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Abstract
Writing relational database queries over current provenance databases can be complex and error-prone because ap-
plication data is typically mixed with provenance data, because queries may require recursion, and because the form 
in which provenance is maintained requires procedural parsing not easily framed in query syntax. As a result, it is of-
ten difficult to write queries that select (rows or columns of) data based on provenance. In this paper, we contribute a  
conceptual model and a predicate language for use in relational algebra that allows the user to write simple, non-re-
cursive queries to select data and attributes based on provenance.  Our model also includes novel data and proven-
ance features, including multi-valued attributes, that are useful for data curation settings. We show that our predicate 
language supports a broad class of queries that select application  data based on provenance. We also show how se-
lection of data with our language extensions can be emulated with an existing graph database system and its associ-
ated query language.

1. Introduction
Current approaches for provenance of data in rela-

tional databases [1-4,6,8] extend the schema to repres-
ent  provenance  directly.  As  a  consequence,  a  user 
needs to know which part  of the schema is data and 
which is provenance. To pose a query,  the user must 
mix the query fragment necessary to access and parse 
the  provenance  information  with  the  query  fragment 
that accesses the data. Another consequence is that user 
manipulations  or  queries  may  corrupt  system-main-
tained provenance data.

We argue that there is a need to introduce orthogon-
ality in provenance databases. That is, we need to keep 
user data separate from system-maintained provenance 
in order to prevent clutter and simplify query writing; 
and we need to keep mechanisms for manipulating data 
from affecting provenance, while retaining the ability 
for users to  interrogate both data and provenance to-
gether. 

Another problem is that since provenance informa-
tion is typically stored "one step at a time" in current 
systems, queries that  interrogate provenance typically 
require  transitive  closure  across  a  possibly unknown 
number of materialized query answers in order to trace 
derivation. Such queries are likely difficult for an end-
user to write in current query languages.

These problems make it difficult for an end user to 
pose queries  that  select  data  by its  provenance  (e.g., 
"Which tuples in this relation were derived from source 
X?"). Current literature [1-4] does not address this is-
sue,  instead  often  emphasizing queries  that  result  in 

provenance information (e.g., "What is the provenance 
of  this  tuple?").  However,  anecdotal  evidence  from 
several domains tells us that users often want to select 
data based on its provenance and either use it immedi-
ately (for example in reports), or further analyze it and 
combine it with other data.

In this paper, we contribute a conceptual model for 
relational  data  and  its  provenance  that  supports  the 
principle of orthogonality,  yet  enables simpler syntax 
for queries that select rows or columns of data based on 
provenance (as well as data values). The data portion 
of our model supports relational data with multi-valued 
attribute values, addressable by relational algebra; data 
manipulation operators extended with operators to ex-
press user confidence in data; and operators for copy-
ing data  from place to place.  Note that  users of  our 
model may write regular relational queries against the 
data without having to consider provenance. 

The provenance portion of our model includes full 
details  on how data were derived  (inserted,  updated, 
copied, deleted, and re-inserted, as well as queried) and 
confirmed or doubted, by whom, when, and in what or-
der.  The model  provides  distinct  provenance at  mul-
tiple granularities,  including relations,  tuples,  schema 
attributes, and attribute values. Our provenance model 
also supports  multiple histories for data, because for 
example in settings we address, a tuple or an attribute 
value might be derived from a query result, and then 
later  also  inserted  by  a  data  manipulation  language 
(DML) operation. That is, we support  multiple inser-
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tion of tuples and values, as well as multiple values for 
each attribute.

The provenance portion of our model is addressable 
by a predicate language for use with the select and pro-
ject  operators of relational algebra.  This language al-
lows selection of tuples or attributes based on charac-
teristics  in  their  provenance.  Our  predicate  language 
enables posing certain classes of transitive provenance 
queries declaratively in relational algebra, without re-
cursion or complex syntax. The predicate language we 
define for  the selection operator  can also be used in 
conjunction with the usual predicate language that al-
lows users to select tuples based on their attribute val-
ues. The predicate language we define for the projec-
tion operator can also be used in conjunction with the 
usual approach of listing attribute names to project.

In  this paper,  we evaluate the applicability of  our 
predicate language at the conceptual level. We do this 
by defining an important  class  of  provenance-related 
queries from settings examined elsewhere in the literat-
ure as well as settings we are familiar with. We write 
queries  to  answer  typical  provenance  questions  from 
this class using relational algebra and our predicate lan-
guage. We evaluate the feasibility of implementing our 
predicate language by showing that it can be mapped to 
an existing graph query language, GraphQL[5].

In Section 2, we present our conceptual model. Sec-
tion 3 presents our predicate language for selection and 
projection of data based on provenance. Section 4 eval-
uates our predicate language. In Section 5, we discuss 
related work, and in Section 6, we outline future work.

2. Conceptual Model
In our conceptual model for data and provenance, a 

database slice consists of a finite set of relations with 
multi-valued attributes. A database slice is a complete 
instance of a database, with its associated schema, at a 
particular time. A slice is created whenever an operator 
is applied to the database. We chose a simple, non first 
normal form structure (with multiple values per attrib-
ute but without nested structure) because in data cura-
tion settings, users may need to retain more than one 
value for an attribute of a tuple, either because they are 
unsure about the correct  value, or because more than 
one value may apply.  The top of Figure 1 shows ex-
ample relation D with one tuple and two attributes, in a 
database slice. In this example, the schema of relation 
D includes the attributes “Name” and “ID”. The sole 
tuple has attribute value “Bob” as its Name, and two 
values, “8” and “9”, for its ID. A dataloaf consists of a 
totally ordered set of database slices, and a set of  ex-
ternal sources  from which data may be inserted into 
database slices. The ordering of database slices is chro-
nological, denoting the order of applied operations.

We refer to the most recently created database slice 
in the dataloaf  as the  Now  database slice,  because it 
represents the current state of the modelled database. 
The  initial slice in a dataloaf is created when a data 
definition language (DDL) operation is  performed to 
create its first relation. At the time of its creation, this 
initial slice is the Now database slice in the dataloaf. 

Figure 1. Dataloaf  with database slices, relations, external  
sources, and relation provenance links.

From that point onward, every operator in our concep-
tual model takes the Now slice in the dataloaf as input, 
and induces a new Now slice. In the case of a query 
composed of several operators, only one new slice is 
created. Each new slice is a copy of the former Now 
slice, with components (relations, tuples, attributes, and 
attribute values)  modified or  added  as  prescribed  by 
the operation performed. When describing operators in 
our model, we sometimes refer to this new slice as the 
result database slice. 

An example dataloaf, showing three database slices 
and one external source, is at the bottom of Figure 1. 
In the figure, we begin at the database slice labeled t-2, 
where relations A and C exist as the result of prior op-
erations. An insertion operation of a complete relation, 
B, from an external source, X, is performed on slice t-
2, resulting in slice t-1. A query (in this case, consisting 
of a single Join operator) takes relations A and B as in-
put from slice t-1, and induces slice t, which includes 
the new relation, D, resulting from the Join operation. 
At each step, the unaffected contents of the Now slice 
are copied forward into the result slice, so that the res-
ult slice is a complete version of the modeled database.

The  data definition language (DDL)  in our model 
includes operators for creation of relations, attributes, 

2

D

A

B

C

Database t

A

B

C

Database t-1

Database t-2

Join

Dataloaf

Name    ID

A

C

Source “X”

Insert 
Dataset

default

default

default

default

default

Relation D

Bob     8,9

Database slice t



and external  sources,  as well as deletion of relations 
and attributes. The data manipulation language (DML) 
includes operators for  insertion, deletion, and copying 
of whole relations, individual tuples, and individual at-
tribute values, along with expressions of confirmation 
and doubt in values.  The  query language  consists of 
Select, Project, Join, and Union operators extended to 
support multi-valued attribute values.  The operators in 
our language are shown in Figure 2. 

Data Definition Language Operators

   Create Relation, External Source, or Attribute

   Delete Relation or Attribute

Data Manipulation Language Operators

   Insert Relation, Tuple, or Value1

   Copy Relation, Tuple, or Value

   Delete Tuple or Value

   Confirm or Doubt Value

Query operators

   Select, Project, Join, Union 

 Figure 2. Operators for our conceptual model. Operators  
shown in italics are extensions beyond the relational model.

These operators  affect  data  in the expected way, but 
also induce provenance relationships among compon-
ents and external sources. The operators Confirm and 
Doubt  represent  user  expressions  of  confidence  (or 
lack thereof) in attribute values. Although these operat-
ors do not change data values, our model records these 
user expressions as part of data provenance.

Operators  induce  provenance links from compon-
ents  in the result  database  slice to  components  from 
which they were derived in the Now slice, or to extern-
al sources. Each provenance link originates from one 
component (the descendant), and has one or more des-
tination components (the ancestors)  of the same type 
(or of type external source), depending on the opera-
tion that induces the link. Provenance links have prop-
erties, including a type (that indicates the operation or 
query applied, or  default,  or renew). We call proven-
ance links labeled with applied operations action links.  
When a result database slice is created from the Now 
database  slice,  a  default provenance  link  is  induced 
from each unmodified component in the result database 
slice to its prior version in the Now database slice. In 
addition, an action link is induced from each newly de-
rived component  in the result  database  slice  to  each 

1 Multiple insertions of the same relation, tuple, or value 
are allowed in our language. This is an extension to the 
relational model.

component  in  the  Now  database  slice  or  external 
source that contributes to its presence. 

Each component has a boolean attribute called  Ex-
pired. Upon creation, a component's Expired attribute 
is set to False. When components are deleted, they are 
copied into result database slices with Expired set to 
True,  and connected by  default  links to their  corres-
ponding Now slice components2. Deleted components 
are not available for use by operators, except for re-in-
sertion via DML of a deleted component. Such a re-in-
sertion  results  in  a  renew   link  from the  re-inserted 
component in the result  database slice to the deleted 
component in the Now database slice, along with the 
appropriate action link from the re-inserted component 
to  an  external  source  or  database  component  from 
which it was inserted or copied.

Figures 3 through 10 show a running example of op-
erations on a dataloaf.  Throughout,  we show proven-
ance  links  for  relations  (densely  dotted),  tuples 
(dashed), and data values (solid). We omit default links 
for clarity. We show only the Now database slice and 
the result database slice at each step, omitting earlier 
slices (and links to those) for clarity.  Figure 3 shows 
initial population of a dataloaf with a relation and an 
external source. Figure 4 shows dataloaf evolution on 
insertion of a tuple with a single attribute value (i.e., 
Name, with value “Bob”). Figures 5 and 6 show the ef-
fect of inserting multiple data values for an attribute of 
a tuple. Figure 7 shows insertion of a second  relation 
as a single operation. Figure 8 shows execution of a 
simple query over two relations, resulting in a new re-
lation. Figures 9 and 10 show deletion and re-insertion 
of a data value. (Although the example shows re-inser-
tion from the original source, our model supports re-in-
sertion from a different source as well.)

Figure 3: Dataloaf with one slice after operations
Create Source(Name=“X”); 

Create Relation(Name=“A”, Attributes={“Name”, “ID”});

2 Deleted data is retained, but distinguished from non-de-
leted data.
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Figure 4. Dataloaf after Insert Tuple(Source=“X”, 
Relation=”A”,{“Name”=”Bob”}).

Figure 5. Dataloaf after Insert Value(Source=“X”, 
Relation=”A”, Tuple=1, Attribute=”ID”, Value=”9”)

Figure 6. Dataloaf  after Insert Value(Source=“X”, 
Relation=”A”, Tuple=1, Attribute=”ID”, Value=”8”)

Figure 7. Dataloaf after Insert Relation(Source=“Y”, 
Relation=”B”, {{“Name”=”Sue”, “ID”=”7”}}). 

Action links omitted for attributes, 
tuples, and attribute values.

Figure 8. Dataloaf after of C = A ∪ B. 
Relations A and B omitted in result slice.

Action links omitted for attributes and attribute values.

Figure 9. Dataloaf after Delete Value(Src=“User input”,  
Relation=“C”, Tuple=1, Attribute=“ID”, Value=“8”). De-
fault links omitted except for affected value. Non-participat-

ing relations omitted. Deleted value shown hashed.
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Figure 10. Dataloaf after  Insert Value(Source=“X”, 
Relation=“C”, Tuple=1, Attribute=“ID”, Value=“8”)

We define  provenance graphs  over a dataloaf that 
include both data and provenance of a selected com-
ponent. A provenance graph presents an intuitive pic-
ture of the derivations comprising a component's his-
tory.  In  a  provenance  graph,  vertices  represent  data 
components3 or external sources, and edges represent 
provenance links between them. Provenance graphs are 
directed and acyclic,  but are not in general trees, be-
cause multiple components may be ancestors of some 
component,  and a component may be an ancestor  of 
multiple components. Figure 11 shows the provenance 
graph for the data value “8” in relation “C” in Figure 
10. The “dot” notation used in the figure indicates rela-
tion first,  then tuple ID,  then attribute,  then attribute 
value. 

We envision that a user might browse the proven-
ance of a component in a dataloaf by selecting it from 
the Now database slice,  using a menu to produce its 
provenance graph, and then viewing it on a display. By 
inspection, a user could see components and external 
sources  that  contributed  to  the  selected  component's 
provenance, along with the operations applied in deriv-
ing the component.  We expect  that  an interface  sup-
porting such inspection would allow the user to select 
links (edges) or components (vertices) and be presen-
ted with more detail (such as who initiated an action) as 
desired. This kind of browsing may enable the user to 
formulate queries. For example, discovering a particu-
lar external source in the provenance of a tuple might 
prompt the user to query about which other tuples in a 
relation have provenance including that source.

The action links in our model encode how ancestor 
data combine to form descendant data. DML and DDL 
operations contribute single action links with single an-
cestor  terminals.  The  Where-provenance  of  compon-

3 All components represented in a provenance graph are of 
the same type as the selected component, or are external 
source referents.

ents derived by these operations is precisely the extern-
al  sources  or  internal  database  locations  from which 
they were drawn. 

Figure 11. Provenance graph for value “8” in example 
dataloaf from Figures 3-10.

This definition of Where-provenance matches the im-
plicit  provenance  semantics  of  DML  as  shown  by 
Buneman et al. [21], extended by our inclusion of ex-
ternal  data  sources  in  provenance.  Our  definition  of 
provenance also extends that of Buneman et al. by de-
scribing  How  (the  operation  history  involved),  and 
When (the order of operations). We also extend their 
work to include provenance of schema attributes. 

For  queries,  we  encode  conjunctive provenance, 
where the conjunction of the existence of multiple an-
cestors gives rise to a descendant,  using action links 
with more than one terminal ancestor. We encode dis-
junctive provenance using multiple action links origin-
ating at a descendant. Each link contributes a (possibly 
conjunctive) term to the disjunction. As with DML and 
DDL,  the  manner in which provenance  “propagates” 
through individual queries follows the implicit Where-
provenance semantics of Buneman et al. [21]. Queries 
may result in complex provenance, but this provenance 
can always be described in a “sum-of-products” form. 
Thus a  query may give rise  to multiple action links, 
each of which may have more than one terminal ancest-
or. Note that when attribute values arise spontaneously 
from queries, e.g., from constants used in a query ex-
pression, they may have no provenance links.
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This method of encoding provenance allows deriva-
tion of other provenance representations, for example 
those defined by Green et al. [2], Widom et al. [6], and 
Buneman et al. [1]. Figure 12 shows an example of the 
provenance of result tuples from the union of two self-
joins. The input relation is shown at the top of the fig-
ure, followed by the query expression and the result re-
lation.   Provenance  expressions  for  the  result  tuples 
from selected other models in the literature [1, 6, 2] are 
shown below the result relation, followed by compar-
able provenance graphs  from our model. The (simpli-
fied) leftmost result in the middle of Figure 12 demon-
strates the Why-provenance model of Buneman et al. 
[1]. In this model, provenance consists of the set of sets 
of  tuples  that  contribute  to  the  presence  of  a  result. 
Centered is the result from the Trio provenance model 
[6]. In  this model, provenance shows the plurality of 
groups of tuples, each of which independently causes a 
result's presence,  with each tuple represented once in 
each group. On the right are provenance polynomials 
of Green et al. [2]. In this model, provenance also in-
cludes how many times a tuple contributes to a group, 
shown here by exponents.

We have  omitted the following from the example 
MMP provenance graphs at the bottom of the figure for 
clarity: provenance of relations, attributes, and attribute 
values; labels on the action links; demarcation of the 
Now and result database slices involved; and represent-
ation of relation R in the result slice, along with related 
default  links.  We also  use  shorthand  notation  in  the 
graphs to make them easier to read. The notation “S.d”, 
for example, indicates tuple d in relation S. 

Consider the provenance graph for tuple d in the res-
ult  relation  S.  Action  links  for  d's  provenance  are 
shown as solid lines. The leftmost action link has two 
terminal ancestors, representing a conjunctive contribu-
tion to d of a joined with a, as does the next link to the 
right.   The rightmost solid edge shows a conjunctive 
contribution  of  a  and  c  to  d.  In  “sum-of-products” 
form,  we  can  read  this  provenance  graph  as,  “the 
provenance  of  d  is  aa  + aa  +  ac”,  equivalent  to  the 
provenance semi-ring [2] representation 2a2 + ac. Sup-
pose now we perform another operation, inserting a du-
plicate  of  tuple  d  into  relation  S  from  an  external 
source  called  X.  This  operation  would  add  to  the 
provenance  graph  of  d  an  external  source  vertex 
labeled X, and an action link from d to X, labeled “In-
sert Tuple”. We would read the augmented provenance 
for d as aa + aa + ac + X. Representation of this kind of 
provenance was not addressed  by Green et al. [2], be-
cause  in  that  work,  provenance  polynomials  refer  to 
identifiers of tuples within a database, but do not refer 
to external sources.

3. Predicate language
While studying domains where relational  data  and 

its provenance are both of interest, for example in data 
curation settings [7-9], we found that many questions 
asked by domain experts involve transitive rather than 
"one-step" relationships in provenance graphs. That is, 
users want to select data items not only by characterist-
ics of immediate ancestors, but by characteristics of an-
cestor components (as well as actions deriving them, or 
combinations  of  the  two)  anywhere  along  a  proven-
ance path in their provenance graph. 

Figure 12: Comparison of provenance representations

A provenance  path  is  a  path  of  finite  length  in  a 
provenance graph. A language for selecting data based 
on  its  provenance  should  be  able  to  describe  the 
provenance characteristics of data of interest in terms 
of a pattern, or motif, that can be used to identify  paths 
that have those characteristics. Inherent in path motifs 
is the notion that the precise structure of a path of in-
terest may not be known, and need not be specified. In-
stead, a user may specify the presence in a path of cer-
tain components (vertices) or actions (links) with par-
ticular properties (labels). For example, a user might be 
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interested  in  data  from  a  particular  source,  without 
knowing the full history of the data. 

For the language we define in this paper, we assume 
that  action  links  are  labelled  with  type  (operation), 
identity of the user applying the operation, and the time 
at which the operation was applied. We assume that all 
relations in the database have unique names, and that 
attributes within relations are uniquely named. Our pre-
dicate language does not require names for tuples.
selectionPredicate ::= 
    TUPLE HAS <predicateQualifier>    |
    SOME DATA VALUE IN TUPLE HAS
      <predicateQualifier>                        |
    A VALUE FROM ATTRIBUTES {nameset} 
      IN TUPLE HAS <predicateQualifier>
projectionPredicate ::= 
    ATTRIBUTE HAS <predicateQualifier> |
    SOME DATA VALUE IN ATTRIBUTE HAS   
      <predicateQualifier>
predicateQualifier ::= 
    A PATH WITH (<pathQualifier>)        |
    A PATH WITH (<pathQualifier>) [AND|OR]
       <predicateQualifier>
pathQualifier ::= 
    A <component>4 (<cQualSet>)        |
    AN OPERATION (<aQualSet>)       |
    A SOURCE (<sQualSet)                  |
    NOT <pathQualifier>                        |
     <pathQualifier> [BEFORE|AND|OR] <pathQualifier>
aQualSet ::= <aQual> | <aQual> [AND|OR] <aQualSet>
cQualSet ::= <cQual> | <cQual> [AND|OR] <cQualSet> 
sQualSet ::= <sQual> | <sQual> [AND|OR] <sQualSet> 
aQual ::=  WITH ACTION = <constant>     |
                WITH ACTION = A QUERY       |
                BY USER = <constant>             |

WHERE TIME <cCmp> <constant>
cQual ::=  IN DATASET <cCmp> <constant> |
                WITH A VALUE <cCmp> <constant> |
                THAT IS EXPIRED
sQual ::=  WITH NAME <cCmp> <constant>
component ::=  tuple | attribute | value
cCmp ::=   = | > | < | ≥ | ≤ | ¬=

Figure 13: Syntax of Predicate Language

We define a grammar for a language that expresses 
predicates usable in the projection and selection oper-
ators of relational algebra. Figure 13 shows this gram-
mar in BNF form. Our grammar is intentionally verb-
ose in order to make predicate semantics clear. A pro-
jectionPredicate is a predicate for use in the projection 
operator, while a  selectionPredicate is used in the se-
lection operator. The selectionPredicate structure offers 
three options. A user may select tuples by their tuple 
provenance, by the provenance of any data value de-
scribing the tuple, or by the provenance of data values 
from only specifically named attributes describing the 

4 Component type in a PathQualifier must agree with the 
component type specified in the selectionPredicate or 
projectionPredicate, e.g., value must be used if the pre-
dicate specifies “...SOME DATA VALUE IN...”

tuple.  The  projectionPredicate  offers  two similar  op-
tions. 

4. Evaluation of Our Predicate Language

Applicability
Provenance selection queries  [10] select data from 

input relations based on their provenance information. 
Such queries exhibit closure over a data model includ-
ing both data and provenance. This paper focuses on 
predicates  for provenance selection queries.  We sub-
divide this category of queries as shown in Figure 14.

Provenance Criteria 
for Selection Based on...

Component 
to Select

Ancestor 
Data

Derivation 
Actions

Both Selection 
Criteria

Tuples S1 S4 N/A Single

S2 S5 S7 Unordered

S3 S6 S8 Ordered

Attributes S9 S12 N/A Single

S10 S13 S15 Unordered

S11 S14 S16 Ordered

Figure 14: Provenance Selection Queries. 
Subdivisions labels match examples below.

Predicates can be used to select tuples or schema attrib-
utes (corresponding to the selection and projection op-
erators). The selection criteria can be properties of an-
cestor data (such as the identity of the dataset to which 
data belongs, the value of data, whether or not the data 
has been deleted, or the name of an external source), 
actions used in derivation (such as the type of opera-
tion, the user who applied the operation, or the time it 
was applied), or both. A single criterion, or a set of cri-
teria combined using AND, OR, and NOT, or a chro-
nologically ordered set of criteria can be specified. We 
provide  example  provenance  questions  for  selected 
subdivisions of the class, numbered as shown in Figure 
14, along with syntax for a matching selection predic-
ate in our language. For selection predicates, the result-
ing query would be of the form DO  = σpredicate(DI), with 
input relation DI and output relation DO. For projection 
predicates, the resulting query would be of the form DO 

= πpredicate(DI). We show the query output resulting from 
application of examples S1-S5 to relation C in the data-
base slice shown in Figure 10.

S1. Which tuples were derived from source "X"?
Predicate: 
   tuple has a path with (a source with name = "X")
Returns: (Bob, {8,9}) 
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S2. Which tuples have at least one data value derived 
from relation "A" or relation "B"?
Predicate: 
some data value in tuple has 
  a path with (a value in relation = "A")
  or a path with (a value in relation = "B")
Returns: (Bob, {8,9}) , (Sue, 7)

S3. Which tuples contain data derived from data in re-
lation "A" that later appeared in relation "C"?
Predicate:
some data value in tuple has 
  a path with (a value in relation = "A"
  before a value in relation = "C")
Returns: (Bob, {8,9}) 

S4. Which tuples are derived from tuples that were in-
serted at least once between timestamps "4" and "7"?
Predicate:
   tuple has a path with (an operation 
   with action = "INSERT" 
   and where time >= "4" and where time < "7")
Returns: (Sue, 7)

S5. Which tuples were both derived by a query and in-
serted directly (without an intervening query)?
Predicate:
tuple has 
  a path with (an operation with action = "INSERT" 
  and not an operation with action = a query)
  and a path with (an operation with action = a query)
Returns: nothing

S6. Which tuples had values derived from data inserted 
between dates "D" and "E" by user "Y",  and later de-
leted?
Predicate:
some data value in tuple has
  a path with (an operation with (action = "INSERT" 
  and where time > "D" and where time < "E" 
  and by user = "Y")
    before a value that is expired)

S12. Which attributes were derived by a query posed 
by user "Y"?
Predicate:
attribute has a path with (an operation
      with action = a query and by user = "Y")

Feasibility
We evaluate the feasibility of implementing our pre-

dicate language  by showing how predicate evaluation 
can be emulated with an existing logical  data  model 
and query language. Since we represent provenance in 
our conceptual model as graphs, and since our predic-
ates describe paths to search for in those graphs,  we 

chose a graph data model and graph query language as 
our substrate.  Although the graph model we chose is 
more expressive than our predicate language, we use it 
only to show the feasibility of  implementing our pre-
dicate language.

He and Singh [5] define a formal language for de-
scribing graph motifs, and a query language, GraphQL, 
that takes these motifs as inputs and retrieves graphs 
that contain them from an existing database of graphs. 
Their formal language supports descriptions of simple, 
fixed graph motifs, as well as paths, cycles, and general 
repetitive  motifs.  A graph  pattern is  a  description in 
this language of a graph's connectivity, along with a set 
of criteria for matching selected edges and vertices in 
the pattern. He and Singh also define a Selection oper-
ator  that  takes  as  input  a  database  of  graphs  and  a 
graph pattern, and produces graphs  from the database 
that match the pattern.

A selectionPredicate  or  projectionPredicate  in  our 
language specifies that tuples (respectively attributes) 
in the relation in the Now database slice named in a 
selection (respectively projection) operator will be se-
lected for output based on whether they satisfy the spe-
cified predicateQualifier. We describe the selection op-
erator,  noting that  the description also applies to the 
projection operator. 

We prepare for evaluation of the predicate against a 
slice in a dataloaf by generating a database of proven-
ance graphs to be searched and converting the selection 
predicate into a set of path motifs to search for in the 
generated graphs. All tuples in the input relation to the 
Select operator are candidates. The selectionPredicate 
indicates whether the provenance of the tuples, or the 
provenance for part or all of their attribute values will 
be searched. The relevant provenance graphs are then 
generated and included in the graph database.

A tuple is selected for output if the logical expres-
sion in the predicateQualifier is satisfied by at least one 
of its relevant provenance graphs. A predicateQualifier 
is satisfied by a graph if its logical expression evaluates 
to True after all path motifs specified by  pathQualifi-
ers in the predicateQualifier have been searched for in 
the graph. Each pathQualifier can be described using a 
single  path  motif.  Component  QualSets  describe  re-
quired properties of component vertices in a motif. Ac-
tion QualSets describe required properties of edges in a 
motif. Source Qualsets describe properties of external 
source  vertices  in a  motif.  Negation is  supported,  in 
that a pathQualifier can specify that no paths in a graph 
may satisfy the specified motif. A pathQualifier may be 
compound,  allowing it  to  describe  a  combination  of 
vertex and edge requirements in a  motif.

Consider  example  S6.  The  selectionPredicate  spe-
cifies that provenance of all attribute values of tuples in 
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the input relation should be searched for matches to the 
specified provenance path description. Thus the graph 
database  created  for  predicate  evaluation  consists  of 
the  provenance  graphs  for  all  attribute  values  in  all 
tuples in the input relation. A single path motif is cre-
ated using the description in the predicateQualifier. In 
this example, the motif consists of a path beginning at 
the vertex representing a Now slice attribute value, and 
consisting of  any connected  path (including paths  of 
zero length), followed by a vertex with Expired = True, 
followed by a connected path (including paths of zero 
length), followed by an edge labeled “INSERT” with a 
timestamp between values “D” and “E” and with a user 
equal to “Y”. We use GraphQL's selection operator to 
search  for  this motif in the provenance  graphs.  If  at 
least one such graph is found among the graphs for the 
attribute values of a tuple, the tuple is selected for out-
put.

5. Related work
Existing provenance databases [1,3,8] use relational 

query languages (e.g., SQL, relational algebra, or Data-
log)  with  recursion  to  pose  provenance  queries.  Al-
though several commercial relational database systems 
support SQL-99 transitive query features, the syntax is 
complex and likely error-prone, requiring multiple sub-
queries and construction of views.

The Trio [6] architecture supports the built-in func-
tion Lineage() as part of its TriQL query language [12]. 
Lineage()  is  applied  to  two  relations  and  produces 
tuples from the first relation that have tuples from the 
second in their lineage. Because Trio records proven-
ance at the tuple level only, TriQL cannot address sub-
divisions S9-S16 in Figure 14 (attribute selection quer-
ies). Lineage() also does not appear to support proven-
ance selection queries  involving actions.  As a  result, 
Lineage() does not support subdivisions S4-S8 in Fig-
ure 14. Nor can Lineage() express predicates that check 
for specific ordering of ancestor relations in a tuple's 
provenance. Thus Trio's Lineage() function can express 
predicates only for portions of S1 and S2 from Figure 
14. In contrast, our approach can pose queries from all 
subdivisions of the class.

The Provenance Management Framework developed 
by  Microsoft  Research  and  Wright  State  University 
[10]  includes a provenance algebra with an operator, 
provenance_context(), for selecting relations based on 
workflow provenance. However, the authors do not ex-
plore applying provenance_context() to relational data.

PASS [13] is a provenance-aware file system. The 
PASS team discusses the suitability of various query 
languages  (SQL/relational  algebra,  XPath,  and  RDF-
focused languages) for querying provenance. They sug-
gest  a  semi-structured  logical  data  model  for  storing 

both data and provenance in graph form, and discuss 
augmenting an  existing  graph  query language,  Lorel 
[14], in order to express provenance queries. These ex-
tensions adapt Lorel  to traversing provenance graphs, 
but  do  not  address  orthogonality  of  provenance  and 
user  data.  PASS extensions  to  Lorel  are  focused  on 
filesystem provenance, though they may be applicable 
to relational data as well.

Cluet discusses querying objects and their relation-
ships,  including  transitive  (path-based)  relationships 
[15] in object-based data models. Since provenance is 
a relationship between objects (database components, 
in our case), the inter-object path queries discussed by 
Cluet are related to our work. However, Cluet does not 
discuss  properties  of  relationships,  e.g.  operations  or 
timestamps of provenance links, in path queries.

SchemaSQL [16] provides extensions to  SQL that 
enable uniform manipulation of data and schema, in-
cluding querying  of  schema.  Our  predicate  language 
for the projection operator is similar to,  but much sim-
pler than SchemaSQL's ability to query schema, though 
our language is restricted to querying only the proven-
ance of schema. SchemaSQL does not support proven-
ance. 

We examined several graph query languages before 
selecting GraphQL [5] as our feasibility target. While 
none of these models address provenance directly, all 
provide  some query  capability  over  graph  structures 
similar to those we use for provenance.

UnQL  [17]  uses  a  procedural  query  language  to 
query graphs, but has no notion of evaluating predic-
ates over vertices in paths.  StruQL [18] and GOOD 
[19] take input graphs and generate new output graphs, 
with transformation rules provided in the form of quer-
ies. StruQL queries are declarative, while GOOD trans-
formations are imperative.  Neither provides the requis-
ite  capability for  applying predicates  to  vertices  and 
edges in paths as part  of the transformation process. 
GRAM [20] includes a graph query language for  hy-
perwalk expressions  that describe path patterns to be 
matched in a graph database. However, restrictions on 
node labeling in GRAM prevent representing database 
components as vertices.

6. Conclusions and future work
We have defined a conceptual model for  relational 

data and its provenance that supports orthogonal access 
to  data  and  provenance.  Our  model  enables  queries 
posed in relational algebra, without recursion or com-
plex syntax, to select rows or columns of data based on 
provenance. Our model does not handle certain classes 
of queries, for example queries that extract provenance 
directly. We will provide an open-ended query capabil-
ity to do this in a logical model we are developing. We 

9



also intend to evaluate performance and storage trade-
offs in our logical model.  Our conceptual model ad-
dresses how data at all granularities were derived, by 
whom, when, and in what order. We conjecture that our 
predicate language may be simplified to match less in-
formative  provenance  data.  In  this  paper,  we  have 
shown  applicability of  our  language  to  an  important 
class of queries. We have also shown its implementa-
tion feasibility at the conceptual level.
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