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Abstract

Unsolicited bulk email, aka spam is a persistent threat to
the usefulness of the Internet. The fight against spam to-
day relies solely on filtering at the recipient’s mail server,
which can delay mail delivery. We present a spam coun-
tering approach consisting of two complementary tech-
niques. The first, token-based authentication, can iden-
tify emails from valid senders that a user expects to hear
from. This identification prevents much of the good mail
from being subjected to the filtering process. The second
technique, history-based prioritization, is designed for
the rest of the email. It utilizes past information about
the sending mail servers and their domains to prioritize
email filtration, thus reducing delays in the delivery of
good email over spam. The proposed techniques do not
rely on any infrastructure, deployed or otherwise, and
any mail server can choose to deploy them independent
of the choice made by the any other mail server.

1 Introduction

Some estimates claim that 60− 80% of emails today are
spam. Spam has become such a huge problem that it
threatens to render email itself unusable. Estimates on
the cost of spam vary but they all are staggering. FTC
estimates that an average person spends approximately
10 minutes each day dealing with spam. In fact, at the
rate spam is growing the Radicati group estimates that it
would cost businesses $198 billion by 2007! Further, an
average spam is about 10KBytes in size. This translates
into a huge amount of bandwidth and disk space that is
wasted in delivering and storing spam respectively.

Beyond expensive legal approaches that seek to
unmask the spammers with the goal of prosecuting
them [7], the proposed and pursued approaches in the
fight against spam can be classified in two broad cate-
gories: 1) sender verification approaches such as domain
keys identified mail (DKIM) [4], and sender ID [9, 11]

that aim to answer the question: “Did the sender actually
send this email?” and can help in pinpointing the spam-
mers and 2) mitigation approaches [2, 13, 12, 8, 14, 6, 5]
that either attempt to deter spammers, or filter incom-
ing or outgoing emails for spam. The sender verifica-
tion approaches rely on being able to make infrastruc-
tural changes to the domain name system (DNS) which
limits their immediate deployability. Also, their success
hinges on the security of the DNS itself, for which solu-
tions are still being worked on. In this work, we focus
on the mitigation techniques due to their deployability.
In particular, the goal of the work presented in this paper
is to develop an effective spam mitigation approach for
organizations that is immediately deployable and does
not require any cooperation from anyone outside the or-
ganization. Our approach is complementary in nature to
several of the existing mitigation techniques. In partic-
ular, the mitigation techniques that throttle spam at the
senders [14], use greylisting [8]1, or impose quotas on
senders through peer cooperation [2, 13] can be used in
addition to our approach. On the other hand, other mit-
igation techniques that employ collaborative spam filter-
ing based on social email networks [6], predict spam pat-
terns [5], or prioritize email filtering for good mail over
spam [12] are competing approaches to ours.

Our approach consists of two techniques. The first
technique, token-based authentication, allows imple-
menting sender’s mail server to put a receiver specific
authentication token string (referred to as token subse-
quently) in the header of every outgoing email. Replies
to such emails would contain the token even if the re-
cipient does not implement the technique if a standard
field that gets copied in the reply is used to put the to-
ken2. Presence of such tokens in incoming mails is then
used to identify valid emails which prevents much of
the good mail from being subjected to the filtering pro-
cess. This technique enables email sender’s authentica-
tion only with simple token management and exchange
unlike existing email authentication schemes such as
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S/MIME [10] and pretty good privacy (PGP) [1] which
require expensive operations and face deployability is-
sues. The second technique we propose, history-based
prioritization, complements the first technique and is
designed for the rest of the incoming email that does
not contain tokens. It builds on the email prioritiza-
tion scheme proposed in [12] and utilizes past informa-
tion about the sending mail servers, along with the in-
formation about their domains to prioritize email filtra-
tion. It reduces delays in the delivery of good email over
spam because sophisticated spam filtration, which uses
a combination of machine learning techniques such as
Bayesian filtering [3], DNS-based blacklists of known
offenders, and whitelists of good senders, can introduce
substantial delays in mail delivery. The design of both
the proposed techniques allows any mail server to de-
ploy them independent of the choice made by the any
other mail server in the Internet, making them immedi-
ately deployable. We evaluate the efficacy of the pro-
posed techniques by analyzing 7 months of departmental
email logs.

The rest of this paper is organized as follows. Sec-
tion 2 describes the data used in analyzing the effective-
ness of our approaches. Both our techniques, along with
the analysis of each using logs, are presented in Sec-
tion 3. Finally, Section 4 offers concluding remarks.

2 Data Used in Analyzing Our Approaches

In order to analyze the effectiveness of our approaches,
we collected 7 months of Sendmail logs from Indi-
ana University’s Computer Science Department, starting
April 10th, 2005. An entry in our log is created for each
unique email message received and contains the times-
tamp, IP address and name (if the reverse DNS lookup by
the department’s mail server was successful) of the send-
ing MTA, anonymized information about the senders and
receivers of that email, and a status code for the mail.
The status code indicates whether the mail was perceived
as a spam or not according to the filtering program. In
addition to the data on incoming SMTP connections, we
also have anonymized information about all the outgoing
mails in the department. Table 1 shows an overview of
the data available to us. We exclude all mails where both
the sender and receiver are local to focus only on emails
that could potentially be spam.

3 Our Approach

Email filtration is a double edged sword: the more so-
phisticated a software becomes, the lower the false pos-
itives and negatives, but the higher the processing times.
Table 2 shows the processing times for the 130, 122

Table 1: Overview of the data.

Duration of logs 211 days
Number of incoming SMTP connections 3,415,219
Number of outgoing SMTP connections 806,215
Number of unique sending MTAs 879,670
Sending MTAs that are DNS resolved 505,443
Number of unique sending domains 25,760

emails received at our department’s mail server for a
week. These times range from 0.32 seconds to 3559.56
seconds. Due to the large range the mean, median, and
standard deviation are 3.81, 1.48, and 21.63 seconds re-
spectively. It is noteworthy that even though 76.8% of
the emails took less than or equal to 3 seconds to finish
the filtering process, 5.7% took greater than 10 seconds
to process!

Table 2: Processing time distribution.

Range (sec) Number of messages % of messages
0.0-1.0 29,094 22.4
1.0-2.0 55,892 43.0
2.0-3.0 14,817 11.4
3.0-4.0 9,448 7.3
4.0-5.0 4,406 3.4
5.0-6.0 2,825 2.2
6.0-7.0 2,041 1.6
7.0-8.0 1,646 1.3
8.0-9.0 1,374 1.1
9.0-10.0 1,104 0.8
> 10.0 7,475 5.7

Our approach aims to prioritize filtration of good
emails over spam by using a divide and conquer strategy.
We first separate bulk of the good mail using a token-
based authentication scheme which we describe in Sec-
tion 3.1. For the rest of the emails, we use history infor-
mation about the sending MTA and its domain to predict
the goodness/badness of the incoming mail.

3.1 Token-based Authentication
Token-based authentication is an authentication scheme
to identify emails from valid senders that a user expects
to hear from. It enables a mail server to deliver such
mails to its users without subjecting them to the spam fil-
tering process. An MTA deploying this scheme assigns a
unique token for each (sender, receiver) pair. The token
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is nothing but an alphanumeric string of a small number
of bytes, say 64. For each outgoing email, the sending
MTA, S, picks the relevant tokens for that sender. For
example, if the mail was sent to just one receiver, the
sending MTA puts the corresponding token for that re-
ceiver in the email header and if the mail is destined for
multiple receivers, tokens for each individual receivers
are put. Mailing lists can be allocated unique tokens to
avoid increasing the email size substantially due to to-
kens.

This token is returned back to the sender if the re-
ceiver R chooses to reply to sender’s email. Upon re-
ceiving such replies, S can infer that those are not spam
by simple comparing the token in the mail to the one
it has stored locally, thus delivering such mails imme-
diately without subjecting them to the filtering process.
Notice that the tokens accomplish more than what the
sending MTA can accomplish simply by keeping track
of the receivers for all outgoing mails. This is because
sender information in incoming mails can be forged.

The token-based authentication scheme can be de-
ployed even when receiver R does not implement the
scheme. Today, this can be accomplished if an MTA uses
the Message-ID field of the outgoing email header to in-
sert the tokens. This field is copied by most replying
MTAs into the In-Reply-To field of the reply messages.
Thus, emails users expect to get can be separated from
the others without any change to the receivers.

The above discussion assumes that the sending MTAs
choose tokens for all the (sender, receiver) pairs and the
same tokens are retained for all subsequent communica-
tions. This scheme can be misused by the spammers who
have access to email logs over the Internet. Thus, the as-
signed tokens should be periodically changed to avoid
the security vulnerability of a long lived token. Further,
in order to keep the number of tokens bounded, some
mechanism for expunging unused tokens would have to
be devised.

Alternate schemes for token assignment are possible.
For example, instead of having a token per (sender, re-
ceiver) pair, the token could be per sender, or per re-
ceiver. Both of these schemes reduce the number of to-
kens an implementing MTA has to keep track of but suf-
fer from individual shortcomings. The sender-based to-
ken scheme prevents the senders from being able to spec-
ify which receivers they regularly communicate with,
something our proposed scheme can easily be extended
to do. Similarly, the receiver-based token scheme implies
that there will be one token per receiver, irrespective of
how many senders communicate with that receiver. This
would also prevent senders from specifying which re-
ceivers they would like to maintain tokens with because
even the same receiver could have diverse meanings to
different senders.

3.1.1 Effect of Token-based Authentication

To see how many incoming emails would the token-
based authentication scheme impact, we analyzed the
data on incoming and outgoing SMTP connections (de-
scribed in Section 2). Essentially, using the sender and
receiver information contained in each incoming and
outgoing connection, we extracted the information on
unique (sender, receiver) pairs, and the pairs where both
parties communicated with each other. Incoming mails
with the latter would potentially contain tokens. Table 3
shows the number of pairs observed in our data and the
number of SMTP connections that would be affected by
the token-based authentication scheme.

Table 3: Incoming mails potentially benefited by token-
based authentication.

Number of unique (sender, receiver) pairs 3,051,559
Unique pairs with 2-way communication 12,118
Percentage 0.4%
Total incoming SMTP connections 3,415,219
Incoming connections with tokens 105,891
Percentage 3.1%

Although it appears that the results in Table 3 are dis-
heartening, such is not the case. This is because the small
percentage of mails containing the tokens are likely to be
the most important and urgent. And these are exactly
the ones whose delays are avoided through the use of
the token-based authentication scheme. Moreover, the
total number of unique pairs are likely to be unusually
high due to the use of distinct sender names in spam
(2, 988, 519 of the total 3, 051, 559 sender/receiver pairs
were the kind where an incoming message was not re-
sponded to by the recipient), many of which are regularly
forged. Further, our results are likely to be pessimistic
due to common practice among the students of our de-
partment of forwarding emails to their other accounts,
commonly the university-wide account that is accessible
from anywhere through a Web-based interface.

Table 3 assumes that if a valid token is contained in an
incoming mail, it is a good mail. In the case of incoming
emails that contain multiple receivers, the above assumes
that the mail would be regarded as good by all receivers.
In reality, such emails may have to be subjected to the
filtering process. To account for such cases, we also con-
sidered total mails, where an incoming SMTP connec-
tion containing n recipients is considered as n mails. Us-
ing this notion of total mails, we found that out of the to-
tal 4, 468, 806 mails, 108, 485 mails (2.4%), would con-
tain tokens and could be authenticated. Table 4 shows
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the remaining data on incoming emails that we consider
for the history-based analysis.

Table 4: Data after removing emails authenticated by to-
kens.

Duration of logs 211 days
Number of incoming SMTP connections 3,309,328
Number of unique sending MTAs 876,346
Sending MTAs that are DNS resolved 502,493
Number of unique sending domains 25,259

3.2 History-Based Prioritization
Even though the token-based authentication scheme is
able to prioritize some good mails over others, it ac-
counts for only 3.1% of the incoming SMTP connec-
tions. For the rest of the mails, we explore history-based
prioritization whose goal is to use past behavior of mail
servers and their domains to decide which mails should
be prioritized by the spam filters. This allows the likely
good mails to be delivered to the recipients faster than a
first come first served (FCFS) filtering policy would al-
low.

The basic notion of history-based prioritization has
been examined earlier. In [12], authors utilize the past
history of the sending MTAs (referred to as server his-
tory subsequently) to prioritize which mails should be
seen by the spam filters first. They consider an MTA
worthy of prioritizing mails from if it sent at least 50%
good emails in the past. Using this simple strategy on 69
days of email logs, they achieved accuracies of 74−80%
for good mails, 93 − 95% for spam and viruses, and ag-
gregate accuracies of at most 90%. Also, they found
that maintaining a history of 100, 000 past SMTP con-
nections was sufficient to achieve these accuracies.

We explore history-based prioritization in a more gen-
eral sense with an aim to improve the prioritization ac-
curacies for good mails. Also, while work in [12] fo-
cused only on mail servers that sent 10 or more emails,
we wish to achieve good results for all MTAs, including
the ones that sent fewer than 10 emails. In particular, we
first seek the answers to the following questions to find
out the parameters that can be used by a history-based
prioritization scheme:

• Is the mail more likely to be a spam if the reverse
DNS lookup fails on an IP address? We ask this
question because many filtering programs compare
the domain name contained in an email message to
that obtained by the reverse DNS lookup and report
it in the email header.

• Is the sending history of a domain indicative of
whether the mail is likely to be a spam or not? How
does its accuracy compare with the approach used
in [12], where only MTA’s sending history was uti-
lized?

• Is the number of total mails or average mails per day
sent by an MTA or a domain an indicator of whether
they mostly send spam or not?

• Is the number of days an MTA is active for a pre-
dictor of what kind of mails it would send?

• Does the number of servers per domain predict what
kind of emails would an MTA send? We are inter-
ested in this question because botnets are often com-
prised of compromised home machines, who be-
long to the domains of the service providers, which
are relatively fewer in number compared to the total
number of domains.

Based on the answers to the above questions, our goal
is to incorporate the useful parameters into an algorithm
that can then be used by an MTA to prioritize incoming
emails for spam filtering. We now find out answers to the
above questions one by one.

3.2.1 Reverse DNS Lookup

To explore if any relationship exists between the success
of reverse DNS lookup on the name of the sending MTA
and the probability of the mail being spam, we compared
the good and junk mails sent by MTAs for whom the
name resolution fails and the ones for whom the reverse
DNS resolution succeeds. The data used in conducting
this analysis is from Table 4 and the results are shown in
Table 5.

Table 5: Good and junk mail statistics for MTAs.

unique % SMTP %
MTAs connections

un
re

so
lv

ed good only 24,484 2.79 45,090 1.36
junk only 340,287 38.83 829,779 25.07
both 9,082 1.04 121,600 3.67
subtotal 373,853 42.66 996,469 30.11

re
so

lv
ed

good only 42,616 4.86 255,774 7.73
junk only 447,137 51.02 1,069,925 32.33
both 12,740 1.45 987,160 29.83
subtotal 502,493 57.34 2,312,859 69.89
total 876,346 100 3,309,328 100

The results presented in Table 5 indicate that over 91%
of MTAs for whom reverse DNS lookup fails (38.83%
of all MTAs) actually established SMTP connections to
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Figure 1: A comparison of using server history versus
domain history for MTAs that sent 10 or more emails.

Figure 2: A comparison of using server history versus
domain history for MTAs that sent less than 10 emails.

send only junk emails, where a junk email is either a
spam or a virus. The corresponding SMTP connections
are 83% of the total SMTP connections established by
such MTAs. Alternately, only 6.5% of the MTAs for
whom name resolution fails established SMTP connec-
tions to send only good emails, and only 2.43% of such
MTAs actually sent emails that the spam filter perceived
as both good and junk. This implies that the failure of
reverse DNS lookup is a strong indicator of what kind of
email would an MTA send.

3.2.2 Domain History

We now use the data in Table 4 to investigate if the his-
tory of sending MTA’s domain, either by itself or in con-
junction with server history, can be used to predict the
nature of an incoming SMTP connection. Unlike [12],
where the first email from an MTA was considered to be
bad (leading to a higher accuracy for junk mails at the
cost of good mails which are smaller in percentage), we
consider the first incoming mail from an MTA to be bad
only if the reverse DNS lookup fails. Otherwise, the in-
coming mail is considered good. We now observe the
overall prediction accuracies when just the domain his-
tory and just the server history are used for prediction.
The algorithm we use in computing history is: consider
an incoming email to be bad if 50% of the past mails sent
by the MTA or domain were bad, and good otherwise.

Figures 1 and 2 show the average prediction accuracy
for incoming emails as more domain and server history
are available (after seeing about 11 emails from a par-
ticular domain or MTA, the accuracy seems to stabilize).
We split the data into servers that sent greater than or
equal to 10 messages overall in our log and those that
sent less than 10 mails to see the difference in accuracy
results for servers that sent a small number of messages
versus those who sent larger number of messages. This
is because 91.6% of messages sent by MTAs in the latter
set are spam (compared to 50% in the former case) and

overshadow the aggregate accuracy results.
Figures 1 and 2 seem to indicate the domain his-

tory is a better predictor of the nature of an incoming
mail. However, one needs to be careful before reaching
this conclusion because the average prediction accuracy
numbers are heavily biased by junk messages, which far
outnumber the good emails. At this point, the only con-
clusion we can draw is that perhaps a combination of
both server and domain history would be a better predic-
tor of the nature of an email than just the server history,
which was used in [12].

The first email from an MTA about which nothing is
known deserves special attention. This is because such
emails comprise 26.5% of the total incoming emails ac-
cording to Table 4. While work in [12] assumes all such
first time emails to be bad, we have so far used the re-
sults from our reverse DNS lookup failure analysis and
assumed that only the first time emails from MTAs for
whom the reverse DNS lookup fails are bad. We now ex-
plore if the use of domain history of the sending MTA,
where available, helps predict the first time emails from
unknown MTAs better. Table 6 compares the accuracy of
first time emails for 1) assumption in [12] (all first time
emails are junk), 2) our previous assumption (a first time
email is bad if reverse DNS lookup fails), and 3) our first
assumption along with the use of domain history where
available. The results show that using domain history
improves the accuracy of good first time mails without
compromising the overall prediction accuracy or the pre-
diction accuracy of junk mails.

3.2.3 Average Mails per Day and Total Mails

We now explore the relationship between the number of
total and average mails sent by an MTA and the proba-
bility that the next mail from that MTA is spam. For each
MTA, the average mails per day is computed by dividing
the total mails it sent by the number of days it had been
active for. We define active duration for an MTA to be
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Figure 3: Relationship between total
mails sent by an MTA to the percent-
age of good/junk mails it sent.

Figure 4: Relationship between ac-
tive days of an MTA to the percent-
age of good/junk mails it sent.

Figure 5: Relationship between
number of MTAs per domain to the
percentage of good/junk mails each
sent.

Table 6: Prediction accuracy for first time emails from
MTAs.

All bad Bad if DNS Use domain history
resolution failed where available

good mails 0% 62.54% 23.51%

junk mails 100% 43.18% 97.23%

average 90.89% 44.94% 92.00%

the number of days from when we witness a mail from
it the first time to the last time it establishes an SMTP
connection. Figure 3 indicates that MTAs with relatively
fewer total emails sent more spam than good mails. The
results for average mails per day were inconclusive and
are omitted due to space constraints. Further, notice that
using average and total mails in email prioritization is
tricky because these numbers can change over time. We
utilize the available past information to compute these
numbers in the algorithm we design subsequently.

3.2.4 Active Days

A related parameter to the total number of mails is the
duration for which a server stays active. Figure 4 shows
the relationship between the number of days an MTA
stays active in our log and the percentage of good/junk
mail it sends. We conclude that the longer an MTA stays
active, the less spam it sends.

3.2.5 Servers per Domain

Figure 5 shows the relationship between the number of
MTAs in a domain and the percentage of good and junk
mails. It shows that the more the number of MTAs be-
longing to a domain, the more the likelihood that those
MTAs will send more junk mails than good ones. This
is intuitive since much of the spam today is sent by com-
promised machines that are part of large botnets compris-
ing of hundreds of thousands of machines. And many of

the compromised machines belong to home users, who
subscribe to handful of the popular big Internet service
providers (ISPs).

3.2.6 Using Above Parameters in an Algorithm

With the goal of predicting incoming good emails as ac-
curately as possible, we now use server history informa-
tion and the above parameters to design a prediction al-
gorithm for prioritizing emails for filtration. The algo-
rithm presented in algorithm 1, computes the probability
Pi that an incoming mail i is good in three separate cases:
1) when no server history information is available, 2)
when server history is between 0.4 and 0.6 (implying the
server sends both good and junk mails with close enough
probabilities – this special case is required for servers
like yahoo.com that aggregate mails from all kinds of
users), 3) when server is either less than 0.4 (implying
it sends junk mails most of the time) or greater than 0.6
(implying that it sends good mails most of the time). An
incoming mail is considered to be good if Pi ≥ 0.5. Af-
ter the prediction of each incoming mail, the server and
domain histories (referred to as good mail probabilities)
for the sending MTA and its domain are updated accord-
ing the following:

GMP (Mi) =
Ngood(Mi)

Ntotal(Mi)
(1)

GMP (Di) =
Ngood(Di)

Ntotal(Di)
(2)

In equations 1 and 2, Ngood and Ntotal are the num-
bers of good and total SMTP connections seen so far
from MTA Mi and domain Di respectively.

Parameters ρ, ε, and τ used in our algorithm are for
total mails from mail i’s server, relative days server for
mail i was active for with respect to log duration at the
time of measurement, and number of servers seen from
the same domain as mail i’s server respectively. They are
chosen to be 10, 0.6, and 50 respectively based on our
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Table 7: Performance comparison of our algorithm with the server history algorithm presented in [12].

MTAs that sent 10 or more mails MTAs that sent less than 10 mails All MTAs
server history only our algorithm server history only our algorithm server history only our algorithm

good 85.94% 95.39% 33.49% 35.37% 80.40% 90.10%
junk 87.43% 77.09% 99.04% 98.29% 93.49% 89.14%
average 86.42% 86.71% 92.34% 92.85% 89.39% 89.79%

Algorithm 1 Our algorithm.
if no history information available for Mi then {// case 1}

if no domain history information available for Di then
if Mi’s reverse DNS lookup failed then

Pi = 0.0 {// mail is junk}
else

Pi = 1.0 {// mail is good}
end if

else
Pi = γ ∗ GMP (Di) {// γ allows tuning}

end if
else if 0.4 ≤ GMP (Mi) ≤ 0.6 then {// case 2}

if the previous mail from Mi was good then
Pi = 1.0

else {// consider weighted average of server and domain
histories}

Pi = α ∗ GMP (Mi) + β ∗ GMP (Di)
if ADi > ε then {// consider days server is active for}

Pi = λ ∗ Pi {// λ allows tuning}
else if SDi > τ then {// consider number of servers
per domain}

Pi = δ ∗ Pi {// δ allows tuning}
end if

end if
else {// case 3}

if TMi < ρ then {// consider weighted average if total
mails from this server < ρ}

Pi = α ∗ GMP (Mi) + β ∗ GMP (Di)
else {// otherwise only consider server history}

Pi = GMP (Mi)
end if

end if

log. The tunable parameters γ, α, β, λ, and δ are chosen
to be 0.7, 0.3, 0.7, 1.3, and 0.8 respectively. These are
chosen to maximize the accuracy of prediction of good
mails over junk mails, while ensuring that the overall
prediction accuracy across all types of mails is not com-
promised. The latter is important to ensure that the spam
filters do not end up dealing with much junk mail while
processing the good mails.

Table 7 and Figure 6 show the accuracies of predic-
tion resulting from our algorithm and compares it to
the server history information algorithm used in [12].
Though we set the above mentioned parameters using the

log, we do not explicitly use a training phase for either of
the algorithms and instead evaluate their effectiveness as
sending information becomes available. We show three
view points in Table 7, 1) aggregate accuracies across all
types of MTAs, 2) accuracies for MTAs that sent 10 or
more emails, and 3) accuracies for MTAs that sent less
than 10 emails. Figure 6 shows only the second view
of point. Overall, our algorithm substantially outper-
forms the server history algorithm in prioritizing good
emails for all MTAs, and for MTAs that sent 10 or more
emails. In all other categories, we perform at least as
well. In comparison, Return Path3, a company that mon-
itors email performance for online marketers, estimates
that current spam filters misclassify nearly 19 percent of
good email as spam.

Figure 6: Comparison of prediction accuracy of our al-
gorithm with algorithm presented in [12] as number of
SMTP connections increases (for MTAs with greater
than or equal to 10 SMTP connections).

4 Concluding Remarks

We have shown that the combination of token-based au-
thentication and history-based prediction can help in de-
livering good mails to their recipients much faster than
spam filtering alone. We believe that our history-based
prediction algorithm does as best as an algorithm can do.
The reason for this is that some MTAs (39% in our data)
consistently sent both types of mails. These appear to
be MTAs like hotmail.com that serve users with varying
intentions, perhaps including spammers.
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Notes
1Mail servers using greylisting temporarily reject any email from

senders that they do not recognize under the assumption that legitimate
mail servers will retry later.

2An example of such a field is the message identifier put by the mail
server in the Message-ID field of the email header. This field is copied
into the In-Reply-To field in the replies to this message by most mail
clients.

3http://www.returnpath.net.
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