
A Conceptual Model and Predicate Language
for Data Selection and Projection Based on Provenance

David W. Archer and Lois M. L. Delcambre
Department of Computer Science, Portland State University

Portland, OR 97207 USA
{darcher, lmd @cs.pdx.edu}

Abstract
Writing relational database queries over current provenance databases can be complex and error-prone because ap-
plication data is typically mixed with provenance data, because queries may require recursion, and because the form
in which provenance is maintained requires procedural parsing not easily framed in query syntax. As a result, it is of-
ten difficult to write queries that select (rows or columns of) data based on provenance. In this paper, we contribute a
conceptual model and a predicate language for use in relational algebra that allows the user to write simple, non-re-
cursive queries to select data and attributes based on provenance. Our model also includes novel data and proven-
ance features, including multi-valued attributes, that are useful for data curation settings. We show that our predicate
language supports a broad class of queries that select application data based on provenance. We also show how se-
lection of data with our language extensions can be emulated with an existing graph database system and its associ-
ated query language.

1. Introduction
Current approaches for provenance of data in rela-

tional databases [1-4,6,8] extend the schema to repres-
ent provenance directly. As a consequence, a user
needs to know which part of the schema is data and
which is provenance. To pose a query, the user must
mix the query fragment necessary to access and parse
the provenance information with the query fragment
that accesses the data. Another consequence is that user
manipulations or queries may corrupt system-main-
tained provenance data.

We argue that there is a need to introduce orthogon-
ality in provenance databases. That is, we need to keep
user data separate from system-maintained provenance
in order to prevent clutter and simplify query writing;
and we need to keep mechanisms for manipulating data
from affecting provenance, while retaining the ability
for users to interrogate both data and provenance to-
gether.

Another problem is that since provenance informa-
tion is typically stored "one step at a time" in current
systems, queries that interrogate provenance typically
require transitive closure across a possibly unknown
number of materialized query answers in order to trace
derivation. Such queries are likely difficult for an end-
user to write in current query languages.

These problems make it difficult for an end user to
pose queries that select data by its provenance (e.g.,
"Which tuples in this relation were derived from source
X?"). Current literature [1-4] does not address this is-
sue, instead often emphasizing queries that result in

provenance information (e.g., "What is the provenance
of this tuple?"). However, anecdotal evidence from
several domains tells us that users often want to select
data based on its provenance and either use it immedi-
ately (for example in reports), or further analyze it and
combine it with other data.

In this paper, we contribute a conceptual model for
relational data and its provenance that supports the
principle of orthogonality, yet enables simpler syntax
for queries that select rows or columns of data based on
provenance (as well as data values). The data portion
of our model supports relational data with multi-valued
attribute values, addressable by relational algebra; data
manipulation operators extended with operators to ex-
press user confidence in data; and operators for copy-
ing data from place to place. Note that users of our
model may write regular relational queries against the
data without having to consider provenance.

The provenance portion of our model includes full
details on how data were derived (inserted, updated,
copied, deleted, and re-inserted, as well as queried) and
confirmed or doubted, by whom, when, and in what or-
der. The model provides distinct provenance at mul-
tiple granularities, including relations, tuples, schema
attributes, and attribute values. Our provenance model
also supports multiple histories for data, because for
example in settings we address, a tuple or an attribute
value might be derived from a query result, and then
later also inserted by a data manipulation language
(DML) operation. That is, we support multiple inser-

1

tion of tuples and values, as well as multiple values for
each attribute.

The provenance portion of our model is addressable
by a predicate language for use with the select and pro-
ject operators of relational algebra. This language al-
lows selection of tuples or attributes based on charac-
teristics in their provenance. Our predicate language
enables posing certain classes of transitive provenance
queries declaratively in relational algebra, without re-
cursion or complex syntax. The predicate language we
define for the selection operator can also be used in
conjunction with the usual predicate language that al-
lows users to select tuples based on their attribute val-
ues. The predicate language we define for the projec-
tion operator can also be used in conjunction with the
usual approach of listing attribute names to project.

In this paper, we evaluate the applicability of our
predicate language at the conceptual level. We do this
by defining an important class of provenance-related
queries from settings examined elsewhere in the literat-
ure as well as settings we are familiar with. We write
queries to answer typical provenance questions from
this class using relational algebra and our predicate lan-
guage. We evaluate the feasibility of implementing our
predicate language by showing that it can be mapped to
an existing graph query language, GraphQL[5].

In Section 2, we present our conceptual model. Sec-
tion 3 presents our predicate language for selection and
projection of data based on provenance. Section 4 eval-
uates our predicate language. In Section 5, we discuss
related work, and in Section 6, we outline future work.

2. Conceptual Model
In our conceptual model for data and provenance, a

database slice consists of a finite set of relations with
multi-valued attributes. A database slice is a complete
instance of a database, with its associated schema, at a
particular time. A slice is created whenever an operator
is applied to the database. We chose a simple, non first
normal form structure (with multiple values per attrib-
ute but without nested structure) because in data cura-
tion settings, users may need to retain more than one
value for an attribute of a tuple, either because they are
unsure about the correct value, or because more than
one value may apply. The top of Figure 1 shows ex-
ample relation D with one tuple and two attributes, in a
database slice. In this example, the schema of relation
D includes the attributes “Name” and “ID”. The sole
tuple has attribute value “Bob” as its Name, and two
values, “8” and “9”, for its ID. A dataloaf consists of a
totally ordered set of database slices, and a set of ex-
ternal sources from which data may be inserted into
database slices. The ordering of database slices is chro-
nological, denoting the order of applied operations.

We refer to the most recently created database slice
in the dataloaf as the Now database slice, because it
represents the current state of the modelled database.
The initial slice in a dataloaf is created when a data
definition language (DDL) operation is performed to
create its first relation. At the time of its creation, this
initial slice is the Now database slice in the dataloaf.

Figure 1. Dataloaf with database slices, relations, external
sources, and relation provenance links.

From that point onward, every operator in our concep-
tual model takes the Now slice in the dataloaf as input,
and induces a new Now slice. In the case of a query
composed of several operators, only one new slice is
created. Each new slice is a copy of the former Now
slice, with components (relations, tuples, attributes, and
attribute values) modified or added as prescribed by
the operation performed. When describing operators in
our model, we sometimes refer to this new slice as the
result database slice.

An example dataloaf, showing three database slices
and one external source, is at the bottom of Figure 1.
In the figure, we begin at the database slice labeled t-2,
where relations A and C exist as the result of prior op-
erations. An insertion operation of a complete relation,
B, from an external source, X, is performed on slice t-
2, resulting in slice t-1. A query (in this case, consisting
of a single Join operator) takes relations A and B as in-
put from slice t-1, and induces slice t, which includes
the new relation, D, resulting from the Join operation.
At each step, the unaffected contents of the Now slice
are copied forward into the result slice, so that the res-
ult slice is a complete version of the modeled database.

The data definition language (DDL) in our model
includes operators for creation of relations, attributes,

2

D

A

B

C

Database t

A

B

C

Database t-1

Database t-2

Join

Dataloaf

Name ID

A

C

Source “X”

Insert
Dataset

default

default

default

default

default

Relation D

Bob 8,9

Database slice t

and external sources, as well as deletion of relations
and attributes. The data manipulation language (DML)
includes operators for insertion, deletion, and copying
of whole relations, individual tuples, and individual at-
tribute values, along with expressions of confirmation
and doubt in values. The query language consists of
Select, Project, Join, and Union operators extended to
support multi-valued attribute values. The operators in
our language are shown in Figure 2.

Data Definition Language Operators

 Create Relation, External Source, or Attribute

 Delete Relation or Attribute

Data Manipulation Language Operators

 Insert Relation, Tuple, or Value1

 Copy Relation, Tuple, or Value

 Delete Tuple or Value

 Confirm or Doubt Value

Query operators

 Select, Project, Join, Union

 Figure 2. Operators for our conceptual model. Operators
shown in italics are extensions beyond the relational model.

These operators affect data in the expected way, but
also induce provenance relationships among compon-
ents and external sources. The operators Confirm and
Doubt represent user expressions of confidence (or
lack thereof) in attribute values. Although these operat-
ors do not change data values, our model records these
user expressions as part of data provenance.

Operators induce provenance links from compon-
ents in the result database slice to components from
which they were derived in the Now slice, or to extern-
al sources. Each provenance link originates from one
component (the descendant), and has one or more des-
tination components (the ancestors) of the same type
(or of type external source), depending on the opera-
tion that induces the link. Provenance links have prop-
erties, including a type (that indicates the operation or
query applied, or default, or renew). We call proven-
ance links labeled with applied operations action links.
When a result database slice is created from the Now
database slice, a default provenance link is induced
from each unmodified component in the result database
slice to its prior version in the Now database slice. In
addition, an action link is induced from each newly de-
rived component in the result database slice to each

1 Multiple insertions of the same relation, tuple, or value
are allowed in our language. This is an extension to the
relational model.

component in the Now database slice or external
source that contributes to its presence.

Each component has a boolean attribute called Ex-
pired. Upon creation, a component's Expired attribute
is set to False. When components are deleted, they are
copied into result database slices with Expired set to
True, and connected by default links to their corres-
ponding Now slice components2. Deleted components
are not available for use by operators, except for re-in-
sertion via DML of a deleted component. Such a re-in-
sertion results in a renew link from the re-inserted
component in the result database slice to the deleted
component in the Now database slice, along with the
appropriate action link from the re-inserted component
to an external source or database component from
which it was inserted or copied.

Figures 3 through 10 show a running example of op-
erations on a dataloaf. Throughout, we show proven-
ance links for relations (densely dotted), tuples
(dashed), and data values (solid). We omit default links
for clarity. We show only the Now database slice and
the result database slice at each step, omitting earlier
slices (and links to those) for clarity. Figure 3 shows
initial population of a dataloaf with a relation and an
external source. Figure 4 shows dataloaf evolution on
insertion of a tuple with a single attribute value (i.e.,
Name, with value “Bob”). Figures 5 and 6 show the ef-
fect of inserting multiple data values for an attribute of
a tuple. Figure 7 shows insertion of a second relation
as a single operation. Figure 8 shows execution of a
simple query over two relations, resulting in a new re-
lation. Figures 9 and 10 show deletion and re-insertion
of a data value. (Although the example shows re-inser-
tion from the original source, our model supports re-in-
sertion from a different source as well.)

Figure 3: Dataloaf with one slice after operations
Create Source(Name=“X”);

Create Relation(Name=“A”, Attributes={“Name”, “ID”});

2 Deleted data is retained, but distinguished from non-de-
leted data.

3

Dataloaf

Name ID

Relation A

Slice 0

Source “X”

Figure 4. Dataloaf after Insert Tuple(Source=“X”,
Relation=”A”,{“Name”=”Bob”}).

Figure 5. Dataloaf after Insert Value(Source=“X”,
Relation=”A”, Tuple=1, Attribute=”ID”, Value=”9”)

Figure 6. Dataloaf after Insert Value(Source=“X”,
Relation=”A”, Tuple=1, Attribute=”ID”, Value=”8”)

Figure 7. Dataloaf after Insert Relation(Source=“Y”,
Relation=”B”, {{“Name”=”Sue”, “ID”=”7”}}).

Action links omitted for attributes,
tuples, and attribute values.

Figure 8. Dataloaf after of C = A ∪ B.
Relations A and B omitted in result slice.

Action links omitted for attributes and attribute values.

Figure 9. Dataloaf after Delete Value(Src=“User input”,
Relation=“C”, Tuple=1, Attribute=“ID”, Value=“8”). De-
fault links omitted except for affected value. Non-participat-

ing relations omitted. Deleted value shown hashed.

4

Name ID

Relation A

Slice 1

Source
“X”

Dataloaf

Bob

Name ID

Relation A

Slice 0

Source
 “Y”

Insert Tuple
Insert Tuple

Name ID

Relation A

Slice 2

Source
“X”

Dataloaf

Bob 9

Name ID

Relation A

Slice 1

Bob

Source
“Y”

Insert Value

Name ID

Relation A

Slice 2

Bob 9

Source “X”

Dataloaf

Source “Y”

Name ID

Relation A

Slice 3

Bob 8, 9

Insert Value

Name ID

Relation A
Slice 3

Bob 8,9

Source
 “Y”

Dataloaf

Source “X”

Name ID

Relation A

Slice 4

Bob 8, 9

Insert Relation

Name ID

Sue 7

Relation B

Dataloaf

Name ID

Relation A

Slice 4

Bob 8, 9

Name ID

Sue 7

Relation B
Slice 5

Name ID

Relation C

Bob 8, 9

Sue 7

Dataloaf
Slice 5

Name ID

Relation C

Bob 8, 9

Sue 7

Slice 6

Name ID

Relation C

Bob 8, 9

Sue 7

“User Input”

default

Delete value

Figure 10. Dataloaf after Insert Value(Source=“X”,
Relation=“C”, Tuple=1, Attribute=“ID”, Value=“8”)

We define provenance graphs over a dataloaf that
include both data and provenance of a selected com-
ponent. A provenance graph presents an intuitive pic-
ture of the derivations comprising a component's his-
tory. In a provenance graph, vertices represent data
components3 or external sources, and edges represent
provenance links between them. Provenance graphs are
directed and acyclic, but are not in general trees, be-
cause multiple components may be ancestors of some
component, and a component may be an ancestor of
multiple components. Figure 11 shows the provenance
graph for the data value “8” in relation “C” in Figure
10. The “dot” notation used in the figure indicates rela-
tion first, then tuple ID, then attribute, then attribute
value.

We envision that a user might browse the proven-
ance of a component in a dataloaf by selecting it from
the Now database slice, using a menu to produce its
provenance graph, and then viewing it on a display. By
inspection, a user could see components and external
sources that contributed to the selected component's
provenance, along with the operations applied in deriv-
ing the component. We expect that an interface sup-
porting such inspection would allow the user to select
links (edges) or components (vertices) and be presen-
ted with more detail (such as who initiated an action) as
desired. This kind of browsing may enable the user to
formulate queries. For example, discovering a particu-
lar external source in the provenance of a tuple might
prompt the user to query about which other tuples in a
relation have provenance including that source.

The action links in our model encode how ancestor
data combine to form descendant data. DML and DDL
operations contribute single action links with single an-
cestor terminals. The Where-provenance of compon-

3 All components represented in a provenance graph are of
the same type as the selected component, or are external
source referents.

ents derived by these operations is precisely the extern-
al sources or internal database locations from which
they were drawn.

Figure 11. Provenance graph for value “8” in example
dataloaf from Figures 3-10.

This definition of Where-provenance matches the im-
plicit provenance semantics of DML as shown by
Buneman et al. [21], extended by our inclusion of ex-
ternal data sources in provenance. Our definition of
provenance also extends that of Buneman et al. by de-
scribing How (the operation history involved), and
When (the order of operations). We also extend their
work to include provenance of schema attributes.

For queries, we encode conjunctive provenance,
where the conjunction of the existence of multiple an-
cestors gives rise to a descendant, using action links
with more than one terminal ancestor. We encode dis-
junctive provenance using multiple action links origin-
ating at a descendant. Each link contributes a (possibly
conjunctive) term to the disjunction. As with DML and
DDL, the manner in which provenance “propagates”
through individual queries follows the implicit Where-
provenance semantics of Buneman et al. [21]. Queries
may result in complex provenance, but this provenance
can always be described in a “sum-of-products” form.
Thus a query may give rise to multiple action links,
each of which may have more than one terminal ancest-
or. Note that when attribute values arise spontaneously
from queries, e.g., from constants used in a query ex-
pression, they may have no provenance links.

5

Source
 “X”

C.1.”ID”.“8”

Insert Value, t=7
Renew, t=7

C.1.”ID”.“8” (expired)

C.1.”ID”.“8”

User
Input

default, t=6 Delete Value, t=6

A.1.”ID”.“8”

C=Union(A,B), t=5

A.1.”ID”.“8”

default, t=4

Source
 “X”

Insert Value, t=3

Dataloaf
Slice 6

Name ID

Relation C

Bob 8, 9

Sue 7

Slice 7

Name ID

Relation C

Bob 8, 9

Sue 7

Source “X” Insert value

Renew

This method of encoding provenance allows deriva-
tion of other provenance representations, for example
those defined by Green et al. [2], Widom et al. [6], and
Buneman et al. [1]. Figure 12 shows an example of the
provenance of result tuples from the union of two self-
joins. The input relation is shown at the top of the fig-
ure, followed by the query expression and the result re-
lation. Provenance expressions for the result tuples
from selected other models in the literature [1, 6, 2] are
shown below the result relation, followed by compar-
able provenance graphs from our model. The (simpli-
fied) leftmost result in the middle of Figure 12 demon-
strates the Why-provenance model of Buneman et al.
[1]. In this model, provenance consists of the set of sets
of tuples that contribute to the presence of a result.
Centered is the result from the Trio provenance model
[6]. In this model, provenance shows the plurality of
groups of tuples, each of which independently causes a
result's presence, with each tuple represented once in
each group. On the right are provenance polynomials
of Green et al. [2]. In this model, provenance also in-
cludes how many times a tuple contributes to a group,
shown here by exponents.

We have omitted the following from the example
MMP provenance graphs at the bottom of the figure for
clarity: provenance of relations, attributes, and attribute
values; labels on the action links; demarcation of the
Now and result database slices involved; and represent-
ation of relation R in the result slice, along with related
default links. We also use shorthand notation in the
graphs to make them easier to read. The notation “S.d”,
for example, indicates tuple d in relation S.

Consider the provenance graph for tuple d in the res-
ult relation S. Action links for d's provenance are
shown as solid lines. The leftmost action link has two
terminal ancestors, representing a conjunctive contribu-
tion to d of a joined with a, as does the next link to the
right. The rightmost solid edge shows a conjunctive
contribution of a and c to d. In “sum-of-products”
form, we can read this provenance graph as, “the
provenance of d is aa + aa + ac”, equivalent to the
provenance semi-ring [2] representation 2a2 + ac. Sup-
pose now we perform another operation, inserting a du-
plicate of tuple d into relation S from an external
source called X. This operation would add to the
provenance graph of d an external source vertex
labeled X, and an action link from d to X, labeled “In-
sert Tuple”. We would read the augmented provenance
for d as aa + aa + ac + X. Representation of this kind of
provenance was not addressed by Green et al. [2], be-
cause in that work, provenance polynomials refer to
identifiers of tuples within a database, but do not refer
to external sources.

3. Predicate language
While studying domains where relational data and

its provenance are both of interest, for example in data
curation settings [7-9], we found that many questions
asked by domain experts involve transitive rather than
"one-step" relationships in provenance graphs. That is,
users want to select data items not only by characterist-
ics of immediate ancestors, but by characteristics of an-
cestor components (as well as actions deriving them, or
combinations of the two) anywhere along a proven-
ance path in their provenance graph.

Figure 12: Comparison of provenance representations

A provenance path is a path of finite length in a
provenance graph. A language for selecting data based
on its provenance should be able to describe the
provenance characteristics of data of interest in terms
of a pattern, or motif, that can be used to identify paths
that have those characteristics. Inherent in path motifs
is the notion that the precise structure of a path of in-
terest may not be known, and need not be specified. In-
stead, a user may specify the presence in a path of cer-
tain components (vertices) or actions (links) with par-
ticular properties (labels). For example, a user might be

6

A B C
1 5 8

1 6 9
3 2 9

Tuple ID
a
b
c

Input relation R

S = π
AC

(R 
A
 ρ

B→D,C→E
(R)) ∪ (R 

C
 ρ

A→D,B→E
(R))

S Why Trio Green
d. {{a},{a,c}} 2a + ac 2a 2 + ac
e. {{c},{a,c},{b,c}} 2c + ac + bc 2c 2 + ac + bc
f. {{b},{b,c}} 2b + bc 2b 2 + bc

S.d

R.a R.bR.c

S.e S.f

A C
1 8

3 9
1 9

Tuple ID
d
e
f

Result relation S

Provenance of tuples in S in other models

Provenance of tuples in S in our model

interested in data from a particular source, without
knowing the full history of the data.

For the language we define in this paper, we assume
that action links are labelled with type (operation),
identity of the user applying the operation, and the time
at which the operation was applied. We assume that all
relations in the database have unique names, and that
attributes within relations are uniquely named. Our pre-
dicate language does not require names for tuples.
selectionPredicate ::=
 TUPLE HAS <predicateQualifier> |
 SOME DATA VALUE IN TUPLE HAS
 <predicateQualifier> |
 A VALUE FROM ATTRIBUTES {nameset}
 IN TUPLE HAS <predicateQualifier>
projectionPredicate ::=
 ATTRIBUTE HAS <predicateQualifier> |
 SOME DATA VALUE IN ATTRIBUTE HAS
 <predicateQualifier>
predicateQualifier ::=
 A PATH WITH (<pathQualifier>) |
 A PATH WITH (<pathQualifier>) [AND|OR]
 <predicateQualifier>
pathQualifier ::=
 A <component>4 (<cQualSet>) |
 AN OPERATION (<aQualSet>) |
 A SOURCE (<sQualSet) |
 NOT <pathQualifier> |
 <pathQualifier> [BEFORE|AND|OR] <pathQualifier>
aQualSet ::= <aQual> | <aQual> [AND|OR] <aQualSet>
cQualSet ::= <cQual> | <cQual> [AND|OR] <cQualSet>
sQualSet ::= <sQual> | <sQual> [AND|OR] <sQualSet>
aQual ::= WITH ACTION = <constant> |
 WITH ACTION = A QUERY |
 BY USER = <constant> |

WHERE TIME <cCmp> <constant>
cQual ::= IN DATASET <cCmp> <constant> |
 WITH A VALUE <cCmp> <constant> |
 THAT IS EXPIRED
sQual ::= WITH NAME <cCmp> <constant>
component ::= tuple | attribute | value
cCmp ::= = | > | < | ≥ | ≤ | ¬=

Figure 13: Syntax of Predicate Language

We define a grammar for a language that expresses
predicates usable in the projection and selection oper-
ators of relational algebra. Figure 13 shows this gram-
mar in BNF form. Our grammar is intentionally verb-
ose in order to make predicate semantics clear. A pro-
jectionPredicate is a predicate for use in the projection
operator, while a selectionPredicate is used in the se-
lection operator. The selectionPredicate structure offers
three options. A user may select tuples by their tuple
provenance, by the provenance of any data value de-
scribing the tuple, or by the provenance of data values
from only specifically named attributes describing the

4 Component type in a PathQualifier must agree with the
component type specified in the selectionPredicate or
projectionPredicate, e.g., value must be used if the pre-
dicate specifies “...SOME DATA VALUE IN...”

tuple. The projectionPredicate offers two similar op-
tions.

4. Evaluation of Our Predicate Language

Applicability
Provenance selection queries [10] select data from

input relations based on their provenance information.
Such queries exhibit closure over a data model includ-
ing both data and provenance. This paper focuses on
predicates for provenance selection queries. We sub-
divide this category of queries as shown in Figure 14.

Provenance Criteria
for Selection Based on...

Component
to Select

Ancestor
Data

Derivation
Actions

Both Selection
Criteria

Tuples S1 S4 N/A Single

S2 S5 S7 Unordered

S3 S6 S8 Ordered

Attributes S9 S12 N/A Single

S10 S13 S15 Unordered

S11 S14 S16 Ordered

Figure 14: Provenance Selection Queries.
Subdivisions labels match examples below.

Predicates can be used to select tuples or schema attrib-
utes (corresponding to the selection and projection op-
erators). The selection criteria can be properties of an-
cestor data (such as the identity of the dataset to which
data belongs, the value of data, whether or not the data
has been deleted, or the name of an external source),
actions used in derivation (such as the type of opera-
tion, the user who applied the operation, or the time it
was applied), or both. A single criterion, or a set of cri-
teria combined using AND, OR, and NOT, or a chro-
nologically ordered set of criteria can be specified. We
provide example provenance questions for selected
subdivisions of the class, numbered as shown in Figure
14, along with syntax for a matching selection predic-
ate in our language. For selection predicates, the result-
ing query would be of the form DO = σpredicate(DI), with
input relation DI and output relation DO. For projection
predicates, the resulting query would be of the form DO

= πpredicate(DI). We show the query output resulting from
application of examples S1-S5 to relation C in the data-
base slice shown in Figure 10.

S1. Which tuples were derived from source "X"?
Predicate:
 tuple has a path with (a source with name = "X")
Returns: (Bob, {8,9})

7

S2. Which tuples have at least one data value derived
from relation "A" or relation "B"?
Predicate:
some data value in tuple has
 a path with (a value in relation = "A")
 or a path with (a value in relation = "B")
Returns: (Bob, {8,9}) , (Sue, 7)

S3. Which tuples contain data derived from data in re-
lation "A" that later appeared in relation "C"?
Predicate:
some data value in tuple has
 a path with (a value in relation = "A"
 before a value in relation = "C")
Returns: (Bob, {8,9})

S4. Which tuples are derived from tuples that were in-
serted at least once between timestamps "4" and "7"?
Predicate:
 tuple has a path with (an operation
 with action = "INSERT"
 and where time >= "4" and where time < "7")
Returns: (Sue, 7)

S5. Which tuples were both derived by a query and in-
serted directly (without an intervening query)?
Predicate:
tuple has
 a path with (an operation with action = "INSERT"
 and not an operation with action = a query)
 and a path with (an operation with action = a query)
Returns: nothing

S6. Which tuples had values derived from data inserted
between dates "D" and "E" by user "Y", and later de-
leted?
Predicate:
some data value in tuple has
 a path with (an operation with (action = "INSERT"
 and where time > "D" and where time < "E"
 and by user = "Y")
 before a value that is expired)

S12. Which attributes were derived by a query posed
by user "Y"?
Predicate:
attribute has a path with (an operation
 with action = a query and by user = "Y")

Feasibility
We evaluate the feasibility of implementing our pre-

dicate language by showing how predicate evaluation
can be emulated with an existing logical data model
and query language. Since we represent provenance in
our conceptual model as graphs, and since our predic-
ates describe paths to search for in those graphs, we

chose a graph data model and graph query language as
our substrate. Although the graph model we chose is
more expressive than our predicate language, we use it
only to show the feasibility of implementing our pre-
dicate language.

He and Singh [5] define a formal language for de-
scribing graph motifs, and a query language, GraphQL,
that takes these motifs as inputs and retrieves graphs
that contain them from an existing database of graphs.
Their formal language supports descriptions of simple,
fixed graph motifs, as well as paths, cycles, and general
repetitive motifs. A graph pattern is a description in
this language of a graph's connectivity, along with a set
of criteria for matching selected edges and vertices in
the pattern. He and Singh also define a Selection oper-
ator that takes as input a database of graphs and a
graph pattern, and produces graphs from the database
that match the pattern.

A selectionPredicate or projectionPredicate in our
language specifies that tuples (respectively attributes)
in the relation in the Now database slice named in a
selection (respectively projection) operator will be se-
lected for output based on whether they satisfy the spe-
cified predicateQualifier. We describe the selection op-
erator, noting that the description also applies to the
projection operator.

We prepare for evaluation of the predicate against a
slice in a dataloaf by generating a database of proven-
ance graphs to be searched and converting the selection
predicate into a set of path motifs to search for in the
generated graphs. All tuples in the input relation to the
Select operator are candidates. The selectionPredicate
indicates whether the provenance of the tuples, or the
provenance for part or all of their attribute values will
be searched. The relevant provenance graphs are then
generated and included in the graph database.

A tuple is selected for output if the logical expres-
sion in the predicateQualifier is satisfied by at least one
of its relevant provenance graphs. A predicateQualifier
is satisfied by a graph if its logical expression evaluates
to True after all path motifs specified by pathQualifi-
ers in the predicateQualifier have been searched for in
the graph. Each pathQualifier can be described using a
single path motif. Component QualSets describe re-
quired properties of component vertices in a motif. Ac-
tion QualSets describe required properties of edges in a
motif. Source Qualsets describe properties of external
source vertices in a motif. Negation is supported, in
that a pathQualifier can specify that no paths in a graph
may satisfy the specified motif. A pathQualifier may be
compound, allowing it to describe a combination of
vertex and edge requirements in a motif.

Consider example S6. The selectionPredicate spe-
cifies that provenance of all attribute values of tuples in

8

the input relation should be searched for matches to the
specified provenance path description. Thus the graph
database created for predicate evaluation consists of
the provenance graphs for all attribute values in all
tuples in the input relation. A single path motif is cre-
ated using the description in the predicateQualifier. In
this example, the motif consists of a path beginning at
the vertex representing a Now slice attribute value, and
consisting of any connected path (including paths of
zero length), followed by a vertex with Expired = True,
followed by a connected path (including paths of zero
length), followed by an edge labeled “INSERT” with a
timestamp between values “D” and “E” and with a user
equal to “Y”. We use GraphQL's selection operator to
search for this motif in the provenance graphs. If at
least one such graph is found among the graphs for the
attribute values of a tuple, the tuple is selected for out-
put.

5. Related work
Existing provenance databases [1,3,8] use relational

query languages (e.g., SQL, relational algebra, or Data-
log) with recursion to pose provenance queries. Al-
though several commercial relational database systems
support SQL-99 transitive query features, the syntax is
complex and likely error-prone, requiring multiple sub-
queries and construction of views.

The Trio [6] architecture supports the built-in func-
tion Lineage() as part of its TriQL query language [12].
Lineage() is applied to two relations and produces
tuples from the first relation that have tuples from the
second in their lineage. Because Trio records proven-
ance at the tuple level only, TriQL cannot address sub-
divisions S9-S16 in Figure 14 (attribute selection quer-
ies). Lineage() also does not appear to support proven-
ance selection queries involving actions. As a result,
Lineage() does not support subdivisions S4-S8 in Fig-
ure 14. Nor can Lineage() express predicates that check
for specific ordering of ancestor relations in a tuple's
provenance. Thus Trio's Lineage() function can express
predicates only for portions of S1 and S2 from Figure
14. In contrast, our approach can pose queries from all
subdivisions of the class.

The Provenance Management Framework developed
by Microsoft Research and Wright State University
[10] includes a provenance algebra with an operator,
provenance_context(), for selecting relations based on
workflow provenance. However, the authors do not ex-
plore applying provenance_context() to relational data.

PASS [13] is a provenance-aware file system. The
PASS team discusses the suitability of various query
languages (SQL/relational algebra, XPath, and RDF-
focused languages) for querying provenance. They sug-
gest a semi-structured logical data model for storing

both data and provenance in graph form, and discuss
augmenting an existing graph query language, Lorel
[14], in order to express provenance queries. These ex-
tensions adapt Lorel to traversing provenance graphs,
but do not address orthogonality of provenance and
user data. PASS extensions to Lorel are focused on
filesystem provenance, though they may be applicable
to relational data as well.

Cluet discusses querying objects and their relation-
ships, including transitive (path-based) relationships
[15] in object-based data models. Since provenance is
a relationship between objects (database components,
in our case), the inter-object path queries discussed by
Cluet are related to our work. However, Cluet does not
discuss properties of relationships, e.g. operations or
timestamps of provenance links, in path queries.

SchemaSQL [16] provides extensions to SQL that
enable uniform manipulation of data and schema, in-
cluding querying of schema. Our predicate language
for the projection operator is similar to, but much sim-
pler than SchemaSQL's ability to query schema, though
our language is restricted to querying only the proven-
ance of schema. SchemaSQL does not support proven-
ance.

We examined several graph query languages before
selecting GraphQL [5] as our feasibility target. While
none of these models address provenance directly, all
provide some query capability over graph structures
similar to those we use for provenance.

UnQL [17] uses a procedural query language to
query graphs, but has no notion of evaluating predic-
ates over vertices in paths. StruQL [18] and GOOD
[19] take input graphs and generate new output graphs,
with transformation rules provided in the form of quer-
ies. StruQL queries are declarative, while GOOD trans-
formations are imperative. Neither provides the requis-
ite capability for applying predicates to vertices and
edges in paths as part of the transformation process.
GRAM [20] includes a graph query language for hy-
perwalk expressions that describe path patterns to be
matched in a graph database. However, restrictions on
node labeling in GRAM prevent representing database
components as vertices.

6. Conclusions and future work
We have defined a conceptual model for relational

data and its provenance that supports orthogonal access
to data and provenance. Our model enables queries
posed in relational algebra, without recursion or com-
plex syntax, to select rows or columns of data based on
provenance. Our model does not handle certain classes
of queries, for example queries that extract provenance
directly. We will provide an open-ended query capabil-
ity to do this in a logical model we are developing. We

9

also intend to evaluate performance and storage trade-
offs in our logical model. Our conceptual model ad-
dresses how data at all granularities were derived, by
whom, when, and in what order. We conjecture that our
predicate language may be simplified to match less in-
formative provenance data. In this paper, we have
shown applicability of our language to an important
class of queries. We have also shown its implementa-
tion feasibility at the conceptual level.

Acknowledgments
This work was supported by NSF grant 0534762 and

0840668, and by DARPA.

References
[1] Buneman, P., Khanna, S., Tan, W. “Why and

where: a characterization of data provenance,” In
Proc. of the 8th Int'l. Conf. on Database Theory,
2001.

[2] Green, T., Karvounarakis, G., Tannen, V. “Proven-
ance semirings,” In Proc. of the Twenty-Sixth ACM
SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, 2007.

[3] Bhagwat, D., Chiticariu, L., Tan, W., Vijayvargiya,
G. “An annotation management system for relational
databases,” In Proc. of the 30th Int'l. Conf. on Very
Large Data Bases, 2004.

[4] Holland, D., Braun, U., Maclean, D., Muniswamy-
Reddy, K., Seltzer, M. “Choosing a data model and
query language for provenance,” In Proc. of the 2nd

Int'l. Provenance and Annotation Workshop, 2008.
[5] He, H. and Singh, A. K. 2008. “Graphs-at-a-time:

query language and access methods for graph data-
bases,” In Proc. of the 2008 ACM SIGMOD Int'l.
Conf. on Mgmt of Data, 2008.

[6] Widom, J. “Trio: A system for integrated manage-
ment of data, accuracy, and lineage,” In Proc. of
CIDR 2005, 2005.

[7] Archer, D., Delcambre, L., Maier, D. “A frame-
work for fine-grained data integration and curation,
with provenance, in a dataspace.” In Proc. of the 1st

Workshop on the Theory and Practice of Proven-
ance, USENIX, 2009.

[8] Buneman, P., Chapman, A., Cheney, J., and Van-
summeren, S. “A provenance model for manually
curated data,” In Proc. of the Int'l. Provenance and
Annotation Workshop, 2006.

[9] Green, T., Karvounarakis, G., Taylor, N., Biton, O.,
Ives, Z., Tannen, V. “ORCHESTRA: facilitating
collaborative data sharing,” In Proc. of the 2007
ACM SIGMOD Int'l. Conf. on Mgmt of Data, 2007.

[10] Sahoo, S., Barga, R., Goldstein, J., Sheth, A.
“Provenance algebra and materialized view-based

provenance management”, Technical Report MSR-
TR-2008-170, Microsoft Corporation, 2008.

[11] Buneman, P., Chapman, A., and Cheney, J.
“Provenance management in curated databases,” In
Proc. of the 2006 ACM SIGMOD Int'l. Conf. on
Mgmt of Data (SIGMOD '06). ACM, 2006.

[12] TriQL: The Trio Query Language. Available from
 http://infolab.stanford.edu/trio.
[13] Muniswamy-Reddy, K., Holland, D. A., Braun,

U., and Seltzer, M. “Provenance-aware storage sys-
tems,” In Proc. of the Annual Conf. on USENIX '06,
2006.

[14] Abiteboul, S., Quass, D., McHugh, J., Widom, J.,
Wiener, J. "The Lorel query language for semi-
structured data," In Int'l. Journal on Digital Librar-
ies 1(1), 1997.

[15] Cluet, S. 1998. “Designing OQL: allowing objects
to be queried,” Information Systems 23, 5, 1998.

[16] Lakshmanan, L., Sadri, F., and Subramanian, S.
“SchemaSQL: an extension to SQL for multidata-
base interoperability,” ACM Transactions on Data-
base Systems 26, 4, 2001.

[17] Buneman, P., Fernandez, M., and Suciu, D. 2000.
“UnQL: a query language and algebra for semistruc-
tured data based on structural recursion,” The VLDB
Journal 9, 1, 2000.

[18] Fernandez, M., Florescu, D., Levy, A., and Suciu,
D. “A query language for a web-site management
system,” SIGMOD Record 26, 3, 1997.

[19] Gemis, M. Paradaens, J., Thyssens, I., et al.
“GOOD: A graph oriented object database system,”
In Proc. of the 1993 ACM SIGMOD Int'l. Conf. on
Mgmt of Data (SIGMOD '93), 1993.

[20] Amann, B., Scholl, M. “Gram: a graph data model
and query language,” In Proc. of the 4th ACM Conf.
on Hypertext and Hypermedia, 1992.

[21] Buneman, P., Cheney, J., Vansummeren, S. “On
the expressiveness of implicit provenance in query
and update languages,” ACM Trans. Database Syst.
33, 4, 2008.

10

