
Towards a Resilient Operating System for Wireless Sensor Networks

Hyoseung Kim and Hojung Cha
Department of Computer Science, Yonsei University

Seodaemun-gu, Shinchon-dong 134, Seoul 120-749, Korea
{hskim, hjcha}@cs.yonsei.ac.kr

Abstract
Active research has recently been conducted on large
scale wireless sensor networks, especially network
management and maintenance, but the technique for
managing application errors on MMU-less sensor node
devices has not been seriously considered. This paper
presents a resilient operating system mechanism for
wireless sensor networks. The proposed mechanism
separates the kernel from the user execution area via dual
mode operation, and the access violation of applications
is controlled by static/dynamic code checking. The
experiment results on a common sensor node show that
the proposed mechanisms effectively protect the system
from errant applications.

1. Introduction

Wireless sensor networks normally consist of battery-
operated, memory-limited and low performance node
devices. Although the research on radio communication
techniques and system software developments for
resource constraint devices has recently been active
[1][2], little effort has been expended on the reliability
issue on sensor network systems running on MMU-less
devices. Application errors on sensor nodes can affect the
entire system, and the current system is ignorant of
problems caused by application faults, such as immediate
hardware control, kernel code execution, and kernel data
corruption, so the system may collect incorrect data, or
reduce the node availability. As we cannot write safe
applications all the time and sensor node hardware does
not easily detect application errors, techniques to ensure
system resilience at the operating system level should be
developed.

Currently available operating systems for wireless
sensor networks include TinyOS [3], MANTIS [4], and
SOS [5]. The component-based and event-driven TinyOS
produces a single code image where the kernel and
application are statically linked. There is no distinction
between kernel and application, so a badly written
application can cause the system to fail [6]. MANTIS
provides a multithreaded programming model, but it is
not free from the possibility of user errors due to a

statically linked image, as is the case of TinyOS. SOS
separates the kernel and application modules via
dynamically loadable modules. This technique, however,
does not include measures to restrict the application from
accessing kernel data or other application data, and
calling kernel code abnormally. Concerning the system
errors, some operating systems use a watchdog timer, but
it is not easy to recognize and handle problems such as
memory access beyond the application area, immediate
hardware control, and error repetition. Users have to reset
sensor nodes directly to recover from specific errors [7].
Meanwhile, Maté [6] is a virtual machine for wireless
sensor networks. The interpreter in the virtual machine
enables the detection of hazardous instructions in the
runtime, but there are also limitations, such as
performance degradation or additional efforts to learn
new programming languages for the virtual machine [5].

The operating system mechanism for error-free
wireless sensor networks should operate with software
assistance. The mechanism ought to protect the kernel
from applications and support diverse applications in a
multithreaded environment. However, previous work on
the software approach to ensure system safety has
typically focused on the MMU-equipped general purpose
systems, and on the single-threaded model. SFI (Software
Fault Isolation) [8] modifies the data access via indirect
addressing or jump instructions to be executed in a single
allocated segment, which requires MMU. SFI was
designed for RISC architectures that have fixed-length
instructions. [12] suggests that SFI can cause illegal jump
operations when it is implemented on variable-length
instruction architecture, which are usually adopted in
sensor node platforms. Proof-carrying Code [9] evaluates
the application using a safety policy in compile time.
However, as the automatic policy generator does not exist,
the technique cannot be applied directly to real systems.
Programming language approaches include Cyclone [10],
Control-C [11], and Cuckoo [12]. All of these are based
on the C programming language, but users should be
aware of the different usages of pointers and arrays.
Cyclone requires hardware supports for stack safety;
Control-C aims to offer system safety without runtime
checking, although additional hardware is required for
stack safety and the language does not guarantee fault-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 103

free array indexing; Cuckoo provides system safety
without hardware supports. The overhead of Cuckoo is,
however, not trivial – being almost double the size of the
optimized GCC execution time.

This paper presents a resilient operating system
mechanism for wireless sensor networks. The proposed
mechanism is designed to apply to the common sensor
node platform with RETOS, the preemptively multi-
threaded operating system we are currently developing,
and enables sensor node systems to run safely from errant
applications without hardware supports. The mechanism
implemented in the RETOS kernel detects harmful
attempts on system safety by applications, and terminates
the badly-written application programs appropriately. The
effectiveness of the proposed mechanism is validated by
experiments conducted on a commercial sensor node
device running the RETOS operating system.

The rest of this paper is organized as follows: Section
2 describes background on the system software and the
hardware platform used in the paper; Section 3 explains
the proposed safety mechanism; Section 4 validates the
effectiveness of the mechanism via real experiments; and
Section 5 concludes the paper.

2. RETOS Architecture

The proposed safety mechanism is based on the RETOS
operating system. Figure 1 illustrates the system
organization. RETOS provides preemptive multithread-
ing based on a dual mode operation that cooperates with
static/dynamic code checking to protect the system from
application errors. (Dual mode operation normally refers
to running with two hardware privilege levels, but in this
paper, we use the terminology as the kernel/user
separated operation.) To elevate the memory efficiency of
dual mode operation, a single kernel stack is maintained
in the RETOS kernel. This technique restricts thread
preemption to be performed in user mode, but the amount
of required system memory is decreased. With the thread
preemption, hardware contexts are saved in each thread’s
TCB (Thread Control Block) due to kernel stack sharing.
The mechanism for ensuring system safety with dual
mode operation and static/dynamic code checking is
described in Section 3 in detail.

RETOS supports the POSIX 1003.1b real-time
scheduling interface. Threads are scheduled by three
scheduling policies: SCHED_RR, SCHED_FIFO, and
SCHED_OTHER. Thread scheduling is done in kernel
level, while synchronization methods reside in user level.
When synchronization primitives like mutex are executed,
the thread library disables interrupts in user level and
tries to acquire the resource. On an unsuccessful case, the
library inserts the thread information to the resource
waiting list and blocks the thread. After the resource is
unlocked, the library sequentially wakes up the threads in

Figure 1. RETOS System Overview

the waiting list.
In the RETOS system, applications are separated from

the kernel code, and several applications can be loaded
and executed dynamically. To exploit runtime application
loading in a single address space, the address relocation
technique is employed. The method produces an address
relocation table during the compile time, and relocates the
addresses of the binary to the ROM/RAM address, which
is allocated for the application. The memory manager for
the data/stack area management of loadable applications
is based on first-fit allocation. Dynamic memory
allocation is currently available only for the kernel codes.

RETOS is being implemented on the Tmote Sky [13].
The mote is based on the TI MSP430 F1611 (8Mhz,
10Kb internal RAM, 48Kb internal Flash) micro-
controller, and the Chipcon 2420 RF module. The
MSP430 instruction set consists of core instructions and
emulated instructions. There are three types of core
instructions: dual-operand, single-operand, and jump.
Users program sensor applications with the standard C
and the Pthread library.

3. Ensuring System Safety

The proposed mechanism ensures system resilience via
dual mode operation and application code checking.
Since general microcontrollers such as MSP430 only
have a single address space, the kernel and applications
exist in the same address space. Dual mode operation
logically separates the kernel and the user execution area.
Mote devices cannot protect applications’ address spaces
or keep the hardware resources controlled. Application
code checking which consists of both static and dynamic
techniques solves the problem. The concept of the safe

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association104

operating system mechanism proposed in the paper is
summarized in Figure 1. User applications become
trusted code through static/dynamic code checking.
Applications loaded on the system are allowed to store
data and to execute codes in their own resources, but
application errors that were not detected at the compile
time are reported to the kernel. When the errors are
reported, the kernel informs users of the illegal
instruction address and safely terminates the program.

3.1. Dual Mode Operation

Dual mode separates the kernel from the user execution
area to perform application code checking in the target
operating system, RETOS. Since the static/dynamic code
checking evaluates if the application modifies data or
issues codes in its allocated area, preemption in the
system which executes kernel and user code in the same
stack would invoke problems. For example, a thread
which has access rights to other threads in a common
application group would destroy the stored kernel data,
such as a return address and hardware contexts, in the
blocked thread stacks.

In the proposed mechanism, dual mode is operated by
stack switching. Applications in the user mode use the
user stack, and the stack is changed to the kernel stack for
system calls and interrupts handling. Figure 2 shows the
dual mode operation for system call handling on the
proposed system. System calls are implemented by a
function call on the TI MSP430 microcontroller, so the
return address remains in the user stack, thereby leaving
it to be modified by other threads. Upon system call, the
current stack pointer indicating the user stack and the
return address are stored in the PCB, and the runtime
stack is changed to the kernel stack. Therefore, the return
address validation is necessary before returning to the
user mode. The case of interrupt handling is similar to the
one illustrated in Figure 2. When an interrupt is invoked,
MSP430 pushes the program counter in the current stack
and jumps to the corresponding interrupt handler. The
handler function switches to the kernel stack, if the
system was in the user mode, and checks the return
address after processing.

Dual mode may incur memory overhead on resource-
constraint sensor nodes due to the per-thread kernel stack.
To save memory usage, the proposed mechanism
maintains a single kernel stack in the system. Kernel
stack sharing means that the system cannot arbitrarily
interleave execution flow, including thread preemption,
while they are in the kernel mode. Instead, the kernel
provides the deferred invocation. System calls, such as
radio communication, register their long-running tasks to
be executed later and return as soon as possible. Thread
switching is performed right before returning to user
mode, that is, the time when all work pushed on the

Figure 2. Dual Mode Operation

kernel stack is finished. Although the single kernel stack
is unable to preempt threads in the kernel mode, it
enables the memory efficient implementation of dual
mode operation in the soft real-time system, where the
preemptive kernel is not strongly required. In addition to
memory overhead, mode switching overhead is found in
interrupts and system calls handling. Section 4 evaluates
such overhead.

3.2. Static/Dynamic Code Checking

Static/dynamic code checking sets restrictions on an
application for using data and the code area within the
application itself, and restricts direct hardware resource
manipulation. The proposed technique inspects the
destination field of machine instructions. The destination
address evaluation prevents the application from writing
or jumping to an address outside its logically separated
portion. The destination field is observed if it is a
hardware control register, such as the MCU status control
register. The source field of instructions can also be
examined to prevent the application from reading kernel
or other applications data. We, however, do not adopt the
mechanism because of the security issues as well as
computation overhead. The code checking technique
considers non-operand instructions such as ret and
eint/dint. This technique evaluates a return address of
function for ret, and looks up eint/dint to disallow
immediate hardware control.

The technique consists of static and dynamic code
checking. Direct/immediate addressing instructions, pc-
relative jumps and eint/dint are verified during the
compile time. As we assume the library codes are safe,
the libraries are not checked in our implementation.
Indirect addressing instructions are verified in runtime
due to unpredictable destination addresses. Runtime
checking is required of the ret instruction, because the
return address can be affected by buffer overrun. Figure 3
shows the application building sequence, including
static/dynamic code checking. Every source code of the
application is compiled to assembly code; then checking
code is inserted to the place where the dynamic code
checking is required. After dynamic code insertion, a

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 105

Figure 3. Application Building Sequence

Figure 4. Dynamic Code Checking

Figure 5. Static Code Checking

binary image is created via compiling and linking, and
the static code checking is then performed on the binary.

Figure 4 is the example of dynamic code checking for
TI MSP430. Since the technique for indirect calls
inspects the destination address using the application’s
function table, it makes the instruction unable to branch
directly to a hazardous instruction by passing the inserted
checking code or to the midst of the instruction. Here, an
application binary should include its function table in the
header, and the kernel should provide a variable to save
the address of the current application’s function table and
update it at the thread scheduling. The technique for
call/push instructions does not consider stack overflow
because the stack usage verification is conducted at the
function prologue by way of the stack depth count in the
function. The indirect store instruction is examined
similarly as shown in Figure 4. The difference is to check
every dynamically allocated RAM area for threads in the
application using the linked list. Note that the r4 register
shown in the Figure 4 checking code is configured to not

be used by the MSP430-GCC.
Figure 5 shows an example of static code checking.

This technique identifies the existence of the destination
address in the relocation table, which has all the symbol
information in the source code, and the offsets of those
instructions referring to the symbols. If the address is not
in the relocation table, the instruction will be confirmed
as incorrect. For instance, the destination address of the
instruction call 0x1254 in Figure 5 exists in the relocation
table, and its offset is identical to the one in the table. In
addition, the technique estimates the destination address
within a dedicated area because data and code size is
limited in the mote system. The address 0x1254 in the
figure is between the application start address 0x1100
and the end address 0x13a8. Hence, the instruction call
0x1254 is proved correct. The mov instruction in the
figure is also checked to be correct by the same method.

4. Evaluation

This section describes the experiment results of the
proposed resilient operating system mechanism, and
analyzes its performance characteristics. Both the
mechanism and RETOS have been implemented for the
TI MSP430 F1611 (8Mhz, 10Kb RAM, 48Kb Flash)
based Tmote Sky hardware platform.

4.1. Functionality Test

To adequately evaluate the error management of the
proposed mechanism, we classify the safety domain of
applications into four parts: stack, data, code and
hardware. Stack safety means the prevention of stack
overflow due to function calls and local variable handling.
Data safety implies the protection of the kernel and other
applications data against illegal access, and code safety
restricts the execution of the kernel and other applications
code. Hardware safety implies whether the system can be
protected from immediate hardware control. Table 1
shows the examples of the codes for each safety domain.
A recursive call verifies the stack safety of the proposed
mechanism. Modifying data outside the application’s area,
by using a directly addressed pointer and deviated array
indexing, is done to analyze data safety. A directly
addressed function call and a corrupted return address
due to buffer overflow are used to test code safety. An
interrupt disabling code and a Flash ROM writing code
are used for the hardware safety check.

Following the functionality tests, the proposed
mechanism is proved to ensure system resilience against
hazardous application codes. An application, including a
recursive call, an illegal array indexing, and a buffer
overflow, is reported to the kernel by dynamic code
checking and is terminated safely. The static check
detects storing at and calling the address outside the

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association106

Table 1. Example Codes for Functionality Test

 Test Set

Stack safety - General/Mutual recursive call
void foo() { foo(); }

Data safety

- Directly addressed pointer
int *tmp = 0x400; *tmp = 1;

- Array indexing
int array[10]; /* array in heap area */
for(i = 10; I > 0; i--) array[i-100] = i;

Code safety

- Directly addressed function pointer
void (*func)(void) = 0x1000; func();

- Buffer overrun (damaging return address)
void func() { int array[5], i;
for(i = 0; i < 10; i++) array[i] = 0; }

Hardware safety

- Disable interrupt
asm volatile (“dint”);

- Flash rom writing (memory mapped regs.)
FCTL1 = FWKEY+WRT;

Table 2. Dual Mode Overhead (cycle)

Single mode Dual mode
system call (led toggle) 264 302
system call (radio packet send) 352 384
timer interrupt (invoked in kernel) 728
timer interrupt (invoked in user) 728 760

application, which are caused by directly addressed
pointers, interrupt disabling and Flash ROM writing. In
order to compare the existing sensor network operating
systems, that provide no safety mechanism, TinyOS
v1.1.13 is selected to execute the application code in
Table 1. The application using the directly addressed
pointer and deviated array indexing does not perform
well. The codes for recursive call, directly addressed
function pointer, buffer overflow, interrupt disabling and
the Flash ROM writing crash the system. The watchdog
timer reboots the system sometimes, but the system is not
restored most of the time.

4.2. Overhead Analysis

The proposed mechanism may have some overhead due
to dual mode operation and dynamic code checking. The
first set of experiments aims to analyze the performance
of dual mode operation. We have implemented two
versions of RETOS, dual mode and single mode, to
measure performance degradation from mode switching
and the return address check. Table 2 shows the results.

The experiment data shown in Table 2 denotes
approximately 32~38 cycles of computational overhead
for system calls, toggle a led and send a radio packet, and
dual mode operation. At the timer interrupt handling,
however, operation time differs from the interrupt that
occurred in kernel mode and user mode. As the stack is
not changed and the return address checking is omitted in
kernel mode, the result of handling the timer interrupt
invoked in kernel mode on the dual mode system is
identical with the result on single mode. The overhead

Table 3. Dynamic Code Checking Overhead (cycle)

No check Dynamic check Overhead(%)
MPT_backbone 40326 40508 0.5
MPT_mobile 386566 394624 2.1
R_send 24815 26176 5.5
R_recv 4704 5010 6.5
Sensing 1056 1096 3.8
Pingpong 1243 1347 8.4
Surge 58723 62688 6.7

Table 4. Application Code Size Comparison (bytes)

No check Dynamic check Overhead(%)
MPT_backbone 614 682 11.1
MPT_mobile 8726 10046 15.1
R_send 946 1014 7.2
R_recv 902 1004 11.3
Sensing 774 835 7.9
Pingpong 478 510 6.7
Surge 1436 1610 12.1

of the timer interrupt invoked in user mode on the dual
mode system is 32 cycles, which is similar to the case of
system calls.

The second set of experiments was conducted to
observe the execution time overhead of dynamic code
checking. We compare the codes with dynamic checks to
original applications running RETOS by calculating
average instruction cycles per second during 10 minutes.
To measure the overhead of inserted codes, we consider
the execution time running in user mode. Seven sensor
network applications are used for the test. MPT_mobile
and MPT_backbone are decentralized multiple object
tracking programs [14]. When MPT_mobile node moves
around, it sends both an ultrasound signal and a beacon
messages every 300ms to nearby MPT_backbone nodes.
MPT_backbone nodes report their distance to the mobile
node, and MPT_mobile computes its location using
trilateration. R_send and R_recv are programs to send and
receive radio packets with reliability. Sensing samples the
data and forwards it to the neighbor node. Pingpong
makes two nodes blink in turns by means of the counter
exchange. Surge is a multihop data collecting application
which manages a neighbor table and routes the packet.

Table 3 shows that applications using dynamic code
checking have 0.5~8.4% performance degradation.
MPT_mobile, which requires the longest processing time,
generated 2% more overhead when the protection
mechanism was used; the amount of calculation time
caused by non-hardware multiplier is much larger than
dynamic checking. Whereas, R_recv, Pingpong, and
Surge, all of which require more memory access than
complex arithmetic calculations, shows larger overhead.
Since the dynamic code checking requires code insertion,
the technique increases the application code size when
compared to the original one. Table 4 shows the code size
comparison. The increases are 4~12%. However, the
application is inherently small, being separated from

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 107

kernel, and hence code size increases are not considerable
for the internal Flash ROM of TI MSP430 or AVR
ATmega128L, the common microcontrollers used for
sensor node devices.

The performance of dual mode operation, the
computational overhead and code size increment of
dynamic code checking are analyzed. Since the system
stays idle most of the time due to sensor network
application characteristics, energy consumption for the
proposed mechanism may be almost the same as existing
systems. The overhead of dynamic code checking,
however, heavily depends upon application types and the
programmers’ coding style. Generally, frequent usages of
local variables, function calls, and pointers cause more
overhead.

5. Conclusion

In this paper, we presented a resilient operating system
mechanism for wireless sensor networks, based on dual
mode operation and static/dynamic code checking. The
proposed mechanism guarantees stack, data, code and
hardware safety on MMU-less hardware without
restriction of the standard C language. Dynamic code
checking with dual mode operation is reported in
approximately 8% of execution time overhead on the TI
MSP430 processor.

The experiments were conducted under the assumption
that the libraries always operate safely, and the code
checking techniques do not inspect library codes. In real
situations, however, if a user passes an invalid address to
memcpy() then the function would destroy memory
contents. For a solution, we considered recompiling
standard libraries with our techniques or making wrapper
functions that check address parameters. Also, our
mechanism cannot handle the case where a user
intentionally skips the code checking sequences or
modifies a program binary. To prevent malicious usage,
user authentication on code updating would be required.

RETOS, safety mechanism applied operating system,
is currently being developed by our research group.
Although this paper shows that RETOS protects the
system from errant applications, supplement for libraries
and system calls is required in order to program
applications easily. We are presently developing a
network stack for energy efficient radio communication
on RETOS, as well as implementing device drivers for
diverse sensors and porting to other processors.

Acknowledgements
This work was supported in part by the National
Research Laboratory(NRL) program of the Korea
Science and Engineering Foundation (2005-01352), and
the ITRC programs(MMRC) of IITA, Korea.

References
[1] D. Culler, P. Dutta, C. T. Eee, R. Fonseca, J. Hui, P. Levis,
J. Polastre, S. Shenker, I. Stoica, G. Tolle, and J. Zhao,
“Towards a Sensor Network Architecture: Lowering the
Waistline,” Proceedings of the 10th Workshop on Hot Topics in
Operating Systems (HotOS X), Santa Fe, NM, USA, June 2005.
[2] V. Handziski, J. Polastre, J. Hauer, C. Sharp, A. Wolisz
and D. Culler, “Flexible Hardware Abstraction for Wireless
Sensor Networks”, Proceedings of the 2nd European Workshop
on WirelessSensor Networks (EWSN'05), Istanbul, Turkey,
January 2005.
[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.
Pister, “System architecture directions for network
sensors,” Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS IX), Cambridge, MA, USA,
November 2000.
[4] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B.
Shucker, C. Gruenwald, A. Torgerson, and R. Han, “MANTIS
OS: An Embedded Multithreaded Operating System for
Wireless Micro Sensor Platforms,” ACM/Kluwer Mobile
Networks & Applications (MONET), Special Issue on Wireless
Sensor Networks, vol. 10, no. 4, August 2005.
[5] C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and M.
Srivastava, “SOS: A dynamic operating system for sensor
networks,” Proceedings of the 3rd International Conference on
Mobile Systems, Applications, And Services (MobiSys'05),
Seattle, WA, USA, June 2005.
[6] P. Levis and D. Culler, “Maté: A Tiny Virtual Machine for
Sensor Networks,” Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS X), San Jose, CA,
USA, October 2002.
[7] Deluge: TinyOS Network Programming,
http://www.cs.berkeley.edu/~jwhui/research/deluge/
[8] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Software-based fault isolation,” Proceedings of the 14th ACM
Symposium on Operating System Principles (SOSP'93),
Asheville, NC, USA, December 1993.
[9] G. C. Necula, “Proof-carrying code,” Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'97), Paris, France, January
1997.
[10] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang, “Cyclone: A safe dialect of C,” Proceedings of
the 2002 USENIX Annual Technical Conference, Monterey, CA,
USA, June 2002.
[11] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.
“Memory safety without runtime checks or garbage collection,”
Proceedings of Languages, Compilers and Tools for Embedded
Systems (LCTES'03), San Diego, CA, June 2003.
[12] R. West, and G. T. Wong, “Cuckoo: a Language for
Implementing Memory and Thread-safe System Service”,
Proceedings of the 2005 International Conference on
Programming Languages and Compilers (PLC'05), Las Vegas,
NV, USA, June 2005.
[13] Moteiv, Inc., http://www.moteiv.com.
[14] W. Jung, S. Shin, S. Choi, and H. Cha, “Reducing
Congestion in Real-Time Multi-Party Tracking Sensor Network
Application,” Proceedings of the 1st International Workshop on
RFID and Ubiquitous Sensor Networks, Nagasaki, Japan,
December 2005.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association108

