
Using Provenance to Extract Semantic File Attributes

Daniel Margo
Harvard University

Robin Smogor
Harvard University

Abstract

Rich, semantically descriptive file attributes are valu-
able in many contexts, such as semantic namespaces and
desktop search. Descriptive attributes help users to find
files placed in seemingly-arbitrary locations by differ-
ent applications. However, extracting semantic attributes
from file contents is nontrivial. An alternative is to ex-
amine file provenance: how and when files are used, and
the agents that use them.

We study the extraction of semantic attributes from file
provenance by applying data mining and machine learn-
ing techniques to file metadata. We show that provenance
and other metadata predict semantic attributes such as
file extensions. This complements previous work, which
has shown that file extensions predict access patterns.

1 Introduction

Semantic attributes, which describe an object in human-
readable terms, are useful to many applications. For ex-
ample, iTunes represents a music collection as a semantic
namespace in which songs are located by attributes such
as album, artist, and genre. Desktop search engines such
as Google Desktop Search also locate data semantically
and benefit from descriptive attributes.

One of the fundamental challenges in semantic appli-
cations is the problem of extracting attributes. A seman-
tic application is not a useful tool unless it has rich, ac-
curate attributes to work with. Unfortunately, manual la-
beling is an arduous task (akin to assigning a file mul-
tiple directories) and is intractable for importing extant
systems. This “labeling problem” has been the subject
of research, but is far from solved. Recent projects ex-
tract acoustic features from music [1] and summaries and
other features from text documents [7]. However, these
systems are necessarily limited in that they must under-
stand how to read and interpet the contents of each type
of file. Furthermore, they treat files as individuals and do

not considercontext: historical and other relationships
between files.

We propose that a great deal of information can be ob-
tained by examining file provenance: how and when files
are used, and the agents that use them. For example, a
file that is always opened by an application and is con-
tained in that application’s directory is likely to be part of
that application. Conversely, a file that is always opened
by many applications but is not contained in any applica-
tion’s directory is likely to be a library. A file that is occa-
sionally opened by an application and is not contained in
that application’s directory is likely to be content manip-
ulated by that application. One can imagine a machine
learning classification algorithm that matches file prove-
nance to patterns such as “application component”.

There is significant prior work on using contextual
file metadata in desktop search. Shah et al. have used
provenance to improve desktop search [5], and Soules
and Ganger have researched attribute propagation using
content similarity and temporal context [6]. Temporal
context can be thought of as a coarse approximation of
provenance, because objects that share a provenance re-
lationship must be active in the same timespan. True
provenance records contain more data at a finer granu-
larity, but this consequently introduces novel challenges.

Classifying provenance is challenging because prove-
nance data is large and multi-dimensional. Provenance is
generally represented as a graph, and the size of a graph
is quadratic in its number of nodes. Furthermore, each
node and edge is labeled with metadata such as name
and version. In contrast, a typical machine learning clas-
sifier can handle feature vectors on the order of tens or
hundreds of features in length. Therefore, we must intel-
ligently reduce the large graph to a few relevant features.

We use provenance collected by the Provenance-
Aware Storage System v2 [4] to describe file history.
Then, using a variety of clustering and machine learn-
ing algorithms, we classify files by their provenance
and other metadata. Because this data is large, we ex-



De-version
Merge Names
Don’t Merge

Provenance Graph
File Graph
Process Graph

Ancestors
Descendants

Node Count
Edge Count
Max Depth
Neighbors

Table 1: The feature extraction pipeline. Each step is chosen from left to right.

plore different methods of distilling and extracting rele-
vant features. We demonstrate that provenance and other
metadata are predictive of extant semantic attributes,
such as file extensions.

2 Design

Our high-level goal is to take the provenance of a set
of files, and output semantically meaningful classifica-
tions. We approach this problem in three stages: collect-
ing provenance, processing provenance, and feeding pro-
cessed provenance to a machine learning classifier. The
processing stage can be further broken down into a set
of component techniques that assemble in various ways.
In the following section, we broadly map out this design
and its implications.

We collect provenance using PASSv2 [4], which cap-
tures provenance relationships at the Linux syscall inter-
face. For example, PASSv2 captures and logs the source
and destination of a processes’s write to a file. The re-
sulting output is a directed acyclic graph in which the
process and file are nodes, and the write is an edge.

When a process writes to a file it has previously read,
this creates a cyclic dependency that PASSv2 resolves by
creating a new version of the file that implicitly depends
on the old version. As a result, PASSv2 nodes do not
correspond to files and processes, but rather historical in-
stances of files and processes. This distinction is typical
in provenance systems, and is important both when we
process provenance and interpret the results.

2.1 Processing Provenance

In the processing stage, we reduce the large, singular
provenance graph to a small number of per-file features.
Graph features can be divided into two categories, extrin-
sic and intrinsic. Extrinsic features are attributes and la-
bels of nodes and edges that are particular to a given class
of graphs (in this case, PASSv2 graphs). Conversely,
instrinsic features are structures that depend solely on
graph topology. Extrinsic features are often semantically
meaningful, but intrinsic features are more generalizable.

2.1.1 Extrinsic Features

Probably the most significant extrinsic feature in PASSv2
(and many other provenance systems) is node version-

ing. Recall that, due to versioning, there is no one-to-one
correspondence between files and nodes. Therefore, we
must reconcile multiple version nodes when generating
per-file features. One simple solution is tode-version
the graph by merging nodes that refer to a single ver-
sioned object. Alternatively, we could process the ver-
sioned graph, generate per-node features, and reconcile
them in post-processing (for example, by averaging ver-
sions, or discarding all but the most recent version).

De-versioning emphasizes the relationship between
different versions of a file and reduces graph sparsity, but
also discards topological information and introduces cy-
cles and false dependencies. Conversely, post-processing
lets us retain and better manage topological information,
but does not address sparsity and introduces further de-
cisions with regards to how the versions are reconciled.
In our initial work we have found sparsity to be a chal-
lenge and the decision space to be large, so to date we
have only operated on de-versioned graphs. We can fur-
ther explore this concept and reduce sparsity by merging
nodes with identical pathnames. This ensures one node
per file, and captures relationships such as instances of a
process or an application’s temporary files, but can also
introduce wholly false relationships. However, it is pos-
sible that small amounts of such noise will be ”washed
out” by the machine learner.

Other notable extrinsic features in PASSv2 include
node types and edge timestamps. Node types are seman-
tic labels such as “file”, “process”, etc. We can reduce
a provenance graph to a file graph or a process graph
by omitting all non-file or non-process objects, respec-
tively. The former emphasizes dependencies between
files, whereas the latter emphasizes workflow. These al-
ternative representations of the graph are then interesting
candidates for intrinsic feature analysis, as described be-
low. We plan to incorporate edge timestamps into our
processing pipeline in future work.

In addition, we collect features from file system meta-
data. Per-file features such as directory depth, last ac-
cess time, etc. are readily available via astat syscall.
While these features are not provenance, they are consis-
tent with our file content-ignorant approach.

2.1.2 Intrinsic Features

A traditional technique to summarize intrinsic graph
topology is topological clustering. Typical clustering al-

2



gorithms take a single graph as input and, using the lo-
cal topology of each node, partition the graph. Unfortu-
nately, partitioners perform poorly on provenance graphs
because they are often sparse, and because the partitioner
is ignorant of the properties of provenance graphs. In
particular, partitioners are not aware that the ancestor
and descendant subgraphs of a given node have special
significance; they only consider local topology. Across-
graph clusterers could compare these sets of subgraphs
for similarity, but they can be slow on large graphs and
also suffer from sparsity.

However, we can easily collect simple statistics about
each file’s ancestors and descendants. Features such
as the number of nodes and edges, the maximum path
length, and the file’s immediate neighbors can be calcu-
lated for each file’s ancestor and descendant subgraphs.
Furthermore, these features can be collected on different
representations of the graph: provenance, file, and pro-
cess graphs, with merged or unmerged pathnames. Note
that since our de-versioned graphs can contain cycles, we
define the ancestor and descendant subgraphs of a file as
the transitive closure of children-to-parent and parent-to-
children traversals, respectively. The feature extraction
pipeline (excludingstat) is summarized in table 1.

2.2 Machine Learning

The goal of the machine learning stage is to further re-
duce our per-file features into an intelligent attribute pre-
diction for each file. However, we would also like to
understand the learners reasoning, and perhaps extract
simple rules from them so that we can ultimately omit
the learning stage entirely. Therefore, we use a decision
tree algorithm, because its output is simple and follows
transparent logic. Once we better understand the feature
space, we can explore more sophisticated algorithms.

Decision trees are built iteratively. At each step, the
tree chooses a feature and “splits” on it, resulting in a
binary classification. Each feature is ranked by the infor-
mation gain (percentage of results correctly predicted) if
the tree were to split on that feature, and the feature with
the highest information gain is chosen. Each split of the
tree is then assigned a prediction based on the majority
of cases represented within that split. If all cases are cor-
rectly predicted, or no further attributes can distinguish
the cases, the algorithm terminates. This ultimately pro-
duces a decision tree structure that can be translated into
a disjunction of hypothesis for the classification problem.

There are several well-known problems associated
with decision trees, which we use standard methods to al-
leviate. To avoid overfitting the tree to the data set, we set
a lower bound on information gain in order to prune the
tree of splits that add little overall accuracy. We divide
our data set into ten parts, and cross-validate our predic-

tions by using nine parts to train the trees and testing on
the tenth. We also use k-means clustering techniques to
collapse real-valued features into sensible groups. Most
of our data analysis occurs within the RapidMiner [3]
toolset, using the C4.5 decision tree algorithm.

3 Evaluation

Evaluation of our work encounters several challenges.
First, success is hard to define, because semantic at-
tributes are usually subjective. For example, if our
groupings correspond to “origin”, who defines the mean-
ing of origin, or what it means for two files to have “sim-
ilar origin”? Therefore, we have chosen to evaluate our
accuracy against a fairly ubiquitous and descriptive se-
mantic attribute: file extensions.

In practice, predicting file extensions has few appli-
cations; most files already have them, and if not, utilities
such asfile can determine them. However, for the pur-
poses of our initial evaluation they are attractive for two
reasons. First, they are ubiquitous and undisputed: we
do not have to hand-label our training data or make sub-
jective judgements of semantic meaning. In particular,
this allows us to easily experiment with large or different
data sets.

Second, although we expect that provenance will
predict semantic attributes, we do not know precisely
what attributes provenanceshould predict. For example,
provenance may not be a good predictor of “importance”.
We need some direction to guide our intuitions. In pre-
vious work Mesnier et al. [2] found that file attributes,
including extension, predicted future behavior of the file,
and extracted predictive rules to tune file system perfor-
mance. This suggests that the reverse – using file behav-
ior to predict extensions – is worthy of investigation.

Another challenge for our evaluation is finding an
appropriate workflow. Although a number of PASSv2
traces have been made available, they all correspond to
homogeneous workflows in which a single high-level
task was executed. While these workflows are rich in
provenance, they do not correspond well to typical het-
erogeneous user behavior. Ideally, we would construct a
comprehensive workflow featuring several different rep-
resentative applications in tandem. This is a large task
on which we are still working. In the interim, we have
processed the PASSv2 Linux kernel v2.6.19.1 compile, a
data set previously used in other PASSv2 analyses [4].

PASSv2 can only track provenance in directories that
have been specially mounted as “Lasagna” volumes, and
provenance cannot be shared between Lasagna volumes.
Furthermore, the system root cannot be mounted as a
Lasagna volume. Consequently, we only track prove-
nance in the compile’s directory tree; files outside of the
tree appear in the provenance, but do not have their own

3



provenance tracked. The mounting process introduces a
layer ofcp provenance events, which add some noise.

We onlystat files that are present on-disk at the end
of the workflow. However, workflows also contain tem-
porary files and processes. Consequently, we draw a crit-
ical distinction betweenmanifest files (which are on-disk
and can bestat) and non-manifest objects.

We built and installed the PASSv2 kernel v2.6.23.17
on an Intel Core2 Duo running Ubuntu 9.04. We im-
plemented our techniques using python v2.6 and Rapid-
Miner Community Edition, using brute force to compute
transitive closures. Recall that we divide the data into ten
random parts, train on nine, and test on the tenth.

3.1 Results

The Linux kernel compile is a large provenance graph
containing 138,243 nodes and 1,338,134 edges. De-
versioning reduces it to 68,312 nodes, and name-merging
to 34,347 nodes; 21,650 of these are manifest files that
we canstat after compilation. From the manifest files,
we discarded 200 whose extensions appear eight times or
less; in practice these do not affect our accuracy, but their
removal makes statistical result analysis more tractable.
Our current brute-force pipeline takes about a day to pro-
cess one representation of the graph, so we were only
able to compute the following features from merged-
name ancestor and descendant subgraphs:

• Node Count

• Edge Count

• Maximum Path Depth

• Neighbors

• File Count

• Process Count

In total, we used 12 provenance features and 11stat
features for classification.

Using these 23 features we initially achieved
79.78%± 0.98% extension prediction accuracy on man-
ifest files (see table 2); we need a little over 5,000 train-
ing examples for this accuracy to stabilize (see figure 1).
On non-manifest files, using just the 12 provenance fea-
tures we achieved93.76% ± 1.27% accuracy. By merg-
ing these two decision trees with a top-level decision be-
tween manifest and non-manifest, we achieve 85.68%
accuracy across the whole set.

In order to tease apart the classifier’s behavior, we ran
both manifest and non-manifest files together using only
provenance features and achieved65.5% ± 0.23% ac-
curacy. In addition,running just the 11stat features
on manifest files achieved76.05% ± 1.03% accuracy

ext # in set precision recall

.h 8678 96.70% 72.65%

.c 8420 70.22% 96.94%
none 1869 80.26% 53.08%
.S 912 69.34% 27.52%
.o 829 99.28% 99.76%
.txt 415 59.39% 99.04%
.cmd 147 97.24% 95.92%
other 180 31.89% 15.00%
total 21450 82.55% 79.79%

.h+.c+.S 18010 98.76% 96.10%
total 21450 95.83% 91.87%

Table 2: Results of the Linux kernel compile analysis on
manifest files using provenance andstat features.

on manifest objects. We observed in the provenance-
only run that most of the classifier’s inaccuracy on mani-
fest files came from its inability to distinguish between
.c, .h, and.S files. These “source files” are suffi-
ciently similar in usage as to be indistinguishable given
the provenance features we collected. If we relaxed our
constraints and grouped these extensions into one source
file class, then our original provenance-and-statmani-
fest tree would achieve 94.08% accuracy (93.94% across
the whole set). However, these source files would then
constitute 83.96% of the manifest data set (or 52.44% of
the total data set), which makes classification somewhat
less challenging.

These results have many interesting implications.
First, provenance features classified non-manifest ob-
jects exceptionally well. Notably powerful features in-
cluded ancestral file count, ancestral maximum path
depth, and both ancestral and descendant edge counts.
The impressive accuracy of provenance features in this
case was an unexpected and pleasing result.

Conversely, provenance features alone performed
poorly on manifest files, and with the addition of

Figure 1: % of Linux Dataset Used vs. Accuracy

4



stat were still substantially harder to predict than non-
manifest objects. This was primarily due to the confu-
sion of .c, .h, and.S files. However, this may not
be entirely erroneous behavior. As stated previously, it
is not necessarily the case that provenanceshould pre-
dict file “types” at precisely the semantic level we have
chosen. The classifier’s error is that it correctly recog-
nizes.c, .h, and.S files as similar in provenance; they
are all source files with respect to the compiler. If the
graph contained provenance from within the compiler,
then these files would be more distinguishable.

However, there does exist information in the original
provenance graph that would allow us to distinguish be-
tween source files..c files have precisely one.o file
descendant, whereas.h files may have multiple such de-
scendants (and we achieve 99.4% accuracy on.o files).
Our current feature analysis does not capture this sort of
information, and it is not immediately obvious how to do
so in a small number of features. One idea is to statis-
tically count the different extensions that appear in the
file’s ancestors and descendants. Note that we do not
suggest “cheating” by using extensions to predict exten-
sions; rather, we suggest that a file’s type can be pre-
dicted from the types of files it interacts with.

4 Future Work

Our results showed a clear predictive link between prove-
nance features and file extension in the Linux kernel
compile. This is especially true of non-manifest file sys-
tem objects, on which we achieved impressive accuracy.
We are not yet sure why manifest and non-manifest ob-
jects function differently, or if file extensions are at the
right semantic level for file “type” prediction. Both of
these are interesting topics for future research.

However, our immediate future work is to build a bet-
ter evaluation data set, as discussed in section 3. While
many individual, homogeneous workflows are publi-
cally available, there is no representative, heterogeneous
provenance data set integrating many workflows over
time. We hope that the construction of such a data set
will itself be a valuable contribution to future research.

We also have further exploration to do with regards to
the feature space. Although we achieved many good and
interesting results with a relatively small number of fea-
tures, many of our other features are not yet tested, and
many further avenues of research exist. Edge timestamps
are a noteworthy feature that have been successfully used
in prior work in desktop search. Our results also indi-
cate that statistical counts of ancestor’s and descendant’s
metadata may be worthy of investigation.

Our current implementation is brute-force and conse-
quently slow on large graphs. Analysis of the Linux
compile took place over about a day. As a proof-of-

concept this functions, but for our future work we an-
ticipate a second pipeline with more algorithmic finesse.
Ultimately, direct integration with the PASSv2 collection
layer would allow us to gather many statistics at runtime
or in PASSv2’s post-processing stages. A production
system would probably take the same approach: integra-
tion with the file system to gather a few quality features.

5 Conclusion

The principal barrier to the widespread adoption of se-
mantic technologies is the difficulty of obtaining rich,
descriptive semantic attributes. Existing research into at-
tribute extraction is content-specific and does not con-
sider the historical context of files. We perform machine
learning classification on file provenance to predict se-
mantic attributes, in particular file extensions. Because
there is a mismatch between the dimensionality and size
of provenance vis-a-vis typical feature vectors, we must
perform a significant amount of reduction.

Our results show a predictive link between provenance
and file extensions, in particular with non-manifest ob-
jects. This compliments previous work, which has shown
that file extensions and other metadata predict access pat-
terns [2]. We are still working on building the right work-
flow, refining our choice of features, and improving the
processing pipeline’s efficiency.

References

[1] CUI , B., LIU , L., PU, C., SHEN, J.,AND TAN , K. Quest: Query-
ing music databases by acoustic and textual features. In15th In-
ternational Conference on Multimedia (MULTIMEDIA’07) (New
York, New York, September 2007), ACM.

[2] M ESNIER, M., THERESKA, E., ELLARD , D., GANGER, G. R.,
AND SELTZER, M. File classification in self-* storage systems. In
In Proceedings of the First International Conference on Autonomic
Computing (ICAC-04 (2004), pp. 44–51.

[3] M IERSWA, I., WURST, M., KLINKENBERG, R., SCHOLZ, M.,
AND EULER, T. Yale: Rapid prototyping for complex data min-
ing tasks. InKDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing (New York, NY, USA, August 2006), L. Ungar, M. Craven,
D. Gunopulos, and T. Eliassi-Rad, Eds., ACM, pp. 935–940.

[4] M UNISWAMY-REDDY, K., BRAUN, U., HOLLAND , D., MACKO,
P., MACLEAN , D., MARGO, D., SELTZER, M., AND SMOGOR,
R. Layering in provenance systems. In2009 USENIX Annual
Technical Conference (USENIX’09) (Berkeley, California, June
2009), USENIX Association.

[5] SHAH , S., SOULES, C., GANGER, G., AND NOBLE, B. Us-
ing provenance to aid in personal file search. InUSENIX Annual
Technical Conference (Berkeley, California, June 2007), USENIX
Association.

[6] SOULES, C.,AND GANGER, G. Towards automatic context-based
attribute assignment for semantic file systems. Technical Report
CMU-PDL-04-105, Carnegie Mellon University, June 2004.

[7] WANG, G., LU, H., YU, G., AND BAO, Y. Managing very large
document collections using semantics.Journal of Computer Sci-
ence and Technology 18, 3 (May 2003), 403–406.

5


