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Abstract
Denial of service (DoS) attacks are a growing threat to
the availability of Internet services. We present dFence, a
novel network-based defense system for mitigating DoS
attacks. The main thesis of dFence is complete trans-
parency to the existing Internet infrastructure with no
software modifications at either routers, or the end hosts.
dFence dynamically introduces special-purpose middle-
box devices into the data paths of the hosts under attack.
By intercepting both directions of IP traffic (to and from
attacked hosts) and applying stateful defense policies,
dFence middleboxes effectively mitigate a broad range
of spoofed and unspoofed attacks. We describe the ar-
chitecture of the dFence middlebox, mechanisms for on-
demand introduction and removal, and DoS mitigation
policies, including defenses against DoS attacks on the
middlebox itself. We evaluate our prototype implemen-
tation based on Intel IXP network processors.

1 Introduction
Denial of service (DoS) attacks pose a significant threat
to the reliability and availability of Internet services.
Consequently, they are emerging as the weapon of choice
for hackers, cyber-extortionists [24], and even terror-
ists [26]. The widespread availability of attack tools [3]
makes it relatively easy even for “script kiddies” to
mount significant denial of service attacks.

Our goal is to design and build a transparent network-
based defense system capable of mitigating a broad range
of large-scale, distributed denial of service attacks di-
rectly inside the network, without requiring software
modification at either routers, or end hosts. Such a sys-
tem can be deployed by Internet service providers (ISPs)
in today’s Internet, providing on-demand protection to
customers, including those who operate legacy servers,
only when they experience an actual attack. It can also
serve as a general platform on which new security ser-
vices and defense mechanisms can be deployed at a low
cost, with a single installation protecting a large number
of customers.

The problem of detection and mitigation of denial of
service attacks has received considerable attention. De-
spite a large body of research literature and availability
of commercial products, effective protection against de-

nial of service has remained elusive. There are several
plausible reasons for this. Most of the proposed solu-
tions require software modification at either routers, or
end hosts, or both. This means that the defense is not
transparent to the Internet service providers and/or their
customers.

Solutions that are not directly compatible with the
existing TCP/IP implementations and routing software
are likely to face unsurmountable deployment obstacles.
Even SYN cookies, which are backward-compatible and
part of standard Linux and FreeBSD distributions, are not
used by the vast majority of users because they are turned
off by default. At the same time, waiting until the Inter-
net is re-engineered to provide better resistance against
denial of service is not a feasible option for users who
need immediate protection.

Arguably, the main challenge in DoS research today is
not only coming up with new defense methods, but also
finding an effective way to deploy both existing and new
defenses with no changes to the installed software base,
and without any performance cost when denial of service
activity is not happening.

This problem is not unique to denial of service. Many
network attacks are relatively rare events: a given end
host may experience a denial of service attack once every
few months, or be exposed to a new worm once a year.
Therefore, there is little incentive for the end host opera-
tor to deploy an expensive protection system or to mod-
ify the existing software, especially if the change affects
normal network performance. Of course, not deploying
a defense can have catastrophic consequences when the
attack does happen. We solve this conundrum by pro-
viding technological support for a “group insurance ser-
vice” that an ISP can offer its customers: an on-demand
defense that turns on only when the customer is actually
experiencing an attack, and otherwise has no impact on
the network operation.

Our contributions. We present dFence, a novel DoS
mitigation system based on a small number of special-
purpose “middlebox” devices located in the middle of the
network. The main features of dFence are:

• Transparency: dFence is fully transparent to the end
hosts, requires no modifications of client or server soft-
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ware, and enables protection of legacy systems. Pro-
tected hosts need not even be aware that the system is
in operation.

• Compatibility with routing infrastructure: dFence
employs standard intra-domain routing and tunneling
mechanisms for traffic interception. It requires no
changes to the existing router software, and is thus in-
crementally deployable by Internet service providers.

• On-demand invocation: dFence middleboxes are dy-
namically introduced into the data path of network
connections whose destinations are experiencing de-
nial of service, and removed when the attack subsides.
The small performance cost of filtering is paid only by
the attacked hosts, and only for the duration of the at-
tack.

• Scalability: The dynamic nature of dFence allows
ISPs to multiplex the same defense infrastructure to
protect a large number of customers (who are not all
under attack at the same time), and thus more effi-
ciently utilize their network and computing resources.

• Minimal impact on legitimate connections: Each
dFence middlebox manages the state of active, legiti-
mate connections to the customers who are simultane-
ously under attack. Malicious flows do not occupy any
memory at the middlebox. Therefore, legitimate flows
can be processed with very low latency cost. The cost
for the flows to the destinations not experiencing an
attack is zero.

• Versatility: Because dFence middleboxes dynami-
cally intercept both directions of TCP connections to
DoS-affected hosts, they can apply stateful mitigation
policies to defend against the entire spectrum of DoS
attacks.

• Economic incentive: We envision dFence middle-
boxes being deployed within a single ISP. The ISP can
then charge a premium to customers who subscribe for
a dFence-based “insurance service.” dFence middle-
boxes are turned on only when one or more paying
customers are experiencing an attack. As more cus-
tomers subscribe to the service, the ISP can incremen-
tally scale up the deployment.

System architecture. Figure 1 depicts the overall sys-
tem architecture. The two guiding design principles be-
hind dFence are dynamic introduction and stateful mit-
igation. We implement dynamic introduction by using
intra-domain routing and tunneling mechanisms to trans-
parently insert dFence middleboxes into the data path of
traffic destined to hosts experiencing a DoS attack. This
is done only when DoS activity is detected in the net-
work. Due to dynamic introduction, our solution has
zero impact on normal network operations, and can be
deployed incrementally.

The middleboxes intercept both directions of network
traffic (to and from attacked hosts), which enables many

(b) During DDoS Attack (a) During Normal Operation
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Figure 1: dFence Architecture: (a) During normal op-
eration, the ingress routers forward the traffic towards
the corresponding egress routers. (b) Under a large-scale
DoS attack, traffic is re-directed via the middlebox. The
middlebox applies mitigation policies and filters out ille-
gitimate traffic.

mitigation techniques that were previously considered
unsuitable for network-based defenses. The main techni-
cal novelty is the network-based implementation of de-
fenses that previously required modifications to server
or client software. For example, “outsourcing” SYN
cookie generation to dFence middleboxes enables us to
protect legacy end hosts whose TCP/IP implementations
do not support SYN cookies. Other mitigation tech-
niques include defenses against spoofed and unspoofed
data floods, against clients opening and abandoning a
large number of connections, and against distributed bot-
net attacks.

Key challenges. The combination of transparent on-
demand defense, two-way traffic interception, and state-
ful mitigation presents several interesting challenges: (i)
how to deal with middlebox transitions, i.e., how to intro-
duce and and remove middleboxes on selected data paths;
(ii) how to dynamically bootstrap, manage, and remove
connection state at the middleboxes; (iii) how to handle
network behavior such as route changes and failures of
network elements; and (iv) how to handle overload con-
ditions and DoS attacks on the middleboxes themselves.

We present practical solutions to all of these chal-
lenges. Our main contribution is a careful integration
of several network mechanisms leading to a completely
transparent, scalable and effective DoS mitigation sys-
tem. We evaluate our design using a prototype implemen-
tation based on Intel’s IXP2400 network processors, and
demonstrate that mitigation of a broad range of DoS at-
tacks, including spoofed SYN floods and unspoofed data
floods, can be achieved with minimal performance degra-
dation. We also note that the focus of this paper is on
mitigation, rather than detection of denial of service ac-
tivity.

Organization. The rest of the paper is organized as fol-
lows. In Section 2, we describe the mechanisms for dy-
namically introducing dFence middleboxes in the data
path of attack traffic. Section 3 describes the architec-
ture of the dFence middleboxes and the mitigation poli-
cies that defend against a broad range of spoofed and un-
spoofed attacks. Our prototype implementation and its
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performance evaluation are presented in Sections 4 and 5,
respectively. Section 6 outlines the related work. Sec-
tion 7 summarizes our contributions.

2 Transparent Middlebox Invocation
A key design principle for dFence middleboxes is com-
plete transparency to the end hosts. This is achieved
through dynamic invocation of middleboxes by standard
intra-domain routing mechanisms and tunneling. A few
dFence middleboxes are introduced into the network to
provide focused protection to the subset of the end hosts
that are currently experiencing a DoS attack. Protected
hosts do not need to modify their software, nor access
the network through special overlay points, nor set up IP
tunnels, nor even be aware that dFence middleboxes have
been deployed inside their ISP.

Dynamic middlebox invocation is critical for deploy-
ability because it ensures that during peace time (i.e.,
when there is no ongoing DDoS activity) customer traf-
fic does not have to pay the penalty of triangular routing
through the middleboxes. Dynamic middlebox invoca-
tion is also important for the defense system itself be-
cause it focuses all defense resources only on the connec-
tions whose destinations are under attack, leaving other
customers unaffected. The defense system can thus ben-
efit from statistical multiplexing and potentially protect
many more customer networks with the same available
resources.

Combining dynamic middlebox invocation with state-
ful attack mitigation raises several technical challenges.

• Bidirectional traffic interception. Many of our mitiga-
tion policies require the defense system to capture both
directions of customer traffic. For example, to protect
against spoofed data floods from remote hosts to a cus-
tomer network under protection, we maintain a Con-
nection table to summarize on-going TCP connec-
tions. Bidirectional traffic interception is difficult in
general because Internet routing is destination-based
by default; intercepting traffic from the customer net-
work, however, requires the ability to perform source-
based routing.

• Flow pinning. In addition to intercepting both direc-
tions of protected traffic, stateful mitigation also re-
quires that both directions pass through the same mid-
dlebox (where the state of the connection is main-
tained), even after routing changes have caused the in-
tercepted traffic to use different ingress points. This
requires a mechanism for pinning each flow, defined
by the TCP/IP packet header, to a particular middle-
box. Flow pinning also provides security against an
attacker who attempts to disrupt external routing while
launching an attack.

We use a simple hash-based flow pinning method.
Each flow is associated with a home middlebox, whose
identity is determined by a hash h(f) of the flow iden-
tifier f . The flow identifier consists of source and des-

tination IP addresses and port numbers in the TCP/IP
packet header. If the flow is intercepted by a foreign
middlebox, it is simply forwarded to the home mid-
dlebox, achieving reasonable load balancing of flows
across the middleboxes. In the future, we plan to inves-
tigate more sophisticated flow pinning mechanisms.

• Dynamic state management. Dynamic middlebox in-
vocation also poses interesting challenges for state
management. The first question is how to handle ex-
isting connections when the middlebox is inserted into
the data path. For instance, our policy for defending
against spoofed data flooding can drop a data packet if
it is not in the Bloom filter summary of ongoing con-
nections. But an existing legitimate connection may
not be present in the Bloom filter if it had been es-
tablished before the middlebox was introduced. We
would like to minimize the number of packets dropped
for such connections.

Besides filtering, some of our advanced mitigation
policies perform operations that change the content of
the traffic. For example, the “outsourced” SYN cookie
policy requires the splicing of TCP connections and
sequence number translation to be performed at the
middlebox. What happens to the spliced connections
when the middlebox is removed from the data path?

• Middlebox failure recovery. A dFence middlebox may
fail due to software or hardware errors, or traffic over-
load. Protecting the overall defense system from mid-
dlebox failures is an important challenge.

Our solution is based on standard BGP/IGP routing,
tunneling, and policy-based routing (PBR) [7], which is
available in almost all existing routers. Therefore, our
solution is easy to deploy in today’s Internet. In ad-
dition, we implement a simple hash-based mechanism
for pinning each individual connection to the same home
middlebox. This ensures that both directions of the con-
nection traverses the same middlebox (even in the pres-
ence of route changes that may result in different ingress
points). Below we present our approach for bidirectional
traffic interception, dynamic state management, middle-
box failure recovery and load balancing.

2.1 Dynamic Traffic Interception

While there exist several academic and industrial solu-
tions for traffic interception [1, 8, 11], none of them,
to the best of our knowledge, can simultaneously (i) in-
troduce middleboxes dynamically, (ii) intercept both in-
bound and outbound traffic, and (iii) ensure that both di-
rections of a connection go through the same home mid-
dlebox. As a result, no single existing technique is suf-
ficient for stateful attack mitigation. It is possible, how-
ever, to use existing techniques to substitute some of the
individual components of our solution (e.g., our mecha-
nism for inbound traffic interception).
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Figure 2: Traffic interception at middleboxes using
BGP/IGP, tunneling and policy-based routing

2.1.1 Inbound traffic interception

In our prototype implementation, we use iBGP and tun-
neling to intercept inbound traffic (alternatives include
mechanisms such as MPLS tunneling). To intercept all
traffic inbound to some customer network S, the dFence
middleboxes send iBGP updates advertising a route to S

with the highest local preference to all BGP peers in the
local AS. As a result, the middleboxes become the pre-
ferred egress points for all traffic destined to S. At each
ingress router, IGP selects the closest middlebox and up-
dates the forwarding tables appropriately.

To enable the packets to reach S after they have been
filtered by the middlebox, dFence configures a tunnel
from the middlebox to the real egress router associated
with S. The tunnel can be set up using any available
mechanism; in our prototype, we use IP-IP tunnels. The
egress router specifies two ACLs: (a) ACL-to-S is defined
on the router’s internal interface (connecting it to the rest
of the ISP) and intended for traffic going towards S; (b)
ACL-from-S is defined on the external interface connect-
ing it to the customer network and intended for traffic
arriving from S.

The journey of an incoming packet typically consists
of the following three steps, as illustrated in Figure 2(a).

1. Go to one of the middleboxes: IGP selects the middle-
box M1, which is the closest middlebox to the ingress
point. If M1 is the home middlebox for this flow, the
next step is skipped; otherwise M1 needs to forward
the packet to its home middlebox.

2. Flow pinning: The packet is tunneled from the for-
eign middlebox M1 to the home middlebox M3. The

identity of the home middlebox is determined by the
hash value of the flow identifier. The home middle-
box M3 then applies mitigation policies described in
section 3.2 to process the packet.

3. Go to the real egress router: After the middleboxes
advertised routes to S, the intermediate routers’ for-
warding tables point towards middleboxes for all pack-
ets whose destination is S. To avoid routing loops,
we tunnel the packet from the home middlebox M3 to
the true egress router Rn. When Rn receives the tun-
neled packet, it decapsulates the packet and, because
it matches ACL-to-S, forwards it to the customer net-
work S.

Observe that the traffic arriving on the external in-
terfaces of Rn (other than the interface connecting it
to S) will be first re-routed to the middlebox for fil-
tering, because the middleboxes’ iBGP route advertise-
ments change the forwarding table at Rn, too.

2.1.2 Outbound traffic interception

We use policy-based routing (PBR) [7] to intercept out-
bound traffic originating from the customer network S to
a remote host. PBR allows flexible specification of rout-
ing policies for certain types of packets, including ACLs
(access control lists) that identify classes of traffic based
on common packet header fields. In our context, we use
PBR to forward all traffic that matches ACL-from-S to a
dFence middlebox through a preconfigured tunnel.

The journey of an outbound packet consists of the fol-
lowing three steps, as illustrated in Figure 2(b).

1. Go to one of the middleboxes: When the egress router
Rn receives a packet from S, the flow definition
matches ACL-from-S and so the packet is forwarded
to middlebox M4 through its preconfigured tunnel in-
terface.

2. Flow pinning: M4 forwards packets to the home mid-
dlebox M3, determined by the flow pinning hash func-
tion. The hash function is selected in such a way that
exchanging source and destination fields does not af-
fect the hash value, for example:

h1(src addr, src port) ⊕ h2(dst addr, dst port)

where h1 and h2 are two independent hash functions.
This ensures that both directions of the same connec-
tion have the same home middlebox (M3 in our exam-
ple)

3. Go towards the egress router: Regular IP routing is
used to send the packet to its egress router R1.

2.2 Dynamic State Management
The main challenge in dynamic middlebox invocation is
the need to gracefully handle existing connections upon
the introduction or removal of a middlebox. Our basic
solution is to add grace periods after the introduction or
before the removal of the middlebox. During the grace
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Figure 3: Packet inter-arrival time (IAT) within flows

period, the middlebox continues to serve all existing con-
nections while it is preparing to establish or time out its
state.

After the middlebox has been introduced into the data
path, it spends Tb seconds (state bootstrap interval) boot-
strapping its state. After the decision has been made by
the network operator to remove the middlebox, the mid-
dlebox stays in the data path for another Tr seconds (state
removal interval) before being completely removed.

1. State bootstrapping: During interval Tb, the middle-
box establishes state for the existing connections be-
tween clients and the server and/or customer network
which is being protected. An existing connection is
considered legitimate if the middlebox sees both in-
bound and outbound traffic on it during the bootstrap
period. The list of connections is maintained using the
Connection table data structure, described in detail in
Section 3.1.

2. State removal: After the removal decision has been
made, the middlebox can be removed right away if no
currently active mitigation policy involves modifica-
tions to individual packet content. Some mitigation
policies, however, such as “outsourced” SYN cookie
generation cause the middlebox to actively modify
packet headers (e.g., by sequence number translation).
For these policies, the middlebox cannot be removed
right away because the existing connections can be-
come invalid without the translations performed by
the middlebox. Therefore, the middlebox needs to re-
main in the data path during interval Tr and continue
to serve the ongoing connections. No policies are ap-
plied on any new connections and they are directly for-
warded to their destinations.

The value of the state bootstrap interval Tb is impor-
tant. If Tb is too long, then the attacker can cause severe
damage while the middlebox is being bootstrapped. If
Tb is too short, then many existing connections may ei-
ther get terminated, or suffer poor performance. Trace
analysis based on several large datasets shows that the
vast majority (99%) of all connections have packet in-
terval times that are quite small, on the order of a few

seconds (see Figure 3). Hence, Tb can be set to 5 or 10
seconds. This means that, within a short bootstrap inter-
val, the state for the vast majority of existing connections
can be established, and only a handful of legitimate users
(those who were idle during Tb) will have to re-establish
connections.

It might appear that the bootstrap time Tb provides an
opportunity for an attacker to overload the middlebox
itself. This is not the case because connection state is
maintained at the middlebox only for unspoofed connec-
tions which comply with traffic control measures.

The decision to introduce a middlebox can be made
by the customer networks under protection (e.g., when
they observe too much inbound traffic), or through some
network-based DoS detection system. Since our primary
focus in this paper is on attack mitigation, we do not dis-
cuss attack detection here.

The value of the removal interval Tr can be pre-
specified (it must be sufficiently long to allow for nor-
mal termination of all ongoing connections), or it can
be adaptive based on the number of connections going
through the middlebox. Compared with Tb, the choice of
Tr is less critical because it primarily affects the amount
of additional work that the middlebox performs and has
little impact on the safety of customer networks.

The decision to remove a middlebox can only be made
by the middlebox itself (or by all middleboxes collec-
tively). Unlike middlebox introduction, middlebox re-
moval cannot be decided by the customer networks—if
the defense system is effective, then the customers should
not be able to tell whether the DoS attack ceased, or the
attack is still in progress. Therefore, the middleboxes
need to continuously profile the (unfiltered) traffic and
decide whether the ongoing attack has subsided.

2.3 Failure Recovery and Load Balancing
A middlebox can fail for a variety of reasons, such as
power outage, hardware malfunction, software errors,
network outages, and so on. It can also fall victim to
a DoS attack itself, even though our middlebox architec-
ture is explicitly hardened against this possibility. When
a middlebox fails, it is crucial that a different middle-
box (or the same middlebox after rebooting) take over
the management of all connections whose flow identi-
fiers have been pinned to the failed middlebox. To make
this transition as smooth as possible, the middlebox must
offload its state to a different middlebox as soon as over-
loading is detected. Therefore, graceful flow migration is
the key component of both failure recovery and load bal-
ancing. We outline how it can be achieved in the dFence
mitigation system.

Recall that each flow identifier f is pinned to its home
middlebox by a hash function h(f). To avoid changing
the hash function (which may be implemented in hard-
ware and difficult to modify), we introduce one level of
indirection. All middleboxes in our system will agree
on a global home middlebox table HM [0..n − 1] (e.g.,
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n = 1024). Each middlebox is responsible for a subset
of entries in this table, or, more precisely, for all flows
whose identifiers hash to this subset. The global HM ta-
ble can be maintained either centrally, or through a dis-
tributed agreement protocol among all the middleboxes.
The hash function h can be chosen so that it maps flow
identifier f to {0, 1, · · · , n − 1}. The home middlebox
for flow f is simply HM[h(f)]. This enables graceful
flow migration for failure recovery and load balancing.

Failure recovery. All middleboxes are pre-arranged to
form a logical ring R. For each middlebox Mi, its clock-
wise next-hop neighbor in R (denoted by R.next(Mi)) is
the designated backup for Mi and will take over the flows
managed by Mi should Mi fail. Suppose for some en-
try e the original home middlebox M1 = HM [e] failed.
M2 = R.next(M1) then becomes the new HM [e] and
starts the bootstrap interval Tb, during which it boot-
straps (as described in section 2.2) the state of all on-
going connections whose flows are hashed to e. The
same procedure can be repeated to handle multiple fail-
ures. For example, if both M1 and M2 failed, then
M3 = R.next(M2) becomes the new HM [e]. Note
that unreachable middleboxes due to network partition
can be handled in the same way as failures. The only
additional processing required for coping with network
partition is to resolve the inconsistency in the HM tables
maintained by different partitions after the network be-
comes connected again.

Load balancing. Load balancing can be handled in a
similar manner. Suppose M1 is overloaded and wants
to offload all flows that are hashed to entry e to a less
loaded middlebox M2. All it needs to do is to update the
global home middlebox table so that HM [e] = M2. M2

then spends the Tb period to bootstrap its state for flows
that are mapped to e. Note that during the state bootstrap
interval, instead of blindly letting through every flow that
M2 has no state for, M2 has the option of forwarding
such flows to M1. This can make flow migration more
graceful, especially when M1 has been applying traffic-
modifying mitigation policies such as SYN cookies and
sequence number translation.

3 Middlebox Design

3.1 Overview

dFence is based on diverting traffic to special-purpose
middleboxes as soon as denial of service activity is de-
tected. Each middlebox is responsible for protecting
TCP connections to some or all of the attacked desti-
nations. To effectively distinguish between benign and
malicious traffic, the middlebox maintains partial TCP
state for both directions of the intercepted connections,
but does not buffer any packets. Because mitigation is
performed entirely within the middlebox and traffic redi-
rection is achieved using standard intra-domain routing
and tunneling mechanisms, dFence does not require any

software modification at either routers, or the end hosts.
We focus on TCP-based attacks, but UDP, ICMP or DNS
attacks could be handled in a similar fashion.

TCP connection management. TCP connections man-
aged by a dFence middlebox include pre-existing con-
nections that had been established before the middlebox
was introduced into the data path (the middlebox ac-
quires these connections during the bootstrap period—
see section 2.2), and those established after the middle-
box became active. The latter connections are spliced
to enable anti-spoofing defenses. Splicing performed by
the middlebox is very simple and limited to translation of
sequence numbers.

The main data structure maintained by the middlebox
is the Connection hash table, which tracks the state of all
established connections (both directions). Entries in the
table are identified by the hash of FlowId, which consists
of the source IP address, destination IP address, source
port, and destination port. Each entry includes the fol-
lowing:

• Flow definition: source IP, destination IP, source port,
destination port. [4 bytes per IP, 2 bytes per port; 12
bytes total]

• Offset: The difference between sequence numbers
on the middlebox-source connection (generated as
SYN cookies by the middlebox) and the destination-
middlebox connection (chosen by the destination
when a connection is established by the middlebox on
behalf of a verified source). This offset is used to trans-
late sequence numbers when the two connections are
“spliced” at the middlebox. [4 bytes]

• Timestamp: Last time a packet was seen on this con-
nection. Used to time out passive connections. [4
bytes]

• Service bits: (i) pre-existing: is this a pre-existing or
spliced connection? (ii) splice: is sequence number
translation required? (iii) conformance: has the source
complied with traffic management measures (e.g., re-
sponded properly to congestion control messages)?

• InboundPacketRate: Array of size T

ti

, containing the
number of inbound packets seen for each interval of
length ti (T is the monitoring period). Used to mitigate
unspoofed data flood attacks.

Preventing resource exhaustion and resolving colli-
sions. To prevent the attacker from filling the Connec-
tion table with a large number of connection entries that
have the same (unspoofed) source and destination IP ad-
dresses, but different port numbers, the middlebox main-
tains a separate Src-Dest table. This is a hash table in-
dexed by the hash of the source IP - destination IP pair.
For each pair, it keeps the count of currently open con-
nections. Once the threshold is exceeded, no new con-
nections are established. The value of the threshold is
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a system parameter, and can be changed adaptively de-
pending on how full the Connection table is.

To resolve hash collisions between different flows in
the Connection table, we use a Bloom filter-like tech-
nique and apply several hash functions until a vacant en-
try is found. If no vacancy can be found, the decision
whether to drop the new flow or evict the old flow de-
pends on the status of the latter and specific policy (see
section 3.2).

The middlebox also maintains a secret key which is
used as input to a hash function for generating unforge-
able sequence numbers. This key is the same for all con-
nections. It is re-generated at periodic intervals.

Handling connections originated from a protected
network. In addition to keeping information about con-
nections whose destination is the protected server, the
middlebox also needs to keep information about the con-
nections originating from the server in order to filter out
packets with spoofed server address. This is done us-
ing a sliding-window counting Bloom filter [5]. (In our
current implementation, we use filters with 3 hash func-
tions.) During each time slice ti, when a connection re-
quest from the server is observed, the middlebox adds
connection parameters to the current Bloom filter Bi. If
connection is terminated, it is removed from Bi.

3.2 Mitigation Policies
A large number of techniques for mitigating various
types of DoS attacks have been proposed in the research
literature. Virtually none have been deployed widely, due
mainly to the lack of transparency and scalability: net-
working software must be modified at millions of end
hosts, and performance penalty must be paid even when
the hosts are not being attacked. Moreover, different at-
tack types require different defenses, and supporting all
of them (SYN cookies, capabilities, client puzzles, and
so on) in a general-purpose TCP implementation is nei-
ther feasible, nor desirable.

Our main technical contribution in this part of the pa-
per is to show how many anti-DoS defenses can be ef-
fectively and transparently implemented in the middle of
the network at a minimal performance cost.

3.2.1 Mitigating spoofed attacks

The distinguishing characteristic of spoofing attacks is
that the source addresses of attack packets are fake. For
example, SYN flood is a classic denial of service attack,
in which the attacker sends a large number of SYN re-
quests to a TCP server. The server creates a half-open
connection in response to each request. Once the server’s
queue fills up, all connection attempts are denied. In a
spoofed data flood, the attacker simply floods last-mile
bandwidth with spurious traffic. In Smurf-type and re-
flector attacks, the attacker sends packets with the vic-
tim’s address in the source field to a large number of
hosts, who then all respond to the victim, overwhelming
him with traffic.

Middlebox

Client

Server

SYN (a)

SYN Cookie
No state

ACK (a+1:b+1)

Create State

SYN (a)
SYN+ACK (c:a+1)

State Complete

Return Cookie

SYN+ACK (b:a+1)
window = 0

SYN+ACK (b:a+1)
re−open window

DATA+ACK (b+1:a+2)

DATA+ACK (c+1:a+2)

ACK (a+1:b+1) Data (a+1)

Data (a+1)

Sequence #  Translations

ACK (a+1:c+1)

Figure 4: Outsourced SYN cookies with sequence num-
ber translation

Network-based SYN cookie generation. Our policy for
mitigating spoofed SYN floods is shown in fig. 4. It is
based on the well-known idea of SYN cookies [4, 20],
except that, unlike the traditional approach, we do not
require any modifications to the server TCP software.

After a dFence middlebox M has been dynamically
introduced into all routes to some host S that is experi-
encing a denial of service attack, all traffic to S passes
through M . On receipt of a SYN packet whose desti-
nation is S, the middlebox computes the SYN cookie as
a cryptographic hash of connection parameters and the
(frequently re-generated) local secret, adds the value of
the cookie to the sequence number in the SYN packet,
and uses it as the sequence number in its SYN-ACK re-
sponse. No state is established at the middlebox at this
stage.

Note that in the SYN-ACK response, the middlebox M

sets the receiver window size to zero. Upon receiving the
SYN-ACK with zero window size, C sends back an ACK
packet and then enters the TCP Persist Mode. While in
this state, C is not allowed to send any data packets with
non-zero payload. So M effectively “chokes” C. M

can “unchoke” C later by sending it any packet with a
non-zero window size. If M receives data packets from
C before the handshake with S is complete, it marks C

as non-conforming and simply drops all further packets
from C.

Note that, for a legitimate client that does not have cor-
rect implementation of persist mode, the middlebox will
classify it as non-conforming and drop its packets.

It is important to prevent C from generating data pack-
ets before M completes its handshake with S (which may
be far away from M ). Otherwise, M has to buffer all
these packets, which can be expensive. Dropping these
data packets is not a good option because when the first
few data packets at the beginning of a TCP connection
are dropped, C can recover only through the TCP timeout
mechanism. The default TCP timeout value is often set
to 3 seconds, which can seriously degrade network per-
formance as perceived by end users. We have confirmed
this experimentally by turning off the choking mecha-
nism, and observed a 3-second timeout each time. For
server-side SYN cookies, choking is not needed because
S will only receive packets from M after M has com-
pleted the handshake with a legitimate client, and thus all
of S’s packets can be safely forwarded to that client.

On receipt of an ACK packet from some client C,
the middlebox M recomputes the cookie-based sequence
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number and verifies that it is correct. If so, the connec-
tion is not spoofed, and M creates new entries for it in
the Connection and Src-Dest tables (see section 3.2).
The entries are indexed by the hash of connection pa-
rameters. If a collision occurs, it is resolved as described
in section 3.2.

At this point, M needs to establish a connection with
the protected server S on behalf of the (verified) client C.
This is done by performing the standard TCP handshake
with S. M uses the same sequence number that C used
in its SYN packet, by subtracting 1 from the sequence
number in the ACK packet.

When M receives SYN-ACK from S, M forwards it
to C and re-opens the window. There is a technical chal-
lenge here, however: the sequence numbers chosen by S

for the M −S connection are not the same as the cookie-
based sequence numbers generated by M for the C −M

connection. As described in section 3.2, for every con-
nection M maintains the offset between the two sequence
numbers. On receiving SYN-ACK, C assumes that its
previous ACK packet was lost and thus retransmits its
ACK. C also exits the persistent mode as the SYN-ACK
packet now has a non-zero receiver window size. M for-
wards ACK with proper sequence and acknowledgement
numbers, thereby completing the handshake with S.

All subsequent data packets undergo sequence/ack
number translation at M . When a packet arrives from
S, M adds the offset to the sequence number. When
a packet arrives from C, M subtracts the offset from
the acknowledgement number. The splice bit is set in
the Connection table to indicate that sequence number
translation is required.

Spoofed data floods and reflector attacks. As de-
scribed in section 3, the middlebox maintains informa-
tion about client-originated connections (in the Connec-
tion table) as well as the connections originating from
the server that is being protected (in the Bloom filter).
Any data packet whose flow identification is not found
in either of these two data structures is dropped. The
same defense works against reflector attacks, because the
middlebox filters out data packets from reflectors whose
connection parameters do not belong to either the Bloom
filter or Connection table.

3.2.2 Mitigating unspoofed attacks

Unspoofed data floods. The attacker can launch a data
flood from a legitimate address by completing the TCP
handshake and then flooding the bandwidth with data
traffic. Our defense is based on enforcing compliance
with congestion control measures.

When traffic rate on a connection exceeds some thresh-
old value h (h is a tunable system parameter), the middle-
box modifies ACK packets arriving from the server to re-
duce the receiver advertisement window, and starts mea-
suring the rate of packets arriving from the client. (Recall
from section 3 that the Connection table includes arrays
for measuring packet rates on each unspoofed connec-

tion.) If at the end of the monitoring period the client’s
packet rate did not show a decreasing trend, the confor-
mance bit is set to 0. All data packets on connections
where the measurement period ended and the confor-
mance bit is 0 are dropped. Note that this defense is feasi-
ble because a dFence middlebox controls both directions
of TCP connections. The threshold h can be adaptively
set based on the middlebox load.

Too many unspoofed connections. Many denial of ser-
vice attacks involve the attacker opening a large num-
ber of connections from a legitimate IP address that be-
longs to a compromised, remotely controlled “zombie”
machine. The zombie completes the TCP handshake,
conforms to congestion control measures, and then over-
whelms the server with a large number of requests. The
Src-Dest table (see section 3) defends against multi-
ple connections from the same address by limiting each
source-destination pair to a reasonable number of con-
nections.

NAPTHA attacks. In the NAPTHA attack, the at-
tacker opens a legitimate connection, immediately closes
it without sending FIN/RST, and opens another connec-
tion from a different zombie machine. This fills up the
server’s state, causing denial of service to legitimate con-
nections.

To defend against NAPTHA attacks, the dFence mid-
dlebox maintains a timestamp for each connection, indi-
cating the last time a packet was observed. If the idle
time of a connection (the time since the last packet was
observed) exceeds a threshold value (which is a tunable
system parameter), the middlebox “times out” the con-
nection by sending RST to the server. This is also done
when the Connection table fills up, leading to a large
number of collisions. The thresholds can also be deter-
mined empirically by analyzing attack traces.

Botnet attacks. dFence middleboxes can also support
more sophisticated filtering policies. As an illustration,
we sketch how they can be used to defend against botnet
attacks. Our goal in this section is to demonstrate the
expressiveness of dFence policies rather than describe a
comprehensive solution to the botnet problem.

In botnet attacks, the attacker commands a large num-
ber of compromised computers to bombard the victim
with HTTP or other requests. From the victim’s view-
point, this situation is similar to a flash crowd, since it is
difficult to tell whether an individual connection is mali-
cious or benign.

Our dFence-based botnet mitigation policy is based on
source-prefix whitelisting. This policy is invoked only
after the client has complied with all other measures, in-
cluding congestion control. It gives preference to traffic
from hosts in the white list of N most common /24 pre-
fixes for a given server or network. This list can be cre-
ated from traffic statistics, or else ISP customers can pay
to be added to it.
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The reason this approach is effective against botnets
is that zombie machines tend to be sparsely distributed,
i.e., the attacker is likely to control only a handful of
zombies within each /24 prefix. This observation is con-
firmed by our analysis of botnet traces collected by [9].
In both traces, fewer than 10 machines from any single
/24 prefix are used during the attack. In trace I, 99% of
prefixes have no more than 2 zombies, and in trace II,
99% of prefixes have no more than 7. In trace I, only 3
out of 22203 observed prefixes have more than 20 zom-
bies, and in trace II, 48 out of 64667. (Note that the
middlebox eliminates all spoofed connections using the
anti-spoofing defenses described above, and that each bot
is restricted to a modest amount of traffic by congestion
control and compliance checking measures.)

This approach can be easily combined with an adap-
tive form of CAPTCHA-based Kill-bots [16]. The mid-
dlebox can adaptively redirect HTTP traffic from outside
the preferred prefixes to a CAPTCHA server. This can
be viewed as rationing: some fraction of the flows in the
Connection table are allocated to the top N privileged
flows, with the remaining (or un-privileged) flows com-
peting for the rest of the table entries.

3.3 Policy Decision Logic
Because the dFence middlebox is in the data path of all
connections to and from the servers that are being pro-
tected, it is critical to ensure that per-packet processing
complexity is low and can scale to high link speeds. In
particular, we want to avoid blindly applying different
mitigation policies one after another regardless of the
packet type.

On receipt of a packet, the middlebox first classi-
fies it using TCP flag types. Depending on which flag
is set (SYN, SYN+ACK, FIN, RST, etc.), it is sent to
the respective processing function. For a SYN packet
from client during the bootstrap or active phases, a SYN
cookie is generated and SYN-ACK sent back to the
client. For SYNs from server, the Bloom filter is updated.
For SYN-ACKs from the server during the bootstrap or
active phases, the Connection table is updated with the
right offset value (difference between the seq/ack num-
bers on the middlebox-source and middlebox-server con-
nections). During the removal phase, SYNs and SYN-
ACKs are simply forwarded without updating the data
structures at the middlebox.

For a data packet, its 4-tuple flow ID (IP addresses and
port numbers) is looked up and checked against the Con-
nection table and the Bloom filter to verify that it be-
longs to an established connection. If in the Bloom filter,
the packets are forwarded. If in the Connection table,
the pre-existing bit is checked and splicing performed,
if needed. During the bootstrap phase, packets whose
flow ID does not belong to both the Bloom filter and the
Connection table are forwarded and middlebox state up-
dated. During the active phase, they are assumed to be
spoofed and dropped. During the removal phase, they are

simply forwarded without seq/ack number translation or
book-keeping.

The policy decision tree is depicted in fig. 5. “Is
Cookie Correct?” represents re-computing the SYN
cookie and comparing it with the acknowledgement num-
ber in the client’s ACK packet. “To Apply Penalty?”
represents checking that the client and its prefix are not
generating too much traffic. “Can Replace Current En-
try?” represents resolving collisions in the hash table.
If the current entry is known to be compliant (i.e., its
conformance bit is set), then the new entry is dropped.
If conformance is still being measured, the new entry is
dropped, too. Otherwise, the old entry is evicted and the
new entry is inserted in its place.

In all cases, processing is limited to a few hash ta-
ble lookups, and access to the packet is limited to the
information in the header (IP addresses, port numbers,
sequence numbers, packet type). Detailed performance
evaluation can be found in section 5.

3.4 Evasions and Attacks on the Middlebox
In this section, we focus on the denial of service attacks
against the middlebox itself, and on techniques that an
attacker may use to evade our defenses.

Exhausting the connection state. To prevent the at-
tacker from filling up the Connection table, we use the
Src-Dest table to limit the number of connections from
any single host. For protection from botnets, we use
source-prefix whitelisting as described in section 3.2.2.
In general, resource exhaustion is prevented because the
middlebox keeps state only for unspoofed sources that
have complied with traffic control measures (i.e., whose
network-level behavior is similar to legitimate sources).

Adaptive traffic variation. The attacker may employ
an ON/OFF attack pattern. On attack detection, the mid-
dlebox is introduced on the data path. As soon as mid-
dlebox is introduced, the attacker stops sending attack
traffic. All legitimate traffic goes via the middlebox and
suffers minor degradation due to triangular routing. After
some time interval (the attacker assumes that the middle-
box is now removed from data path), he starts sending
attack traffic again, and so on. To provide a partial de-
fense against this attack, we avoid rapid introduction and
removal of middleboxes. Once the middlebox is intro-
duced, it remains in the data path for some period even
after the attack subsided. The duration of this interval is
randomized.

Werewolf attack. The attacker starts by behaving legiti-
mately, gets established in the Connection table, com-
plies with congestion control requests, and then starts
bombarding the server with attack traffic. We deal with
this attack by periodically re-measuring traffic sending
rates and source-prefix whitelisting.

Multiple attacks. The attacker can try to overwhelm the
dFence infrastructure by launching multiple attacks on
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Figure 5: Policy decision tree

several destinations. We employ an adaptive provision-
ing strategy that scales up the number of middleboxes
in the network with the number of attacked destinations
(among those who have subscribed for dFence protec-
tion).

4 Implementation
Our prototype implementation consists of two compo-
nents: (i) control-plane traffic interception, and (ii) data-
plane attack mitigation. We prototyped the control
plane functionality on a general-purpose processor us-
ing the extensible open-source router platform called
XORP [13]. The anti-DoS data plane functionality is
implemented on a special-purpose platform consisting
of a Radisys ENP-2611 board, with a 600 MHz Intel R©

IXP2400 network processor.
The IXP2400 network processor contains one 32-bit

XScale controller running Montavista Linux and eight
32-bit RISC cores called micro-engines (MEs). Each ME
has a private 4K instruction store, onto which code for
different packet processing functions (PPFs) is loaded.
The micro-engines share a 16KB on-chip scratch-pad,
off-chip SRAM (128MB), and DRAM (1GB).

The complete setup is depicted in Figure 6(a). The
control plane uses BGP and IGP to make routing deci-
sions and update the forwarding table. The data packets
are handled on the fast path by IXP.

Control plane interception. The middlebox starts its
operation after it receives the signal that a DoS attack has
been detected. (Our focus in this paper is solely on mit-
igation rather than detection; dFence is compatible with
any existing DoS detection mechanism—see section 6.)
As discussed in Section 2.1, the middlebox intercepts
traffic to the hosts experiencing the attack by sending
iBGP advertisements to all routers within the same AS.
Using BGP policy configuration in XORP, the local pref-
erence in the advertisements is set higher than the other
routers. As a result, all border and intermediate routers

make one of the middleboxes their next hop on the routes
to the attacked hosts. Note that iBGP advertisements are
sent only for the network prefix(es) under attack. To set
up tunnels and ACL rules, the middlebox remotely con-
figures the egress router. This is needed to prevent fil-
tered packets from looping back to the middlebox—see
Section 2.1.

Data plane mitigation. The attack mitigation poli-
cies are implemented on IXP network processors using
the Shangri-La framework [19]. Shangri-La provides a
flexible high-level programming environment that facil-
itates rapid development of packet-processing applica-
tions. We chose IXP over Click primarily for pragmatic
reasons: the IXP multi-processor architecture supports
multiple threads and hence provides higher throughput.

We implemented our mitigation policies as an appli-
cation graph of packet processing functions (PPFs), op-
erating on different packet types (SYN, data, and so on).
The PPFs, as shown in Figure 6(b) are mapped to the IXP
micro-engines using the Shangri-La run-time system.

Control-data planes interaction. The fast forwarding
path on the data plane uses forwarding table entries es-
tablished by the control plane to put the packets on ap-
propriate output interfaces. We implemented the commu-
nication interface between the control plane (on XORP)
and data plane (on IXP) using sockets and ioctl() system
calls. Communication between a XORP process and a
process running on the XScale processor occurs via stan-
dard C sockets, and communication between XScale and
micro-engines occurs via ioctl() (see Figure 6(a)).

The XORP process sets up the MAC/IP addresses of
the interfaces on the IXP data plane, and establishes the
mapping between next-hop IP and port numbers. To set
up the forwarding table, XORP runs BGP/IGP on control
interfaces (on the host processor) and communicates the
forwarding table entries to the IXP so that the data plane
applications can use the table to forward data packets.
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Figure 6: dFence System Implementation. (a) Con-
trol plane interception is implemented using XORP on
a general-purpose processor. Data plane attack mitiga-
tion is implemented on Intel IXP network processors. (b)
PPFs for attack mitigation policies.

5 Evaluation

In this section, we present an experimental evaluation of
our prototype system. The IXP-based prototype imple-
mentation of the middlebox is described in section 4. At-
tack traffic comprising spoofed SYN packets, data pack-
ets, and spoofed ACK/RST/FIN is generated using IXIA
packet traffic generator [15]. IXIA has 20 copper ports
and two fiber ports. Each fiber port can generate up to
1490 Kilo packets per second, where packet size is 64
bytes.

5.1 Micro benchmarks

To measure throughput and latency of our attack mitiga-
tion policies, we directly connect the IXIA fibers ports
to two optical ports on the IXP. Traffic generated using
IXIA is processed by PPFs on the micro-engines. IXP
2400 has eight micro-engines, two of which are used for
receive/transmit modules. We compose the application
using four PPFs, each handling a particular packet type:
SYN, SYN-ACK, data and FIN/RST. The four PPFs are
mapped onto one micro-engine each. The PPF for packet
classification is mapped to the same micro-engine as the
PPF for FIN/RST. PPFs can be also be mapped to more
than one micro-engine, where the code for the PPF is
replicated on all the engines.

Packet Type Packet Processing and
Forwarding

Min Max Avg

SYN SYN Cookie and
SYN-ACK Genera-
tion

39.3 60.4 42.1

Bloom filter update 25.28 27.06 25.86
No processing 15.66 17.02 15.94

Inbound Data Present in Bloom filter 23.24 24.8 23.56
Present in Connection
Table - splice

37.06 40.84 38.61

Absent in both - for-
ward (removal phase)

31.8 34.06 32.54

Outbound Present in Bloom filter 23.24 25.3 23.56
Data Present in Connection

Table
37.66 41.64 39.1

Absent in both - for-
ward (removal phase)

29.52 44.92 30.15

Absent in both - up-
date (bootstrap phase)

31.5 33.6 32.1

Table 1: Latency benchmarks (in micro-seconds).

Synthetic traffic generated by IXIA consists of 100-
byte packets. The maximum input traffic rate attainable
in this case is 1041 Kilo packets per second. SYN pack-
ets are generated with arbitrary sequence numbers. Since
our mitigation policies at the IXP drop packets with in-
valid sequence/ack numbers, we configure IXIA to auto-
matically insert appropriate numbers into data and FIN
packets. To enable testing over longer periods, we dis-
able the interval-based key for generating SYN cookies.
Instead, we use a single key that persists over the entire
duration of testing using IXIA. This ensures that the data
packets with appropriate seq/ack numbers (correspond-
ing to those generated by the middlebox as part of SYN
cookie generation) have their flow identifiers in the Con-
nection table and are spliced properly by the IXP.

Latency. Table 1 shows the latency (in micro-seconds)
introduced by the middlebox when dealing with different
packet types and for different types of processing. La-
tency includes both processing and packet forwarding.
Bloom filter update is performed only for SYN packets
from the hosts that are being protected (all such connec-
tions are assumed to be legitimate). “Present in Bloom
filter” checks the existence of flow ID (IP addresses and
ports) in the Bloom filter, and forwards if present (i.e., the
packet belongs to an existing server-originated connec-
tion). “Present in Connection Table” checks whether the
flow ID is present the Connection and, if so, forwards
according to the status bits (splicing - seq/ack number
translation; pre-existing - connection was classified as le-
gitimate during the bootstrap phase). “Absent in both -
forward” applies during the removal phase, when all data
packets are simply forwarded. “Absent in both - update”
applies during the bootstrap phase: middlebox state is
updated for packets received from the protected server
by setting the pre-existing status bit to true.

The latency of updating the Bloom filter (done only
during bootstrap phase) is higher than checking the filter.
For data packets, checking in the Connection table and
splicing (seq/ack number translation + incremental TCP
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Packet Type Packet Processing and
Forwarding

1 ME 2 ME 3 ME

SYN SYN Cookie and
SYN-ACK Genera-
tion

205 401 467

Bloom filter update 530 1041 1041
Forward 1041 1041 1041

Inbound Data Present in Bloom filter 507 1011 1041
Present in Connection
Table - splice

264 525 781

Absent in both - for-
ward (removal phase)

326 652 974

Outbound Present in Bloom filter 507 1011 1041
Data Present in Connection

Table
259 515 766

Absent in both - for-
ward (removal phase)

318 637 1029

Absent in both - up-
date (bootstrap phase)

326 653 951

Table 2: Throughput benchmarks in Kilo Packets Per
Second (Kpps). Maximum input rate from IXIA (one
fiber port) is 1041 Kpps with packet size = 100 bytes.

checksum computation) is more expensive than checking
the Bloom filter, updating, or simple forwarding.

Throughput. Table 2 presents our throughput bench-
marks. Throughput scales linearly as more micro-
engines are allocated to the PPFs for all packet types and
processing functionalities, except for SYN cookie gener-
ation. For the latter, maximum throughput supported by
a single IXP is 467 Kpps.

5.2 End-to-end benchmarks
For end-to-end measurements, our server is a 1 GHz In-
tel P-III processor with 256 MB RAM, 256 KB cache,
running an Apache Web Server on Linux 2.4.20 kernel.
Legitimate traffic is generated using the httperf [23] tool
which issues HTTP requests to the Web server. Both the
client and the server are connected to a Gigabit Ethernet
switch. Spoofed attack traffic is generated using IXIA,
which is connected to the fiber optical port of the switch.
All traffic goes via a routing element running XORP. For
our prototype, we do not include attack detection and use
a trigger to install the middlebox on the data path.

Our evaluation metrics are connection time, measured
using httperf, and max TCP throughput attainable be-
tween a legitimate client and the server, measured using
iperf [14].

Latency. In Figure 7(a), X axis represents the attack
rate in Kilo packets per second (100-byte packets), Y-
axis represents connection time in milliseconds. For
server content, we used www.amazon.com homepage
(copied on April 17, 2006). Its size is 166 KB.

For one legitimate connection, no attack traffic and no
middlebox on the data path, connection time is 16.4 ms.
With the middlebox on the data path, but still no attack,
connection time increases to 16.5 ms. For ten concurrent
connections, total connection time increases from 121.1
ms to 121.5 ms.
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Figure 7: (a) End-to-end latency for one and ten con-
current HTTP connections to a Web server. Attack traf-
fic rate is increased up to 490 Kpps (100-byte packets);
(b) End-to-end maximum TCP throughput. Attack traffic
rate, and TCP throughput are in Mbps.

As seen from Figure 7(a), connection time with no
middlebox on the data path increases as attack traffic rate
grows. After around 14 Kpps, the Web server can no
longer handle the traffic and httperf client times out. The
timeout interval is set to be 10 seconds. At this moment,
the server dies. With the middlebox on the data path, con-
nection time for legitimate clients remains constant even
as attack rate increases all the way to 450 Kpps.

Throughput. Fig. 7(b) shows end-to-end performance
(measured using iperf) over time as the server is attacked,
middlebox enters dynamically into the data path, boot-
straps, filters out attack traffic, and, after the attack sub-
sides, is removed from the data path.

Before the attack starts, maximum TCP throughput be-
tween client and server is 94.3 Mbps. As the attack be-
gins, it drops to 3.88 Mbps. After t = 10 seconds, the
middlebox is dynamically introduced on the data path.
During the 6-second bootstrap phase, the middlebox es-
tablishes state for ongoing connections, and throughput
slowly increases to 21.7 Mbps (the increase is due to
dropping of spoofed SYN requests - these packets do not
get to the server, because the TCP handshake between the
attacker and the middlebox is not completed). All data
packets, whether spoofed or legitimate, are forwarded to-
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wards the server during the bootstrap phase (note, how-
ever, that the attack traffic rate stays below 14 Kpps). At
t = 16, the middlebox enters its active mode, and starts
aggressively profiling and filtering traffic. All spoofed
traffic is dropped in this phase. Throughput now in-
creased to 87.3 Mbps. At t = 1500, the attack stops,
and the middlebox remains on the data path for the next
300 seconds. This interval (pre-determined) is used to
time out the state for connections that were established
via the middlebox during the active phase. At t = 1800,
throughput returns to the normal (no attack, no middle-
box) 94.3 Mbps level.

6 Related Work

Defenses against denial of service have been a subject
of very active research, and the survey in this section
is necessarily incomplete. Unlike previously proposed
network-based defenses, dFence is completely transpar-
ent to the existing Internet infrastructure. Unlike proxy-
based solutions, dFence uses novel dynamic introduction
mechanisms to provide on-demand protection only when
needed. dFence middleboxes can be quickly re-deployed
to protect a different subset of end hosts without any
modifications.

Network-based mitigation. Defenses based on secure
overlays [2, 17] assume that all packets enter the net-
work through the overlay’s access points. The overlay
checks each packet’s legitimacy and filters out attack traf-
fic. This method requires that the destinations’ true IP
addresses remain secret, and is thus difficult to combine
with the existing Internet infrastructure. Similarly, Fire-
break [11] assumes that the attacker does not know the
targets’ IP addresses, and that packets are tunnelled to the
destinations by proxies deployed at edge routers. This re-
quires software modification at legacy routers.

Defenses based on capabilities such as SIFF [36] and
TVA [37] require that (i) destinations issue unforgeable
tokens to legitimate sources, and (ii) routers filter out
packets that do not carry these tokens. Both router and
server software must be modified to support capabilities,
and servers must be able to differentiate benign and ma-
licious traffic. Flow Cookies [6] use the timestamp field
in packets to insert cookies, and require server modifica-
tions to differentiate benign and malicious flows.

Pushback [21] rate-limits flows responsible for traf-
fic congestion, and pushes filters upstream towards the
sources of these flows. Router software must be mod-
ified. Rate-limiting is a coarse technique that does not
differentiate between benign and malicious traffic, and
may thus cause high collateral damage.

Cisco Guard [8] is a commercial product that dynam-
ically redirects traffic to “cleaning centers” within the
network. Traffic interception is not bi-directional; only
traffic from client to server is intercepted. Cisco Guard
applies several stateless filtering policies, and uses rate-
limiting to reduce traffic volume (which may potentially

cause high collateral damage). In contrast, our scheme
intercepts both directions of traffic and supports both
stateless and stateful policies to enable better differen-
tiation between benign and malicious traffic.

Several designs for re-engineering the Internet in-
frastructure have resistance to denial of service attacks
among their objectives [30, 31]. With indirection as the
first-class principle of packet routing, these networks can
easily reroute attack traffic to filtering devices by chang-
ing the mappings between identifiers and hosts. The
scheme proposed in this paper is incomparable, because
our goal is a solution that is fully compatible with and
transparent to the existing Internet infrastructure.

Other network-based defenses, all requiring router
modification, include route-based packet filtering [25],
statistical analysis of incoming packets [18] and router
throttles [38]. An evaluation of router-based defense sys-
tems can be found in [34].

Victim- and source-based mitigation. These defenses
are deployed either at the servers, or at the ingress
routers, and thus necessarily require substantial modifi-
cations to the existing software base. Server-based solu-
tions also tend to be ineffective against last-mile band-
width flooding attacks.

Kill-Bots [16] uses client legitimacy tests such as re-
verse Turing tests to differentiate between benign and
malicious requests. In [32], victim servers encourage le-
gitimate clients to “crowd out” malicious flows by send-
ing higher volumes of traffic. In Pi [35], routers insert
path identifiers into unused spaces within IP packet head-
ers; servers then drop packets arriving on known attack
paths. This requires modifications to both routers and
servers, and may cause collateral damage if a legitimate
source shares the route with an attacker. D-WARD [22]
uses anomaly detection and compliance with traffic man-
agement measures to differentiate benign and malicious
flows. Malicious flows are then blocked or rate-limited at
source routers. Deployment requires wide-scale modifi-
cation of router software. Ingress filtering [10] is limited
to spoofing attacks, and also requires router modification.

Many methods have been proposed for detecting de-
nial of service activity [12, 33, 28] and tracing back the
sources of the attack [27, 29]. Our focus in this paper
is on transparent, scalable mitigation rather than detec-
tion, and our solution is compatible with most proposed
detection and traceback mechanisms.

7 Conclusions and Future Work
We described the design and prototype implementation
of dFence, a novel network-based system for transpar-
ently mitigating denial of service attacks. The main ad-
vantages of the dFence middleboxes are their compati-
bility with the existing Internet infrastructure—they are
introduced into the network using standard routing mech-
anisms, and their operation is completely transparent to
the protected end hosts—and their ability to support a
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broad range of effective anti-DoS techniques. Control
over both directions of TCP connections and efficient
data structures for managing partial connection state en-
able several new defenses against denial of service, and
make possible on-demand deployment of defenses in the
middle of the network. Our experimental evaluation
demonstrates that dFence provides effective protection
against distributed DoS attacks at a minimal performance
cost. Moreover, there is no impact whatsoever on traffic
to servers that are not experiencing DoS attacks.

Future work includes investigation of mechanisms for
configuration and management of dFence middleboxes,
as well as design and implementation of an extensible
scripting language for rapid development of new anti-
DoS policies. Another research objective is a better un-
derstanding of adaptive attacker behavior and designing
defenses against attackers who are aware of the anti-DoS
middleboxes and deliberately craft their attack patterns to
evade mitigation policies. This includes game-theoretic
modeling of adversarial interaction between the middle-
boxes and the attackers. Finally, we would like to extend
dFence to environments with multiple ISPs.
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