in Display 2 defines a specifi-
cation whose model we will try to find. It is a conjunc-
tion of three constraints. The first states that for every
router x there is an interface y whose chassis is x, i.e.,
every router has at least one interface. The second states
that no two non-equal interfaces on the same router are
placed on the same subnet. The third states that our net-
work contains one router, two subnets and two inter-
faces. These are the components we want to configure.

The Alloy command shown in Display 3 pro-
duces the model (values of configuration parameters)
shown in Display 4. The first line states that the value
of chassis for interface_0 is router_0 and the value of
chassis for interface_1 is router_0. Similarly, for the
second line. Alloy automatically creates instances of
objects such as router_0, subnet_0, and subnet_1. Note
that Alloy did not place interface_0 and interface_1 on
the same subnet due to the second constraint. On the
other hand, if we remove that constraint, Alloy pro-
duces the additional solution show in Display 5 in
which both interface_0 and interface_1 are placed on the
same subnet.

Fault-Tolerant Virtual Private Network With
Remote Access

Our top-level goal is to synthesize a fault-toler-
ant network that enables hosts, including mobile hosts,
at geographically distributed sites to securely collabo-
rate. A network design for achieving this goal is now
outlined. When this is implemented via configuration,
one obtains a network of the type shown in Figure 2.
The existence of a wide-area network, represented by
the WAN router in the figure, is assumed.

Each site has a gateway router called a spoke
router whose external (or public) interface is connected
to the WAN and whose internal (or private) interface is
connected to hosts and servers in the site. A routing
protocol is run on the external interfaces of spoke and
WA N routers to automatically compute routes between
these interfaces. As traffic between hosts and servers
on different sites is intended to be private, it cannot be
allowed to flow directly over the wide area network. In
order to secure it, one possibility is to set up a full-
mesh of IPSec tunnels between gateway routers. How-
ever, full-mesh is not scalable since the number of tun-
nels increases as the square of the number of sites: for
the 200 sites expected in our domain, the number of
tunnels would be nearly 20,000.

A scalable alternative is a hub-and-spoke archi-
tecture as shown. A certain number of hub routers is
set up. Each spoke router sets up an IPSec tunnel to
each hub router. Traffic from one site to another goes
via two tunnel hops, one from its spoke router to a hub
router and another from the hub router to the destina-
tion site’s spoke router. The number of tunnels now
only increases linearly with the number of sites.

The problem, however, is that if a hub router fails,
connectivity between sites is lost. This is because the

19th Large Installation System Administration Conference (LISA ’05) 157

Network Configuration Management via Model Finding Narain

source spoke router will continue to send traffic
through the IPSec tunnel to the failed hub router.
IPSec has no notion of fault-tolerance that will enable
the source spoke router to redirect traffic via another
hub router.

Routing protocols such as RIP or OSPF accom-
plish precisely this kind of fault-tolerance, however
they are incompatible with IPSec. They do not recog-
nize an IPSec tunnel as directly connecting two routers
since there can be multiple physical hops in between.
The solution is to set up a new type of tunnel, called
GRE, between each hub and spoke router. The pur-
pose of GRE is to create the illusion to a routing pro-
tocol that two routers are directly connected, even
when there are multiple physical hops in between.

Spoke

Router

Hub Router

Remote

Access Server

All external interfaces such
as these are in OSPF domain

Spoke

Router

Hub Router

WAN

Router

GRE Tunnel

IPSec Tunnel

Host

Host

All internal interfaces and GRE

tunnels such as these are in
RIP domain

Firewall policies

permit ESP and IKE

packets

All internal interfaces and GRE

tunnels such as these are in
RIP domain

Firewall policies

permit ESP and IKE

packets

Figure 2: Fault-tolerant virtual private network with remote access.

This is done by creating new GRE interfaces at
each tunnel end point and making these belong to the
same point-to-point subnet. Now, if a hub router fails, a
routing protocol will automatically direct traffic
through another GRE tunnel to another hub router, and
then to the destination. Each GRE tunnel is then
secured via an IPSec tunnel. Thus, the required fault-
tolerant virtual private network is set up. If two hub
router failures are to be tolerated, then three hub routers
are required. Then, the number of tunnels to be set up
is just 600 (number of hub routers × number of spoke
routers) or 3% of nearly 20,000 in the full mesh case.

This solution has a useful defense-in-depth fea-
ture: there are two separate routing domains, the exter-
nal one and the overlay one. No routes are exchanged
between these. Thus, even if an adversary compromises
the WAN router, he cannot send a packet to a host. The
WA N router does not even have a route to the host.

In order to enable remote users to securely col-
laborate, a remote access server is set up in ‘‘parallel’’
with a spoke router. A remote user connected to the
WAN sets up an L2TP tunnel between his host and the

server. This tunnel gives the illusion to the host of
being directly connected to the internal interface of the
sites’ spoke router. Consequently, all traffic between
the host and any other host or server on the VPN is
also secured. Again, one has to ensure that two sepa-
rate routing protocols run on the access server, one for
the private side and one for the public. In order to real-
ize the above design, the following types of configura-
tion parameters need to be set:

1. Addressing: Router interface address, type and
subnet mask.

2. IPSec: Tunnel end points, hash and encryption
algorithms, tunnel modes, preshared keys and
traffic filters.

3. OSPF: Whether it is enabled at an interface,
and OSPF area and type identifiers.

4. GRE: Tunnel end points and physical end
points supporting GRE tunnels.

5. Firewall: Policies at each site.
6. Remote access: Subnets to which remote access

server interfaces belong and routing protocols
enabled on these.

It is very hard to compute values of the above
configuration parameters. The types of configuration
errors that can arise are:

1. Duplicate IP addresses may be set up, or all inter-
faces on a subnet may not have the same type.

2. IPSec tunnels may be set up incorrectly. For
example, the preshared key, hash algorithm,
encryption algorithm, or authentication mode
may be unequal at the two tunnel end points. Peer
values may not be mirror images of each other.
These errors can lead to loss of connectivity. If
the wrong traffic filter is used, then sensitive data
can be transmitted without being encrypted.

3. OSPF routing domain may be set up incorrectly,
for example, it may not be enabled at a required
interface or the area and type identifiers may be

158 19th Large Installation System Administration Conference (LISA ’05)

Narain Network Configuration Management via Model Finding

incorrect. This can lead to incorrect routing
tables and to outright isolation of subnets.

4. Routing loops may arise. If the same OSPF
process is also used for routing between the
gateway and WAN routers, then if it does not
find a path through the physical network it will
attempt to find a path through the overlay net-
work. Since the overlay network is supported
by the physical network, a routing loop will
arise. This problem can be mitigated by using
two distinct routing protocols, one for the over-
lay and another for the WAN.

sig internalInterface extends physicalInterface {}
sig externalInterface extends physicalInterface {}
sig hubExternalInterface extends externalInterface {}
sig spokeExternalInterface extends externalInterface {}

Display 6: Interfaces on hubs and spokes.

5. GRE tunnels may be set up incorrectly. For
example, the peer values may not be mirror
images of each other, or the mapping between
GRE ports and physical ports may be incorrect.

6. Firewall policies may block IPSec traffic, hence
no traffic will pass through the tunnels.

7. Remote access interfaces may not belong to the
correct subnets and incorrect routing protocols
may be configured on these.

Before we show how to formalize the above
design in Alloy, we capture its main intuitions in the
following requirements:

• RouterInterfaceRequirements
1. Each spoke router has internal and external

interfaces
2. Each access server has internal and exter-

nal interfaces
3. Each hub router has only external interfaces
4. Each WAN router has only external inter-

faces
• SubnettingRequirements

5. A router does not have more than one
interface on a subnet

6. All internal interfaces are on internal sub-
nets

7. All external interfaces are on external sub-
nets

8. Every hub and spoke router is connected to
a WAN router

9. No two non-WAN routers share a subnet
• RoutingRequirements
10. RIP is enabled on all internal interfaces
11. OSPF is enabled on all external interfaces

• GRERequirements
12. There is a GRE tunnel between each hub

and spoke router
13. RIP is enabled on all GRE interfaces

• SecureGRERequirements
14. For every GRE tunnel there is an IPSec

tunnel between associated physical inter-
faces that secures all GRE traffic

• AccessServerRequirements
15. There exists an access server and spoke

router such that the server is attached in
‘‘parallel’’ to the router

• AccessControlPolicyRequirements
16. Each hub and spoke external interface per-

mits esp and ike packets

The interesting fact is these requirements do not
specify the number of sites in the VPN. Rather, they
apply to all sites. As new sites are added, these
requirements are instantiated for the extended network
to determine how to configure new components and
reconfigure existing ones. This is a hard problem, in
general, but that we show how to automatically solve
with our approach.

Requirement Formalization In Alloy

This section presents an Alloy formalization of net-
work component types, subtypes and their attributes. It
also presents a formalization of Requirements 12 and 14.
The complete formalization is available in the longer
report at http://alloy.mit.edu/papers/NetConfigAlloy.pdf .
Va r i o u s types of routers are modeled using the following
Alloy type declarations (signatures):
sig router {}
sig wanRouter extends router {}
sig hubRouter extends router {}
sig spokeRouter extends router {}
sig accessServer extends router {}
sig legacyRouter extends router {}

A generic interface just has a single attribute, the rout-
ing protocol enabled at it.
sig interface {routing:routingDomain}

A physical interface has two attributes, the router
chassis on which it is mounted, and the network on
which it is placed:
sig physicalInterface extends interface {

chassis: router,
network: subnet}

There are internal and external interfaces. Exter-
nal interfaces are of two types, one on hubs and one
on spokes; see Display 6. There are two types of rout-
ing domains, RIP and OSPF:
sig routingDomain {}
sig ripDomain extends routingDomain {}
sig ospfDomain extends routingDomain {}

There are two types of subnets, internal and external:
sig subnet{}
sig internalSubnet extends subnet{}
sig externalSubnet extends subnet{}

There are three types of protocols, IKE, ESP and GRE:

19th Large Installation System Administration Conference (LISA ’05) 159

Network Configuration Management via Model Finding Narain

sig protocol {}
sig ike extends protocol {}
sig esp extends protocol {}
sig gre extends protocol {}

A firewall policy contains one of two possible permis-
sions, permit and deny, that respectively, mean
whether the firewall should allow a packet to go
through or be dropped.
sig permission {}
sig permit extends permission {}
sig deny extends permission {}

sig FirewallPolicy {
prot: protocol,
action: permission,
protectedInterface: physicalInterface}

Display 7: Firewall policy.

{all x:hubExternalInterface, y:spokeExternalInterface | some
g:greTunnel |

(g.localPhysical=x && g.remotePhysical=y) or
(g.localPhysical=y && g.remotePhysical=x)}

Display 8: Requirement 12 in Alloy.

{all g:greTunnel |
some p:ipsecTunnel | p.protocolToSecure=gre &&
((p.local = g.localPhysical && p.remote = g.remotePhysical) or
(p.local = g.localPhysical && p.remote = g.remotePhysical))}

Display 9: Requirement 14 in Alloy.

A firewall policy, shown in Display 7, defines whether
a packet associated with a protocol is allowed to go
through or dropped, as it leaves an interface. An IPSec
tunnel encrypts all packets associated with a protocol
entering at either its local or its remote endpoint.
sig ipsecTunnel {

local: externalInterface,
remote: externalInterface,
protocolToSecure: protocol}

A GRE tunnel encapsulates a packet into a new packet
with source address that of its local endpoint and des-
tination address that of its remote endpoint. Also, the
tunnel is considered a proper link in a routing domain.
sig greTunnel {

localPhysical: externalInterface,
routing: routingDomain,
remotePhysical: externalInterface}

An IP packet’s attributes are its source and destination
interfaces and the protocol it embodies. The precise
data it carries is not modeled, since it is not relevant
for our design purposes.
sig ipPacket {

source:interface,
destination:interface,
prot:protocol}

Display 8 shows the Alloy version of Requirement 12.
This states that between every hubExternalInterface x and
spokeExternalInterface y there is a greTunnel whose local
physical is x and remotePhysical is y, or vice versa.

Display 9 shows the Alloy version of Require-
ment 14. This states that for every greTunnel g there is
an ipsecTunnel p that secures the gre protocol and
whose endpoints are the same as the physical end-
points of g.

Configuration Synthesis

This section shows how to synthesize the initial
network with connectivity and routing. Define:
PhysicalSpec =

RouterInterfaceRequirements ∧
SubnettingRequirements ∧
RoutingRequirements

In Alloy, this would be expressed as:
Pred PhysicalSpec () {

RouterInterfaceRequirements ()
SubnettingRequirements ()
RoutingRequirements ()}

Define a scope consisting of 1 hubRouter, 1 spokeRouter,
1 wanRouter, 1 internalInterface, 4 externalInterface, 1
hubExternalInterface, 1 spokeExternalInterface, 1 ripDomain,
1 ospfDomain, 3 subnet, 0 legacyRouter. These are the
objects we want to configure. Now request Alloy to
find a model for PhysicalSpec in the above scope. It
synthesizes the network shown in Figure 3. It does so
by producing the values of configuration parameters
shown in Display 10. These are just the textual version
of the network in Figure 3. Also note that spoke and
hub routers are not directly connected, in accordance
with Requirement 9.

Requirement Strengthening

In order to add an overlay network to the previ-
ous one, extend the previous scope with a GRE tunnel
then request Alloy to satisfy (PhysicalSpec ∧
GRERequirements). Alloy synthesizes the network
shown in Figure 4a. Alloy automatically sets up the
GRE tunnel between the spoke and hub router and
enables RIP routing on the GRE tunnel.

To make GRE tunnels secure, extend the previous
scope with an IPSec tunnel and request Alloy to satisfy

160 19th Large Installation System Administration Conference (LISA ’05)

Narain Network Configuration Management via Model Finding

(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequire-
ments). Alloy synthesizes the network in Figure 4b.
Alloy automatically places the IPSec tunnel between the
correct physical interfaces to protect the GRE tunnel.

routing : =
{externalInterface_0 -> ospfDomain_0,
externalInterface_1 -> ospfDomain_0,
hubExternalInterface_0 -> ospfDomain_0,
internalInterface_0 -> ripDomain_0,
spokeExternalInterface_0 -> ospfDomain_0}

chassis : =
{externalInterface_0 -> wanRouter_0,
externalInterface_1 -> wanRouter_0,
hubExternalInterface_0 -> hubRouter_0,
internalInterface_0 -> spokeRouter_0,
spokeExternalInterface_0 -> spokeRouter_0}

network : =
{externalInterface_0 -> externalSubnet_1,
externalInterface_1 -> externalSubnet_0,
hubExternalInterface_0 -> externalSubnet_0,
internalInterface_0 -> internalSubnet_0,
spokeExternalInterface_0 -> externalSubnet_1}

Display 10: Configuration parameters for Figure 3.

Spoke

Router

WAN

Router

Hub

Router

OSPF Domain

RIP Domain

Requirement Solver generates

solution. Note that Hub and Spoke routers

are not directly connected, due to Requirement 9

Figure 3: Configuration synthesis: Physical network.
(PhysicalSpec = RouterInterfaceRequirements ∧

SubnettingRequirements ∧ RoutingRequirements)

In order to add an access server to this network
extend the previous scope with an access server, one
internal interface, and one external interface and
request Alloy to satisfy (PhysicalSpec ∧ GRERequire-
ments ∧ SecureGRERequirements ∧ AccessServerRequire-
ments). Alloy synthesizes the network in Figure 4c.
Note that the access server is placed in parallel with
only the spoke router, not with any other router, and has
the correct routing protocols enabled on its interfaces.

Component Addition

When new components are added to an infrastruc-
ture, the logic that governs infrastructure has to be
instantiated to the extended set of components. This is a
nontrivial problem for humans to cope with. With Alloy,
this instantiation is accomplished simply by finding a
model of requirements for the existing scope extended
by new components. (In order to avoid reconfiguring
existing components, one can strengthen the require-
ment with existing configurations, each modeled as an
equality P=V, P a configuration parameter and V its
value). For example, in order to add a new spoke site to
the previous network, extend its scope with a spoke

19th Large Installation System Administration Conference (LISA ’05) 161

Network Configuration Management via Model Finding Narain

Spoke

Router

Hub

Router

OSPF Domain

RIP Domain
GRE Tunnel

WAN

Router

Figure 4a: Requirement strengthening: Adding overlay.
(PhysicalSpec ∧ GRERequirements).

Spoke

Router

Hub

Router

OSPF Domain

IPSec Tunnel

WAN

Router

Figure 4b: Requirement strengthening: Securing overlay.
(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequirements)

Spoke

Router

Hub Router

Access Server

WAN

Router

Figure 4c: Requirement strengthening: Adding remote access server.
(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequirements ∧ AccessServerRequirements)

162 19th Large Installation System Administration Conference (LISA ’05)

Narain Network Configuration Management via Model Finding

router, one internal subnet, one external subnet, one
GRE tunnel and one IPSec tunnel. Requesting Alloy to
synthesize a network satisfying (PhysicalSpec ∧ GRE-
Requirements ∧ SecureGRERequirements ∧ AccessServer
Requirements) in the new scope yields the network in
Figure 5a.

Spoke

Router

Spoke

Router

Access Server

Hub Router

WAN

Router

Figure 5a: Component addition: Adding new spoke router.
(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequirements ∧ AccessServerRequirements)

Spoke

Router

Hub Router

Access Server

OSPF Domain

Spoke

Router

Hub Router

WAN

Router

Figure 5b: Component addition: Adding new hub router.
(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequirements ∧ AccessServerRequirements)

Note that the new spoke router is physically con-
nected just to the WAN router as required by Require-
ment 8. Moreover, GRE and IPSec tunnels are auto-
matically set up between the new spoke router and hub
router and physical interfaces and GRE tunnels are
placed in the correct routing domains.

In order to add a new hub site to this network,
extend its scope with a hub router, one external inter-
face, one external subnet, two GRE tunnels and two
IPSec tunnels. Requesting Alloy to synthesize a network
satisfying (PhysicalSpec ∧ GRERequirements ∧ SecureGRE
Requirements ∧ AccessServerRequirements) in the new
scope yields the network in Figure 5b.

Finally, in order to permit IKE and ESP (proto-
cols of IPSec) packets through the physical interfaces
of hub and spoke routers, one can extend the above

scope with eight firewall policies, then request Alloy to
satisfy FullVPNSpec = (PhysicalSpec ∧ GRERequirements
∧ SecureGRERequirements ∧ AccessServerRequirements
∧ FirewallPolicyRequirements). Alloy then synthesizes
the network of Figure 2 without the hosts. The reason
for 8 firewall policies is that one policy is required for
each IPSec tunnel endpoint.

Requirement Verification

Identifying Incorrect Firewall Policies
When we deployed the above network, we were

careful to allow IKE and ESP packets to be permitted
by access control lists at physical interfaces of hub and
spoke routers. This was the reason for FirewallPoli-
cyRequirements. However, we discovered that end-to-
end connectivity was still not established. After consid-
erable testing and analysis we realized that the WAN
router itself was blocking IKE and ESP packets. We had
not anticipated this cause. We now show how to formal-
ize identification of this cause.

Alloy was not used for such identification, but this
example illustrates how it could have been. Define a

19th Large Installation System Administration Conference (LISA ’05) 163

Network Configuration Management via Model Finding Narain

condition called BlockedIPSec capturing conditions under
which an IPSec packet can be blocked, and find out how
it is possible that (FullVPNSpec ∧ BlockedIPSec) be true.
In other words, is it possible that the network be config-
ured in a manner consistent with FullVPNSpec yet block
IPSec packets? If so, we would have to modify require-
ments to preclude this possibility. The predicate in Dis-
play 11 states that IPSec is blocked if there is some esp
or ike packet which is blocked. The predicate in Display
12 states that a packet is blocked if there is some fire-
wall policy protecting an external interface that denies
the protocol for that packet.

pred BlockedIPSec () {
some p:ipPacket, s,t:externalInterface |

p.source = s && p.destination = t && (p.prot =
ike or p.prot=esp) && Blocked(p)}

Display 11: Blocking IPSec if esp or ike packet is blocked.

pred Blocked(pack:ipPacket) {
some p:firewallPolicy, x:externalInterface |
p.protectedInterface = x &&
p.prot=pack.prot &&
p.action = deny
}

Display 12: Block a packet if firewall policy denies its protocol.

prot : =
{firewallPolicy_0 -> ike_0,
firewallPolicy_1 -> ike_0,
firewallPolicy_2 -> ike_0,
firewallPolicy_3 -> ike_0,
firewallPolicy_4 -> esp_0,
firewallPolicy_5 -> esp_0,
firewallPolicy_6 -> esp_0,
firewallPolicy_7 -> esp_0,
firewallPolicy_8 -> ike_0}

permission: =
{firewallPolicy_0 -> permit_0,
firewallPolicy_1 -> permit_0,
firewallPolicy_2 -> permit_0,
firewallPolicy_3 -> permit_0,

firewallPolicy_4 -> permit_0,
firewallPolicy_5 -> permit_0,
firewallPolicy_6 -> permit_0,
firewallPolicy_7 -> permit_0,
firewallPolicy_8 -> deny_0}

protectedInterface : =
{firewallPolicy_0 -> spokeExternalInterface_1,
firewallPolicy_1 -> spokeExternalInterface_0,
firewallPolicy_2 -> hubExternalInterface_1,
firewallPolicy_3 -> hubExternalInterface_0,
firewallPolicy_4 -> spokeExternalInterface_1,
firewallPolicy_5 -> spokeExternalInterface_0,
firewallPolicy_6 -> hubExternalInterface_1,
firewallPolicy_7 -> hubExternalInterface_0,
firewallPolicy_8 -> externalInterface_0}

Display 13: Model for FullVPNSpec ∧ BlockedIPSec.

If we increase the scope of the last network to
include 9 (more than 8) firewall policies, and request
Alloy to find a model for (FullVPNSpec ∧ BlockedIPSec),
Alloy produces the values in Display 13 for prot, per-
mission and protectedInterface attributes of firewall
policies. In other words, firewallPolicy_8, applied on exter-
nalInterface_0 on the WAN router, blocks ike_0.

Identifying Private Subnet Advertisement Of Pri-
vate Subnets Into WAN

This section illustrates another problem that arose
during deployment of our VPN solution into an exist-
ing network. Existing networks contain ‘‘legacy’’
routers that have no concept of internal or external sub-
nets as do spoke routers. Thus, if our VPN is grafted
into an existing network as shown in the figure above,
the defense-in-depth feature mentioned in the second
section is compromised. The legacy router can run the

same routing protocol on both its internal and external
interfaces and thereby export the internal subnet Y to
the WAN. Now, if the WAN router is compromised, an
adversary can send packets to the host at Y. We now
show how to formalize identification of this possibility.

We define the code shown in Display 14. This pred-
icate states that an internal subnet is advertised to the
WA N if there is a legacy router with two interfaces, one
attached to an internal subnet and another to an external
subnet, and both have the same routing protocol enabled
on them. Now, if we increase the scope of the network of
Figure 5b to include one additional (legacy) router and
two additional physical interfaces, and request Alloy to
find a model for (FullVPNSpec ∧ internalSubnetAdvertised-
To Wan), Alloy produces the the code in Display 15. In
other words, physicalInterface_0 and physicalInterface_1 can
be placed on legacyRouter_0, one can be connected to an
internal subnet, the other to an external subnet, and yet
both can belong to ospfDomain_0.

Writing Efficient Requirements

Scope Splitting
One critical parameter to control in Alloy is the

size of the scope. If it gets too large it should be split
up and the specification changed, if necessary. Con-
sider the following specification declaring router and
interface types, and a relation chassis mapping an inter-
face to its router. Also define EmptyCond to be an
empty set of constraints to satisfy (Alloy requires
some constraint before it can be run):

164 19th Large Installation System Administration Conference (LISA ’05)

Narain Network Configuration Management via Model Finding

sig router {}
sig interface {chassis: router}
pred EmptyCond () {}

pred internalSubnetAdvertisedToWan ()
{some r:legacyRouter, x:physicalInterface, y:physicalInterface,

s:internalSubnet, e:externalSubnet |
x.chassis=r &&
y.chassis=r &&
x.network=s &&
y.network=e &&
x.routing=y.routing}

Display 14: Advertising internal subnet if several conditions met.

X

Y

Spoke

Router

Hub Router

Access Server

OSPF Domain

Spoke

Router

Hub Router

WAN

Router

Spoke

Router

Hub Router

Access Server

OSPF Domain

Spoke

Router

Hub Router

WAN

Router

Legacy
Router

Figure 6: Advertisement of internal subnet Y into WAN by legacy router.

routing : =
{physicalInterface_0 -> ospfDomain_0,
physicalInterface_1 -> ospfDomain_0,
..}

chassis : =
{physicalInterface_0 -> legacyRouter_0,
physicalInterface_1 -> legacyRouter_0,
..}

network : =
{
physicalInterface_0 -> externalSubnet_3,
physicalInterface_1 -> internalSubnet_1,
..}

Display 15: Code for expanded specifications (FullVPNSpec ∧ internalSubnetAdvertisedToWan).

When Alloy tries to find a model for EmptyCond
in a scope consisting of 50 routers and 50 interfaces it
crashes! This is because the cross product of the set of
all routers and chassis’ has 50×50=2500 pairs. Each
subset of this product is a value of the chassis relation.
Since there are 22500 subsets, there are that many pos-
sible values to enumerate. We can now try splitting the
scope and redefining the specification; see Diplay 16.
Alloy returns a model of EmptyCond for the scope
consisting of 25 hubRouters, 25 spokeRouters, 25
hubRouterInterfaces and 25 spokeRouterInterfaces in sec-
onds! Note that the scope still contains 50 routers and
50 interfaces. But there are now ‘‘only’’ 2625 × 2625 =
21250 possible values of chassis relation, or a factor of
21250 less. The scope splitting heuristic has been

followed to structure the space of different routers and
interfaces in the fault-tolerant VPN.

Minimizing Number Of Quantifiers In Formulas

Requirements containing quantifiers are trans-
formed into Boolean form by instantiating quantified
variables in all possible ways. The number of instantia-
tions is the product of the number of instantiations of
each quantified variable. The number of instantiations
of each quantified variable is the size of the scope of
that variable. In order to prevent the Boolean form from
becoming excessively large, one can keep the number
of quantified variables in a requirement as small as pos-
sible. For example, consider the definition of Fire-
wallPolicyRequirements show in Display 17 in which
only two explicit quantifiers appear per requirement.
Display 18 shows a more compact definition in which
five quantifiers appear in a single requirement.

19th Large Installation System Administration Conference (LISA ’05) 165

Network Configuration Management via Model Finding Narain

In both cases, the number of IPSec tunnels in the
scope is 4 and the number of firewall policies 9. How-
ever, there is a large difference in the size of the
Boolean formula produced (for the entire VPN specifi-
cation). In the first case, the formula contains 216,026
clauses and 73,4262 literals, and the entire process
(compilation to solution) took 2 minutes and 59 sec-
onds. In the second case, the formula contains 601,721
clauses and 2,035,140 literals and the entire process
took 8 minutes and 19 seconds.

sig hubRouter {}
sig spokeRouter {}
sig hubRouterInterface {chassis:hubRouter}
sig spokeRouterInterface {chassis:spokeRouter}

Display 16: Splitting the scope and redefining the specification.

pred FirewallPolicyRequirements ()
{(all t:ipsecTunnel | some p1:firewallPolicy |

p1.protectedInterface = t.local &&
p1.prot = ike &&
p1.action = permit) &&

(all t:ipsecTunnel | some p1:firewallPolicy |
p1.protectedInterface =t.remote &&
p1.prot = ike &&
p1.action = permit) &&

(all t:ipsecTunnel | some p1:firewallPolicy |
p1.protectedInterface = t.local &&
p1.prot = esp &&
p1.action = permit) &&

(all t:ipsecTunnel | some p1:firewallPolicy |
p1.protectedInterface = t.remote &&
p1.prot = esp &&
p1.action = permit)

(no disj p1,p2:firewallPolicy |
p1.protectedInterface=p2.protectedInterface &&

p1.prot=p2.prot && !p1.action=p2.action)}

Display 17: Two explicit quantifiers per firewall requirement.

pred FirewallPolicyRequirements ()
{(all t:ipsecTunnel | some p1,p2,p3,p4:firewallPolicy |

p1.protectedInterface = t.local &&
p1.prot = ike &&
p1.action = permit &&
p2.protectedInterface = t.remote &&
p2.prot = ike &&
p2.action = permit &&
p3.protectedInterface = t.local &&
p3.prot = esp &&
p3.action = permit &&
p4.protectedInterface = t.remote &&
p4.prot = esp &&
p4.action = permit)&&

(no disj p1,p2:firewallPolicy |
p1.protectedInterface=p2.protectedInterface &&

p1.prot=p2.prot && !p1.action=p2.action)}

Display 18: More compact version of Display 17.

Relationship To Previous Work

IETF’s policy-based networking group [7] has
similar objectives to ours. Its main contributions are

vendor-neutral information models and if-condition-
then-action rules called policies. Information models
define types of objects, their attributes and possible
values. These models, while important from a software
development standpoint, are orthogonal to solving fun-
damental configuration management problems identi-
fied in this paper. These problems would remain even
if we were to use all components from a single vendor.

Policy-based networking also does not enable
any declarative representation of system logic such as
Requirements 1-16. The if-condition-then-action rules
are only procedural encodings of this logic. In effect,
these rules have to do all the work of the Requirement
Solver. This is a formidable undertaking. Furthermore,

166 19th Large Installation System Administration Conference (LISA ’05)

Narain Network Configuration Management via Model Finding

verification with such procedural rules is impractical,
and operations like configuration error diagnosis or
fixing are not addressed. In our approach, the Require-
ment Solver remains unchanged. It is only the require-
ments or the scope that change. The Requirement
Solver automatically adjusts to these changes and
finds new configurations. Verification is another appli-
cation of the Requirement Solver.

For the same reason, it is incorrect to assume that
just the use of high-level languages like Perl and
Python, often used in network management, can solve
above fundamental configuration management prob-
lems. The hard part of reasoning from full first-order
logic requirements still has to be programmed in these
languages. It is this part that our approach automates.

Previous papers [8, 9] formalized a restricted
version of the second section’s requirements, in Pro-
log. Prolog is based in definite clauses, hence it is not
possible to use it to reason with full first-order logic
constraints. Examples of these are ‘‘for every GRE
tunnel there is an IPSec tunnel between associated
physical interfaces that secures all GRE traffic’’ and
‘‘no two distinct interfaces on a router are on the same
subnet.’’ The application of Prolog to system adminis-
tration is thoroughly explored by Couch and Gilfix
[10]. Related, widely used systems are Burgess’
CFEngine [11] and Anderson’s LCFG [12], but both
have less expressive power than Prolog. These sys-
tems also perform robust application of configuration
to components, a problem outside the scope of this
paper. Recently, the need for specifying and reasoning
with constraints on configurations has been amply
expressed [13]. These constraints require the expres-
sive power of full first-order logic, therefore our
approach can address this need.

Summary, Conclusions & Future Directions

This paper introduces the notion of a Require-
ment Solver and shows how fundamental configura-
tion management tasks can be naturally formalized
using it. These tasks are configuration synthesis,
requirement strengthening, component addition, con-
figuration error diagnosis and configuration error fix-
ing. The Solver has been inspired by, and is imple-
mented in, the new logical system called Alloy. Alloy
is based on the concept of model finding for full first-
order logic in finite domains. Because of Alloy’s use
of highly efficient satisfiability solvers, there is
renewed optimism for efficient reasoning in this logic,
especially for configuration management. Traditional
first-order logic theorem provers address the harder
problem of reasoning in infinite domains. The Solver
is illustrated in the context of a realistic fault-tolerant
VPN with remote access, by working out four of
above tasks. Approaches for writing efficient specifi-
cations are outlined.

Alloy’s strength is efficiently sorting through
complex, first-order logic constraints, provided scopes

are small. On a modern PC, it requires several hours to
find complete configurations for all components in an
8-site VPN: 8 spoke routers, 2 hub routers, 1 access
server, 1 WAN router and associated interfaces, sub-
nets, firewall policies, routing domains, GRE and
IPSec tunnels. For context, the time taken by a human
to reconcile Requirements 1-16 for all sites should be
considered. Based on experiments of this paper, it is
possible that Alloy be used from a traditional pro-
gramming language to solve configuration manage-
ment problems for networks of realistic scale and
complexity. The heuristics of the ‘‘Efficient Require-
ments’’ section could be programmed in the program-
ming language. Other approaches for scalability are
tuning satisfiability solvers to the networking domain,
improving Alloy compilers, and using divide-and-con-
quer approaches.

One open problem is selecting the least cost
change from the current configuration as required for
Configuration Error Fixing. A configuration manage-
ment problem, not discussed in this paper, is migration
planning: in what order to configure components so
that mission-critical invariants are never violated. For
example, suppose the routing protocol on all routers
has to be changed from RIP to OSPF. If the only
method of accessing routers to perform this change is
inband, then reconfiguring the first router to which the
management station is attached will effectively isolate
it from all others. This is because routing protocols
compute routes to routers, but since OSPF and RIP
processes do not exchange information with each
other, the first router will not be able to compute
routes to others. The problem of the order in which to
reconfigure components is fundamentally the problem
of planning in artificial intelligence. The application
of satisfiability solvers to this problem has been
shown by Selman and Kautz [14].

Acknowledgements

I am grateful to Dr. Paul Anderson at Edinburgh,
Professor Mark Burgess at University of Oslo, Profes-
sor Carla Gomes at Cornell, Professor Daniel Jackson
at MIT, Dr. Gary Levin at Telcordia, Professor Sharad
Malik at Princeton, and Professor Darko Marinov at
University of Illinois, Urbana Champaign for very
useful ideas and feedback.

Author Information

Sanjai Narain is a Senior Research Scientist in
the Information Assurance and Security Department in
Telcordia’s Applied Research Area. His current
research is on automated synthesis of secure, fault-tol-
erant distributed systems. This research is funded
through DARPA, DISA and Department of Homeland
Security. He has built security and network management
systems for wireless, IP, VoIP, DSL, Dialup, ATM and
SONET. The DSL loop qualification system he created
was the basis for a successful Telcordia service. He won

19th Large Installation System Administration Conference (LISA ’05) 167

Network Configuration Management via Model Finding Narain

a DARPA award for transferring technology to the
Army’s Future Combat Systems program. The DR.
DIALUP system he created for reducing help-desk costs
of Internet Service Providers was Telcordia’s first prod-
uct for the mass-market. Prior to joining Telcordia, he
worked at RAND Corporation where he designed and
implemented new discrete-event simulation techniques.
His formal training is in programming languages and
automated reasoning. He obtained a Ph.D. in Computer
Science from University of California, Los Angeles, an
M.S. in Computer Science from Syracuse University,
and a B.Tech. in Electrical Engineering from Indian
Institute of Technology, New Delhi. His email address is
narain@research.telcordia.com .

References

[1] Oppenheimer, David, Archana Ganapathi, David
A. Patterson, ‘‘Why Internet Services Fail and
What Can Be Done About These?’’ Proceedings
of 4th Usenix Symposium on Internet Technolo
gies and Systems (USITS ’03), http://roc.cs.
berkeley.edu/papers/usits03.pdf , 2003.

[2] Lampson, Butler, ‘‘Computer Security In the
Real World,’’ Proceedings of Annual Computer
Security Applications Conference, http://research.
microsoft.com/lampson/64-SecurityInRealWorld/
Acrobat.pdf , 2000.

[3] Horn, Paul, Senior VP, IBM Research, Autonomic
Computing IBM’s Perspective on the State of
Information Technology, http://www.research.ibm.
com/autonomic/manifesto/autonomic_computing.
pdf .

[4] http://alloy.mit.edu/ .
[5] Berkmin, http://eigold.tripod.com/BerkMin.html .
[6] Zchaff, http://www.princeton.edu/˜chaff/ .
[7] Moore, B., E. Ellesson, J. Strassner, A. Westeri-

nen, ‘‘Policy Core Information Model – Version 1
Specification,’’ IETF RFC 3060, http://www.ietf.
org/rfc/rfc3060.txt , February, 2001.

[8] Narain, S., T. Cheng, B. Coan, V. Kaul, K.
Parmeswaran, W. Stephens, ‘‘Building Auto-
nomic Systems Via Configuration,’’ Proceedings
of AMS Autonomic Computing Workshop, Seattle,
WA , http://www.argreenhouse.com/papers/narain/
Autonomic.pdf , 2003.

[9] Qie, X., S. Narain, ‘‘Using Service Grammar to
Diagnose Configuration Errors in BGP-4,’’ Pro-
ceedings of Usenix Systems Administrators Con-
ference, San Diego, CA, 2003. Also to appear in
Science of Computer Programming Journal, in a
special issue on Network Management.

[10] Couch, A., M. Gilfix, ‘‘It’s Elementary, Dear
Watson: Applying Logic Programming To Con-
vergent System Management Processes,’’ Pro-
ceedings of Large Installations Systems Adminis-
tration Conference (LISA), http://www.eecs.tufts.
edu/˜mgilfix/publications/prolog-lisa99.pdf , 1999.

[11] Burgess, M., ‘‘A Site Configuration Engine,’’
USENIX Computing systems, Vol. 8, Num. 3, http://
www.iu.hio.no/˜mark/papers/paper1.pdf , 1995.

[12] Anderson, P., A. Scobie, ‘‘LCFG – The Next
Generation,’’ Proceedings of UKUUG LISA/Win-
ter Conference, http://www.lcfg.org/doc/ukuug2002.
pdf , 2002.

[13] Configuration Workshop, Large Installations Sys-
tems Administration Conference (LISA), http://
homepages.informatics.ed.ac.uk/group/lssconf/
config2004/index.html , 2004.

[14] Selman, B., H. Kautz, ‘‘Planning As Satisfiabil-
ity,’’ Proceedings of ECAI-92, http://www.cs.cornell.
edu/selman/papers/pdf/92.ecai.satplan.pdf .

168 19th Large Installation System Administration Conference (LISA ’05)

