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Abstract
Active research has recently been conducted on large 
scale wireless sensor networks, especially network
management and maintenance, but the technique for 
managing application errors on MMU-less sensor node
devices has not been seriously considered. This paper
presents a resilient operating system mechanism for
wireless sensor networks. The proposed mechanism
separates the kernel from the user execution area via dual 
mode operation, and the access violation of applications
is controlled by static/dynamic code checking. The 
experiment results on a common sensor node show that
the proposed mechanisms effectively protect the system
from errant applications. 

1. Introduction

Wireless sensor networks normally consist of battery-
operated, memory-limited and low performance node 
devices. Although the research on radio communication
techniques and system software developments for
resource constraint devices has recently been active 
[1][2], little effort has been expended on the reliability 
issue on sensor network systems running on MMU-less
devices. Application errors on sensor nodes can affect the 
entire system, and the current system is ignorant of 
problems caused by application faults, such as immediate 
hardware control, kernel code execution, and kernel data 
corruption, so the system may collect incorrect data, or
reduce the node availability. As we cannot write safe 
applications all the time and sensor node hardware does
not easily detect application errors, techniques to ensure 
system resilience at the operating system level should be
developed.

Currently available operating systems for wireless 
sensor networks include TinyOS [3], MANTIS [4], and 
SOS [5]. The component-based and event-driven TinyOS 
produces a single code image where the kernel and
application are statically linked. There is no distinction 
between kernel and application, so a badly written 
application can cause the system to fail [6]. MANTIS 
provides a multithreaded programming model, but it is 
not free from the possibility of user errors due to a 

statically linked image, as is the case of TinyOS. SOS 
separates the kernel and application modules via 
dynamically loadable modules. This technique, however,
does not include measures to restrict the application from
accessing kernel data or other application data, and
calling kernel code abnormally. Concerning the system
errors, some operating systems use a watchdog timer, but 
it is not easy to recognize and handle problems such as 
memory access beyond the application area, immediate 
hardware control, and error repetition. Users have to reset 
sensor nodes directly to recover from specific errors [7]. 
Meanwhile, Maté [6] is a virtual machine for wireless 
sensor networks. The interpreter in the virtual machine 
enables the detection of hazardous instructions in the 
runtime, but there are also limitations, such as 
performance degradation or additional efforts to learn
new programming languages for the virtual machine [5].

The operating system mechanism for error-free 
wireless sensor networks should operate with software 
assistance. The mechanism ought to protect the kernel 
from applications and support diverse applications in a 
multithreaded environment. However, previous work on
the software approach to ensure system safety has 
typically focused on the MMU-equipped general purpose 
systems, and on the single-threaded model. SFI (Software 
Fault Isolation) [8] modifies the data access via indirect 
addressing or jump instructions to be executed in a single 
allocated segment, which requires MMU. SFI was 
designed for RISC architectures that have fixed-length 
instructions. [12] suggests that SFI can cause illegal jump
operations when it is implemented on variable-length
instruction architecture, which are usually adopted in
sensor node platforms. Proof-carrying Code [9] evaluates 
the application using a safety policy in compile time. 
However, as the automatic policy generator does not exist, 
the technique cannot be applied directly to real systems.
Programming language approaches include Cyclone [10], 
Control-C [11], and Cuckoo [12]. All of these are based
on the C programming language, but users should be
aware of the different usages of pointers and arrays. 
Cyclone requires hardware supports for stack safety;
Control-C aims to offer system safety without runtime 
checking, although additional hardware is required for 
stack safety and the language does not guarantee fault-
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free array indexing; Cuckoo provides system safety 
without hardware supports. The overhead of Cuckoo is, 
however, not trivial – being almost double the size of the
optimized GCC execution time. 

This paper presents a resilient operating system
mechanism for wireless sensor networks. The proposed
mechanism is designed to apply to the common sensor
node platform with RETOS, the preemptively multi-
threaded operating system we are currently developing, 
and enables sensor node systems to run safely from errant 
applications without hardware supports. The mechanism
implemented in the RETOS kernel detects harmful 
attempts on system safety by applications, and terminates 
the badly-written application programs appropriately. The 
effectiveness of the proposed mechanism is validated by
experiments conducted on a commercial sensor node
device running the RETOS operating system. 

The rest of this paper is organized as follows: Section 
2 describes background on the system software and the 
hardware platform used in the paper; Section 3 explains 
the proposed safety mechanism; Section 4 validates the 
effectiveness of the mechanism via real experiments; and
Section 5 concludes the paper.

2. RETOS Architecture 

The proposed safety mechanism is based on the RETOS 
operating system. Figure 1 illustrates the system
organization. RETOS provides preemptive multithread-
ing based on a dual mode operation that cooperates with
static/dynamic code checking to protect the system from
application errors. (Dual mode operation normally refers 
to running with two hardware privilege levels, but in this 
paper, we use the terminology as the kernel/user
separated operation.) To elevate the memory efficiency of
dual mode operation, a single kernel stack is maintained
in the RETOS kernel. This technique restricts thread
preemption to be performed in user mode, but the amount
of required system memory is decreased. With the thread
preemption, hardware contexts are saved in each thread’s
TCB (Thread Control Block) due to kernel stack sharing. 
The mechanism for ensuring system safety with dual 
mode operation and static/dynamic code checking is 
described in Section 3 in detail. 

RETOS supports the POSIX 1003.1b real-time
scheduling interface. Threads are scheduled by three 
scheduling policies: SCHED_RR, SCHED_FIFO, and 
SCHED_OTHER. Thread scheduling is done in kernel 
level, while synchronization methods reside in user level. 
When synchronization primitives like mutex are executed, 
the thread library disables interrupts in user level and 
tries to acquire the resource. On an unsuccessful case, the 
library inserts the thread information to the resource 
waiting list and blocks the thread. After the resource is
unlocked, the library sequentially wakes up the threads in

Figure 1. RETOS System Overview

the waiting list. 
In the RETOS system, applications are separated from

the kernel code, and several applications can be loaded
and executed dynamically. To exploit runtime application
loading in a single address space, the address relocation
technique is employed. The method produces an address
relocation table during the compile time, and relocates the 
addresses of the binary to the ROM/RAM address, which
is allocated for the application. The memory manager for 
the data/stack area management of loadable applications
is based on first-fit allocation. Dynamic memory
allocation is currently available only for the kernel codes. 

RETOS is being implemented on the Tmote Sky [13]. 
The mote is based on the TI MSP430 F1611 (8Mhz, 
10Kb internal RAM, 48Kb internal Flash) micro-
controller, and the Chipcon 2420 RF module. The 
MSP430 instruction set consists of core instructions and
emulated instructions. There are three types of core 
instructions: dual-operand, single-operand, and jump. 
Users program sensor applications with the standard C 
and the Pthread library. 

3. Ensuring System Safety 

The proposed mechanism ensures system resilience via 
dual mode operation and application code checking. 
Since general microcontrollers such as MSP430 only 
have a single address space, the kernel and applications
exist in the same address space. Dual mode operation
logically separates the kernel and the user execution area. 
Mote devices cannot protect applications’ address spaces 
or keep the hardware resources controlled. Application
code checking which consists of both static and dynamic 
techniques solves the problem. The concept of the safe 
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operating system mechanism proposed in the paper is 
summarized in Figure 1. User applications become
trusted code through static/dynamic code checking. 
Applications loaded on the system are allowed to store 
data and to execute codes in their own resources, but 
application errors that were not detected at the compile 
time are reported to the kernel. When the errors are 
reported, the kernel informs users of the illegal 
instruction address and safely terminates the program.

3.1. Dual Mode Operation 

Dual mode separates the kernel from the user execution
area to perform application code checking in the target 
operating system, RETOS. Since the static/dynamic code
checking evaluates if the application modifies data or
issues codes in its allocated area, preemption in the 
system which executes kernel and user code in the same 
stack would invoke problems. For example, a thread 
which has access rights to other threads in a common
application group would destroy the stored kernel data, 
such as a return address and hardware contexts, in the 
blocked thread stacks. 

In the proposed mechanism, dual mode is operated by
stack switching. Applications in the user mode use the 
user stack, and the stack is changed to the kernel stack for
system calls and interrupts handling. Figure 2 shows the
dual mode operation for system call handling on the
proposed system. System calls are implemented by a 
function call on the TI MSP430 microcontroller, so the 
return address remains in the user stack, thereby leaving
it to be modified by other threads. Upon system call, the 
current stack pointer indicating the user stack and the 
return address are stored in the PCB, and the runtime 
stack is changed to the kernel stack. Therefore, the return
address validation is necessary before returning to the 
user mode. The case of interrupt handling is similar to the 
one illustrated in Figure 2. When an interrupt is invoked, 
MSP430 pushes the program counter in the current stack
and jumps to the corresponding interrupt handler. The
handler function switches to the kernel stack, if the 
system was in the user mode, and checks the return
address after processing. 

Dual mode may incur memory overhead on resource-
constraint sensor nodes due to the per-thread kernel stack. 
To save memory usage, the proposed mechanism
maintains a single kernel stack in the system. Kernel 
stack sharing means that the system cannot arbitrarily 
interleave execution flow, including thread preemption, 
while they are in the kernel mode. Instead, the kernel 
provides the deferred invocation. System calls, such as 
radio communication, register their long-running tasks to
be executed later and return as soon as possible. Thread
switching is performed right before returning to user
mode,  that  is,  the  time  when  all  work  pushed  on  the  

Figure 2. Dual Mode Operation 

kernel stack is finished. Although the single kernel stack
is unable to preempt threads in the kernel mode, it
enables the memory efficient implementation of dual 
mode operation in the soft real-time system, where the 
preemptive kernel is not strongly required. In addition to
memory overhead, mode switching overhead is found in
interrupts and system calls handling. Section 4 evaluates
such overhead. 

3.2. Static/Dynamic Code Checking

Static/dynamic code checking sets restrictions on an
application for using data and the code area within the 
application itself, and restricts direct hardware resource 
manipulation. The proposed technique inspects the 
destination field of machine instructions. The destination 
address evaluation prevents the application from writing
or jumping to an address outside its logically separated
portion. The destination field is observed if it is a
hardware control register, such as the MCU status control 
register. The source field of instructions can also be
examined to prevent the application from reading kernel 
or other applications data. We, however, do not adopt the 
mechanism because of the security issues as well as 
computation overhead. The code checking technique
considers non-operand instructions such as ret and
eint/dint. This technique evaluates a return address of
function for ret, and looks up eint/dint to disallow
immediate hardware control. 

The technique consists of static and dynamic code
checking. Direct/immediate addressing instructions, pc-
relative jumps and eint/dint are verified during the 
compile time. As we assume the library codes are safe, 
the libraries are not checked in our implementation. 
Indirect addressing instructions are verified in runtime 
due to unpredictable destination addresses. Runtime 
checking is required of the ret instruction, because the 
return address can be affected by buffer overrun. Figure 3
shows the application building sequence, including 
static/dynamic code checking. Every source code of the 
application is compiled to assembly code; then checking
code is inserted to the place where the dynamic code 
checking  is  required.  After  dynamic  code  insertion,  a 
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Figure 3. Application Building Sequence 

Figure 4. Dynamic Code Checking

Figure 5. Static Code Checking 

binary image is created via compiling and linking, and
the static code checking is then performed on the binary.

Figure 4 is the example of dynamic code checking for
TI MSP430. Since the technique for indirect calls
inspects the destination address using the application’s
function table, it makes the instruction unable to branch
directly to a hazardous instruction by passing the inserted
checking code or to the midst of the instruction. Here, an
application binary should include its function table in the 
header, and the kernel should provide a variable to save 
the address of the current application’s function table and
update it at the thread scheduling. The technique for 
call/push instructions does not consider stack overflow
because the stack usage verification is conducted at the 
function prologue by way of the stack depth count in the
function. The indirect store instruction is examined
similarly as shown in Figure 4. The difference is to check
every dynamically allocated RAM area for threads in the 
application using the linked list. Note that the r4 register
shown in the Figure 4 checking code is configured to not

be used by the MSP430-GCC. 
Figure 5 shows an example of static code checking. 

This technique identifies the existence of the destination
address in the relocation table, which has all the symbol 
information in the source code, and the offsets of those 
instructions referring to the symbols. If the address is not 
in the relocation table, the instruction will be confirmed
as incorrect. For instance, the destination address of the 
instruction call 0x1254 in Figure 5 exists in the relocation
table, and its offset is identical to the one in the table. In
addition, the technique estimates the destination address 
within a dedicated area because data and code size is 
limited in the mote system. The address 0x1254 in the
figure is between the application start address 0x1100
and the end address 0x13a8. Hence, the instruction call 
0x1254 is proved correct. The mov instruction in the
figure is also checked to be correct by the same method.

4. Evaluation 

This section describes the experiment results of the
proposed resilient operating system mechanism, and
analyzes its performance characteristics. Both the 
mechanism and RETOS have been implemented for the 
TI MSP430 F1611 (8Mhz, 10Kb RAM, 48Kb Flash)
based Tmote Sky hardware platform. 

4.1. Functionality Test 

To adequately evaluate the error management of the 
proposed mechanism, we classify the safety domain of
applications into four parts: stack, data, code and
hardware. Stack safety means the prevention of stack
overflow due to function calls and local variable handling. 
Data safety implies the protection of the kernel and other 
applications data against illegal access, and code safety 
restricts the execution of the kernel and other applications
code. Hardware safety implies whether the system can be 
protected from immediate hardware control. Table 1
shows the examples of the codes for each safety domain. 
A recursive call verifies the stack safety of the proposed
mechanism. Modifying data outside the application’s area, 
by using a directly addressed pointer and deviated array 
indexing, is done to analyze data safety. A directly 
addressed function call and a corrupted return address 
due to buffer overflow are used to test code safety. An
interrupt disabling code and a Flash ROM writing code
are used for the hardware safety check. 

Following the functionality tests, the proposed
mechanism is proved to ensure system resilience against 
hazardous application codes. An application, including a 
recursive call, an illegal array indexing, and a buffer 
overflow, is reported to the kernel by dynamic code 
checking  and   is   terminated   safely.  The  static  check
detects  storing  at  and  calling   the  address  outside  the 
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Table 1. Example Codes for Functionality Test

 Test Set

Stack safety - General/Mutual recursive call 
void foo() {  foo();  } 

Data safety

- Directly addressed pointer
int *tmp = 0x400;   *tmp = 1;  

- Array indexing 
int array[10]; /* array in heap area */ 
for(i = 10; I > 0; i--) array[i-100] = i; 

Code safety

- Directly addressed function pointer 
void (*func)(void) = 0x1000;   func(); 

- Buffer overrun (damaging return address)
void func() {   int array[5], i; 
for(i = 0; i < 10; i++) array[i] = 0;  } 

Hardware safety

- Disable interrupt 
asm volatile (“dint”); 

- Flash rom writing (memory mapped regs.)
FCTL1 = FWKEY+WRT; 

Table 2. Dual Mode Overhead (cycle) 

Single mode Dual mode
system call (led toggle) 264 302 
system call (radio packet send) 352 384 
timer interrupt (invoked in kernel) 728 
timer interrupt (invoked in user) 728 760

application, which are caused by directly addressed
pointers, interrupt disabling and Flash ROM writing. In
order to compare the existing sensor network operating 
systems, that provide no safety mechanism, TinyOS
v1.1.13 is selected to execute the application code in
Table 1. The application using the directly addressed
pointer and deviated array indexing does not perform
well. The codes for recursive call, directly addressed
function pointer, buffer overflow, interrupt disabling and 
the Flash ROM writing crash the system. The watchdog
timer reboots the system sometimes, but the system is not 
restored most of the time. 

4.2. Overhead Analysis 

The proposed mechanism may have some overhead due
to dual mode operation and dynamic code checking. The
first set of experiments aims to analyze the performance 
of dual mode operation. We have implemented two 
versions of RETOS, dual mode and single mode, to
measure performance degradation from mode switching
and the return address check. Table 2 shows the results. 

The experiment data shown in Table 2 denotes
approximately 32~38 cycles of computational overhead
for system calls, toggle a led and send a radio packet, and
dual mode operation. At the timer interrupt handling, 
however, operation time differs from the interrupt that 
occurred in kernel mode and user mode. As the stack is 
not changed and the return address checking is omitted in
kernel mode, the result of handling the timer interrupt 
invoked   in  kernel  mode  on  the  dual  mode system is 
identical  with  the  result  on single mode.  The overhead 

Table 3. Dynamic Code Checking Overhead (cycle) 

No check Dynamic check Overhead(%)
MPT_backbone 40326 40508 0.5 
MPT_mobile 386566 394624 2.1 
R_send 24815 26176 5.5 
R_recv 4704 5010 6.5 
Sensing 1056 1096 3.8 
Pingpong 1243 1347 8.4 
Surge 58723 62688 6.7 

Table 4. Application Code Size Comparison (bytes) 

No check Dynamic check Overhead(%)
MPT_backbone 614 682 11.1 
MPT_mobile 8726 10046 15.1 
R_send 946 1014 7.2 
R_recv 902 1004 11.3 
Sensing 774 835 7.9 
Pingpong 478 510 6.7 
Surge 1436 1610 12.1 

of the timer interrupt invoked in user mode on the dual 
mode system is 32 cycles, which is similar to the case of
system calls.

The second set of experiments was conducted to
observe the execution time overhead of dynamic code 
checking.  We compare the codes with dynamic checks to
original applications running RETOS by calculating
average instruction cycles per second during 10 minutes. 
To measure the overhead of inserted codes, we consider 
the execution time running in user mode. Seven sensor
network applications are used for the test. MPT_mobile
and MPT_backbone are decentralized multiple object 
tracking programs [14]. When MPT_mobile node moves
around, it sends both an ultrasound signal and a beacon 
messages every 300ms to nearby MPT_backbone nodes.
MPT_backbone nodes report their distance to the mobile 
node, and MPT_mobile computes its location using
trilateration. R_send and R_recv are programs to send and
receive radio packets with reliability. Sensing samples the 
data and forwards it to the neighbor node. Pingpong
makes two nodes blink in turns by means of the counter
exchange. Surge is a multihop data collecting application 
which manages a neighbor table and routes the packet. 

Table 3 shows that applications using dynamic code
checking have 0.5~8.4% performance degradation. 
MPT_mobile, which requires the longest processing time,
generated 2% more overhead when the protection
mechanism was used; the amount of calculation time 
caused by non-hardware multiplier is much larger than
dynamic checking. Whereas, R_recv, Pingpong, and
Surge, all of which require more memory access than
complex arithmetic calculations, shows larger overhead. 
Since the dynamic code checking requires code insertion, 
the technique increases the application code size when
compared to the original one. Table 4 shows the code size 
comparison. The increases are 4~12%. However, the 
application is inherently small, being separated from
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kernel, and hence code size increases are not considerable 
for the internal Flash ROM of TI MSP430 or AVR 
ATmega128L, the common microcontrollers used for 
sensor node devices. 

The performance of dual mode operation, the
computational overhead and code size increment of
dynamic code checking are analyzed. Since the system
stays idle most of the time due to sensor network
application characteristics, energy consumption for the 
proposed mechanism may be almost the same as existing
systems. The overhead of dynamic code checking, 
however, heavily depends upon application types and the
programmers’ coding style. Generally, frequent usages of
local variables, function calls, and pointers cause more
overhead. 

5. Conclusion 

In this paper, we presented a resilient operating system
mechanism for wireless sensor networks, based on dual
mode operation and static/dynamic code checking. The 
proposed mechanism guarantees stack, data, code and
hardware safety on MMU-less hardware without 
restriction of the standard C language. Dynamic code
checking with dual mode operation is reported in
approximately 8% of execution time overhead on the TI
MSP430 processor.

The experiments were conducted under the assumption
that the libraries always operate safely, and the code
checking techniques do not inspect library codes. In real 
situations, however, if a user passes an invalid address to
memcpy() then the function would destroy memory
contents. For a solution, we considered recompiling
standard libraries with our techniques or making wrapper
functions that check address parameters. Also, our
mechanism cannot handle the case where a user
intentionally skips the code checking sequences or
modifies a program binary. To prevent malicious usage, 
user authentication on code updating would be required.  

RETOS, safety mechanism applied operating system, 
is currently being developed by our research group. 
Although this paper shows that RETOS protects the
system from errant applications, supplement for libraries 
and system calls is required in order to program
applications easily. We are presently developing a 
network stack for energy efficient radio communication
on RETOS, as well as implementing device drivers for
diverse sensors and porting to other processors.  
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