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A FreeBSD Based Low Cost Broadband VPN Router
for a Telemedicine Application

Gunther Schadow
Regenstrief Institute for Health Care, Indianapolis, IN

Abstract

The author developed a small low cost broadband networking router using FreeBSD to support a telemedicine appli-
cation. Our router design provides IPsec based virtual private networking (VPN) and quality of service (QoS) ar-
rangements, simultaneously supporting two-way real-time video and audio, camera control, streaming video replay
and medical record access over the public Internet using Cable-modem links from physician’s homes to the Internet.
These routers have been critical for the implementation of the telemedicine project after several other attempts with
proprietary “solutions” have failed. FreeBSD’s integrated IPsec code, QoS facility, firewall, and its ability to squeeze
the entire system down into a file system image of less than 8 MB, had been instrumental for the development of our
routers. Above all, however, this project would not have been possible without the availability of the system’s source
code, the ability to investigate bugs, rapid turn-around in the user-support community, and the ability to add missing
features into existing software, which is made possible by the open source software development paradigm.

1 INTRODUCTION

We developed a small low cost broadband networking
router using FreeBSD to support a telemedicine appli-
cation, allowing physicians at their homes to interview
patients in a nursing home over videoconference. We
are currently conducting a study to test the hypothesis
that audiovisual interaction with the patient through
videoconferencing may enable the physician to make
better decisions and reduce unnecessary referrals to the
emergency room. We describe this study elsewhere in
greater detail [1].

In this paper we present the design and development
of our broadband VPN router that provides IPsec based
virtual private networking (VPN) and quality of service
(QoS) arrangements, simultaneously supporting two-
way real-time video and audio, camera control, stream-
ing video replay and medical record access over the
public Internet using Cable-modem links to the Internet.
We present this as a case study of a real-world applica-
tion that requires many still relatively new functions of
the Internet suite of protocols and the operating systems
implementing it. We include some recommendations
that we find would make the pieces fit together better.
We also hope that the reader may find useful the de-
scription of our technical approach and the references
we give.

.

1.1 Why a Custom Router?

Although funds had been allocated to use T1 connection
to the 5 participating physicians’ homes, our T1 pro-
vider did not install the ordered T1 lines to the physi-

cians’ homes for over a year after the contracts had
been signed. We therefore had to use the public Internet
instead. We found that Cable-Modem Internet service in
our area had a sufficient bandwidth (2 Mbit/s down-
stream) even after the ISP throttled uplink bandwidth
from 2 Mbit/s down to 100 kbit/s. We also realize that
costs would inhibit scaling up T1 line use beyond the
limited scope of this study. Being a very application-
oriented project rather than genuinely a networking re-
search and development project, the use of self-
designed and open-source operating system driven de-
vices was not initially planned; but soon became as im-
portant as to rescue the whole project.

Initial approaches were made with Cisco’s PIX fire-
wall in combination with Intel’s PRO/100 S network
interface cards (NIC) capable to offload encryption
from the end-system’s CPU. (Offloading was critical
because of the high CPU and I/O load from the video-
conferencing application.) However it turned out that
the software kept crashing and the IPsec modes (tunnel
vs. transport) did not allow interoperation with our
Cisco PIX firewall. Another attempt with Cisco’s
broadband access router with IPsec capability disap-
pointed because our configurations and control over the
device was taken away by the Cable-Modem head-end
as soon as a Cable-Internet link had been established.
Other third party solutions did not provide for our spe-
cific needs (e.g., QoS.) Thus a self-developed device
became reasonable.

1.2 Requirements

Our broadband VPN router addresses the following
requirements:



a) Route IPv4 packets between a Cable-Modem up-
link and a local area network (LAN) in the physi-
cian’s home.

b) Provide network address translation (NAT) to con-
nect several machines on the LAN to the Internet
via the one IP address provided by the Cable-ISP.

c) Secure all communications between the physician’s
dedicated video conferencing and medical record
access computer and the nursing home’s LAN us-
ing strong encryption at a bandwidth of 2 Mbit/s
downstream and 128 kbit/s upstream.

d) Provide a reasonable firewall protection to avoid
breaches into the physician’s LAN and prevent un-
authorized access into the VPN through one of the
remote sites.

e) Provide two separate LAN segments (requiring 3
Ethernet interfaces in total) so that the physician’s
and his family’s private use of the Internet is kept
separate from office use. In particular, prevent ac-
cess to the virtual private network from the private
segment.

f) Compensate for the asymmetric nature of the Ca-
ble-Internet connection with only 128 kbit/s outgo-
ing bandwidth. Coordinate available bandwidth be-
tween the essential flows: (1) video (H.261 [2]

over UDP, up to 1.5 Mbit/s), (2) audio (UDP, 64
kbit/s, fixed), (3) remote camera control (TCP, low
bandwidth but need for low latency and intolerant
to packet loss), and (4) medical record access
(TCP/HTTP).

g) Be able to route and tunnel Novell NetWare IPX
packets used in our (as in many) corporate network.

h) Be small, noise-free, affordable, reliable, and re-
motely maintainable.

1.3 Overview of the Design

Figure 1 shows the topology of our telemedicine VPN.
Physicians are connected in their homes through cable-
modems. Each home has one of our VPN routers estab-
lishing an IPsec tunnel through the Internet linking to a
central VPN router in the nursing home. A portable
video cart is connected through a wireless network to
this central router.

The VPN is designed as an “overlay network” [3],
i.e. using an address space that is distinct from but
mapped to the global IP address space through the use
of IP aliases to hosts and tunnels between distant physi-
cal networks. For example, as Figure 1 shows, our tele-
medicine network uses a “private” IP address space [4]
such as 172.31.0.0/16. Nodes that are only part of that

Figure 1: Topology of the Telemedicine Virtual Private Network. IPsec tunnels securely connect remote networks and establish a
virtual address structure on top of public IP networks (tthe public IP addresses are disguised.)
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telemedicine network only have addresses in this net-
work. Nodes that are part of multiple networks have
aliases in those networks. Physically distant sub-
networks are connected through IPsec tunnels. The IP-
sec tunnels are established between VPN routers in a
star-topology with one central VPN router at the nursing
home facility and multiple remote VPN routers, one for
each participating physician’s home.

A VPN router in the physician’s home has three net-
works attached: (1) the Internet through the cable-
modem, (2) the office network that is part of the tele-
medicine VPN, and (3) the physician’s private network
that has no route to the VPN.

Packets that travel between the office network and
the public Internet are not routed through the tunnel,
which would only add load to the tunnel endpoints and
increase the physical path lengths.

We developed the VPN routers as a custom device
based on a generic UNIX operating system (FreeBSD
4.2-RELEASE) and small generic PC compatible hard-
ware. The assumption was that FreeBSD had all the
necessary facilities already integrated and all we needed
to do is configure the pieces and compile them into a
form that is easy to deploy and maintain. These assump-
tions have for the most part held true, although we
found that making all the pieces play together can be a
challenge. We also found bugs and missing features.

2 HARDWARE

Since the hardware market is a fast moving target, much
of our writing about our hardware must remain anecdo-
tal, and we make no effort pretending otherwise. The
reader may find helpful references to resources. We also
believe that most of the issues and tradeoffs we had to
face still apply today (approximately 1 year after we
made our hardware decisions.)

We required a moderately fast PC compatible with
solid state memory of at least 4 MB and dynamic mem-
ory of at least 8 MB, 3 network interfaces, small size
and simple power requirements at a reasonable price
(i.e., given the relative low-end performance of the sys-
tem, we set an upper limit at $350 per complete sys-
tem.) Despite these very modest requirements, we could
not find a suitable product for over a year.

We monitored the market by tracking the following
resources: PC/104 Embedded Solutions [www.pc104-
embedded-solns.com] web site and magazine, Linux-
devices.com, and the product catalogs of many of the
Single-Board-Computer (SBC) vendors such as (in no
particular order) Advantech, Tri-M Systems, ICP Elec-
tronics, and Diamond-Systems, and others.

Among the trade-offs between features, dimensions,
and price the limiting factor was usually the requirement

for built-in network devices. Most low-cost/low-end
SBCs have no network interface. Many SBCs came
with one network interface (usually of the 10 Mbit/s
class, 10base-T); however, those would usually also
include video and sound interfaces. For us, video and
sound interfaces were disadvantaging factors because
they would make the product more expensive, larger,
consume more power and produce more heat. Further-
more, most “embedded systems” required much addi-
tional parts and assembly. Given the difficulty of find-
ing a suitable device with one network interface, finding
one with 3 interfaces is nearly impossible in the SBC
market. The very few systems we found ranged in the
$1000 price class.

An alternative to SBCs, however was a desktop PC-
computer of small dimensions with a limited PCI-
backplane that allows adding network interface cards.
On the FreeBSD “small” mailing list we were hinted to
FlyTech’s line of small PC products, in which we found
the NetPC NC-2 B62 (Intel Celeron, 533 MHz, 64 MB
DRAM, 8 MB Disk-on-chip, 1 RealTek 100base-T
NIC.) With 2 Intel PRO/100 network interface cards
added, and at a total cost of approximately $500, this
product was a viable option to implement the project for
the scope of the clinical trial. We are still using this
FlyTech computer for the central VPN router at the
nursing home.

Of particular interest in the low-cost embedded-PC
market are so called PC-on-a-chip designs such as the
National Semiconductor GEODE, the AMD SC520,
and the ZF Micro Devices ZFx86. These chips combine
most of the electronics of a common PC motherboard in
one chip which dramatically reduces the dimension and
power-consumption. They can reduce cost as well, pro-
vided that the board design and manufacturing is as cost
effective as the mass-production of standard PC moth-
erboards. Having a board custom-designed was not a
good option for us, since we only had funds for 30 units
to be purchased initially. (The cut-off at which custom
design is feasible is at about 100 units.)

For SBC applications, a PC-architecture may not be
the smallest or most cost-effective approach. Since in
the first months of searching we could not find a rea-
sonable PC hardware we investigated other platforms
such as the Intel StrongARM and MIPS. These hard-
ware platforms are supported to a certain extent by both
NetBSD and Linux. So, we would have had an avenue
of implementing our project.

We finally found a small engineering firm, SOEKRIS
Engineering [www.soekris.com] who had designed a
device, “net4501,” based on the AMD Elan SC520 PC
on a chip. This device has 3 100base-T network inter-
faces on board and a serial interface, no video- and
sound. One low-power PCI and one mini-PCI connector



provides the flexibility to accommodate special needs in
the field. The SOEKRIS net4501 board comes with a
CompactFlash socket for a solid-state memory, which
turned out to be cheaper and much easier to work with
than the Disk-on-chip devices that most SBC products
(including our FlyTech Net-PC) use. The board needs
no airflow cooling requiring no moving parts and emit-
ting no noise at all. The hardware is available for ap-
proximately $200 including a simple enclosure and a
wall-mount AC transformer (enclosure and power sup-
ply can be a major cost factor in the deployment of
SBCs.)

We had the privilege of testing one of a few samples
of the SOEKRIS net4501 board and were convinced
that it would be close to the ideal device for our needs.
The only problem of this board was that production was
delayed due to the economic circumstances and we
didn’t have the purchasing power to jump-start produc-
tion. However, a few months later the board did go into
production in time for our project to use it.

3 SOFTWARE

We developed the software based on FreeBSD. We
choose BSD over Linux because of the KAME IPsec
implementation that is becoming a reference implemen-
tation. At that time, KAME had just succeeded and par-
tially subsumed other open source IPv6/IPsec projects
(WIDE, NRL, INRIA.) Most of these early IPv6/IPsec
implementations had BSD as their primary target plat-
form. FreeBSD’s built-in support for small systems
(“PicoBSD”), its large user base, and focus on stability
made it most attractive among the other BSD systems,
NetBSD, and OpenBSD.

We begun development on this project based on the
4.0-RELEASE of FreeBSD. We loosely track the
FreeBSD RELEASE branch rather than keeping abreast
of STABLE or even CURRENT, because having de-
ployed the systems, we can not tolerate very frequent
changes as we do not have the resources to test the sys-
tem with every new build on a weekly or daily basis.
However, we did find that the KAME IPsec code avail-
able in the RELEASE was not up to the latest critical
bug-fixes, hence we usually had to apply a certain
KAME “snap-kit” on top of the major FreeBSD release.

We will present the software design along the lines of
the major requirements: (1) firewall; (2) network ad-
dress translation (NAT); (3) IPsec-based VPN; (4) qual-
ity of service (QoS) arrangements; and (5) Novell IPX
protocol routing and tunneling.

3.1 Firewall

In a VPN, firewalls are essential security elements more
so than in a corporate network without VPN. This is

because each remote site is mapped into the internal
corporate network by means of VPN tunneling but the
corporate network administration has less physical con-
trol over the remote site. Thus, a remote site can be-
come an open door for intruders into the corporate net-
work if not sufficiently protected against such attacks.
Most importantly, the firewall must delete all incoming
packets that have a source or destination address into
the corporate network.

Several different firewall packages are available for
open source UNIX systems. Initially, FreeBSD has a
“native” IP-Firewall (IPFW) facility. Even though we
found the IPFW design and integration into the system
very useful, we did switch to Darren Reed’s IP-Filter
(IPF) [5] system early on. IPF has the advantage over
IPFW of being available for systems other than
FreeBSD, NetBSD in particular (as we alluded to
above, we planned for migrating to NetBSD had we not
found the SOEKRIS hardware in time for the project to
continue.) The IPF design and implementation claimed
to be more secure (e.g., it allowed updates to the fire-
wall rules without inconsistent temporary states) and
better monitored, if only because IPF had a larger user
base, (including all BSDs, Linux and even many com-
mercial UNIX systems, such as Solaris, IRIX, and HP-
UX.)

To the user, the difference between IPFW and IPF is
mostly the different rule syntax. IPFW has a richer set
of functionality available for the filtering rules, such as
dropping, NATing, forwarding, queuing/delaying.
Through the “divert socket” one can tie user-defined
special packet handler processes outside the kernel into
IPFW (the NAT handler natd(8) being such an extra-
kernel process.) Conversely, NAT with IPF are two
distinct kernel facilities configured with ipf(8) and ip-
nat(8) using different configuration files and only a
loosely related configuration syntax.

3.2 Network Address Translation (NAT)

We have to perform network address translation (NAT)
on both the remote and the central VPN routers. The
remote VPN routers perform NAT to allow communica-
tion between the office and private networks and the
Internet to which the cable-ISP provides only one IP
address. The central VPN router also performs NAT for
communications of the video cart to the Internet. In
addition, the central VPN NATs all communications
coming out of the tunnel with destination in a public
network (e.g., hospital LAN, university campus network
that.)

The same choices as for the firewall exist for NAT:
IPFW and IPF. We found that more complex rules
could be more easily expressed with IPFW than with
IPF. For example, one of our rules is to apply network



address translation (NAT) only to destinations not
routed through the VPN tunnel and all destinations if
traffic originated on the “private network.” With IPFW
one can fine-tune every NAT rule exactly for each
source and destination and all the other criteria avail-
able for filtering, and one can reuse the same NAT re-
source pool (e.g. a set of mapped port numbers) for
multiple rules. Conversely, with IPF’s NAT facility,
ipnat(8), the criterion language is only a minimal subset
of the ipf(8) filter language.

3.3 IPsec

For the beginner, IPsec comes in a confusing number of
modes (tunnel/transport, configured/negotiated security
associations, pre-shared keys/other authentication) [6]
and various alternative ways to configure them with
BSD/KAME. In addition, KAME is not the only alter-
native. Notably, Pierre Beyssac’s pipsecd program, im-
plements limited IPsec function using the generic tunnel
pseudo-device tun(4). The tun(4) device is a standard
part of BSD and Linux and represents a network inter-
face that passes packets to a handler program, which, in
the case of pipsecd, can encrypt and encapsulate the
packets and pass them on. Finally, not all of KAME is
equally well tested and integrated into FreeBSD. All of
these factors tend to confuse the issue of getting an IP-
sec system operational. We will address each of them in
this subsection.

ESP, AH, IPCOMP, some or all: The choice of
using the Encapsulating Security Payload (ESP) proto-
col [7] or the Authentication Herader (AH) protocol [8]
alone is simple: if encryption is part of the requirements
(as it usually is), ESP is the only choice. However, an
ESP security association (SA) can be configured to per-
form header authentication (AH) or packet compression
(IPCOMP) in addition to encryption.

To decide which protocols and algorithms to use we
measured the impact of many of the choices on
throughput. We found that the combination of encryp-
tion (e.g., with 3DES-CBC) and header authentication
(e.g., with HMAC-SHA1) reduced the throughput to
less than 1 Mbit/s on a Pentium 120 MHz PC. So we
decided to only use encryption because we have to sup-
port videoconferencing bandwidth of up to 1.6 Mbit/s in
each direction. With random keys of 256 bit length,
encryption alone provides a sufficient level of packet
authentication. For encryption we found that the Blow-
fish-CBC algorithm is the fastest available with KAME,
hence we use Blowfish-CBC with 256 bit random keys.

Configured SAs vs. ISAKMP The IPsec protocols
have been designed with the Internet Security Associa-
tion and Key Management Protocol (ISAKMP) [9] in

mind. A security association (SA) is identified by a se-
curity parameter index (SPI) and specifies a set of algo-
rithms and keys which two endpoint hosts use to en-
crypt (or authenticate) their exchange. These parameters
are negotiated by the ISAKMP agents on demand, or,
alternatively, can be configured statically.

Using ISAKMP can be the only available option, if
KAME is to interoperate with certain commercial IPsec
implementations, such as Microsoft Windows 2000,
Intel PRO/100 PacketProtect, and the Cisco PIX fire-
wall (Cisco’s IOS can use static configured SAs.)

The ISAKMP agent for KAME is called ‘racoon’.
Racoon appears to be one of the less mature compo-
nents of the KAME suite and it has not been made part
of the standard FreeBSD release as of 4.4-RELEASE.
We found that in order to compile and use racoon at all,
we had to work from a recent KAME snap-kit. Racoon
as part of the FreeBSD ports collection was mostly out
of date and racoon as part of the KAME snap-kit would
require all of that snap-kit. The only alternative to ra-
coon is isakmpd as developed for OpenBSD and al-
though isakmpd can in theory be used on other BSDs
and with KAME, we gather that isakmpd is not much
more mature.

Since at the beginning of this project, stability and
performance of racoon was questionable, we decided to
use statically configured SAs initially. Configured SAs
are set up typically at time of system boot using the
setkey(8) shell command as follows1

setkey –c <<END
add $myend $hisend esp $spi_out

–E $algo $key;

add $hisend $myend esp $spi_in
–E $algo $key;

END

Each direction from myend to hisend and vice versa
has its own SA with its unique security parameter index
(SPI). The SPI is part of the IPsec packet and allows the
host to match an incoming packet with its SA. When
setting up a multi-way VPN system with configured
SAs assigning unique matching SPIs spi_out and spi_in
on each VPN router node is important. If SPIs don’t
match up, the packets cannot be processed and are lost.
In order to be sure that SPIs do match up, we let each
end calculate the SPIs using a common formula that
combines the overlay network addresses and the role of
the endpoint as central (server) or remote (client).

1 For all code examples, we assume the Bourne shell
language sh(1), and we use shell variables as addresses
for brevity and readability.



Tunnel vs. transport mode IPsec in tunnel mode
is the approach of choice when implementing a VPN for
a heterogeneous network. When some machines are not
natively IPsec capable, using IPsec in end-to-end trans-
port-mode is not an option. Also, when certain systems
may be located behind NAT components, transport
mode is likewise not possible, because ESP transport
mode encrypts the port numbers which are required for
the commonly used port-based NAT.

The normal way to set up an IPsec tunnel only re-
quires defining security policies (SP). If ISAKMP is not
used, a pair of SAs is also needed as discussed above.
The SPs are set up with the same shell-command set-
key(8).

setkey –c <<END
spdadd $mynet $hisnet –P out ipsec
tunnel/esp/$myend-$hisend/require;

spdadd $hisnet $mynet –P in ipsec
tunnel/esp/$hisend-$myend/require;

END

The X-Bone [3] and many online tutorials about im-
plementing IPsec tunnels with KAME [10,11], how-
ever, suggest implementing IPsec tunnels using IP-in-IP
tunneling in combination with IPsec in transport mode.
Both approaches result in the same wire format, the
difference is only how they are managed [12].

ifconfig gif0 $meonhisnet $hisnetmask \
tunnel $myend $hisend link1

route add $hisnet –interface gif0

setkey –c <<END
spdadd $myend $hisend –P out ipsec

transport/esp//require;

spdadd $hisend $myend –P in ipsec
transport/esp//require;

END

Separating the tunnel configuration from the IPsec
processing makes it easier for the user to test and debug
the tunnel before enabling IPsec processing where SPIs,
protocols, keys, etc. must all match up properly.

Because with IP-in-IP tunnels the VPN overlay net-
work hisnet is an entry in the routing tables (even with-
out the explicit ‘route add’ command shown in the ex-
ample), packets originating from the tunnel-endpoint
and with destination to hisnet will be routed into the
tunnel. Conversely with only the IPsec tunnel policies,
packets originating on the tunnel host will not match the
tunnel policy because their source address (myend) is
not in the space of VPN overlay addresses, but in the
space of global IP addresses. Thus one usually needs 4
machines to fully test and debug an IPsec tunnel.

The IPsec tunnel implementation before June 2001
suffered from a severe bug which would cause failures
from inbound ESP packets not being properly processed
all the way to sudden kernel-panic conditions when
more than one pair of tunnels was configured. Fortu-
nately, this bug was fixed by Jun-ichiro (Itojun) Hagino
after we could sufficiently isolate the conditions causing
this bug to become manifest. This bug affects all
FreeBSD releases up to and including 4.3-RELEASE.

Tunnels and Funnels Each physician’s home
site has two SAs that establish a tunnel to the central
nursing home VPN router. The tunnel connects the phy-
sician’s telemedicine network to the nursing home’s
telemedicine network. However, the tunnel is not only
used for traffic between these two VPN overlays, but
for all traffic between the physician’s office network
and the hospital network and adjacent networks. This
provides and extended shell of security wherein other
applications, such as the web-based Electronic Medical
Record system can be secured as well. Many corporate
IPv4 networks today face similar issues, where several
IP address spaces exist that need to be included into the
VPN without renumbering the entire network.

Thus one tunnel between the central VPN router and
each remote site must have multiple ingress and egress
rules that “funnel” the packets between the physician’s
office network and the extended networks through that
tunnel.

funnel="$wnet1 $wnet2 $rgnet $iunet"

for i in $funnel; do
setkey –c <<END
spdadd $mynet $i –P out ipsec
tunnel/esp/$myend-$hisend/require;

spdadd $i $mynet –P in ipsec
tunnel/esp/$hisend-$myend/require;

END
done

Figure 2: Tunnel remotely links two private subnets. Additional
policies act like a funnel routing flows between other networks
through the tunnel.
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Corresponding policies need to be set up on the cen-
tral server in the nursing home. These policies must
direct the flows between the extended networks and the
physician’s office network through the tunnel.

for i in $funnel; do
setkey –c <<END
spdadd $i $hisnet –P out ipsec
tunnel/esp/$myend-$hisend/require;

spdadd $hisnet $i –P in ipsec
tunnel/esp/$hisend-$myend/require;

END
done

Interactions between IPsec, NAT, and firewall
Both IPsec policies and firewall or NAT packet filters
are based on the same kind of criteria, i.e., source, des-
tination address protocol and port numbers, etc. In ab-
sence of a common framework of filtering rules, it be-
comes a problem in what order IPsec and firewall filters
are executed. No standard exists for the order in which
IPsec and packet filters are applied. For KAME IPsec in
combination with the IPF firewall/NAT suite the fol-
lowing procedures apply:
a) Incoming packets are first processed by filter and

NAT rules and then handed over to the IPsec poli-
cies.

b) Outgoing packets are first processed by IPsec and
skip outgoing filter or NAT rules.

These procedures are useful because outgoing pack-
ets, once processed by IPsec rules, do not require addi-
tional NATing or filtering while all incoming packets
are first subjected to the firewall rules for intrusion en-
forcement. This requires enabling passing-rules for the
IPsec protocol numbers 50 and 51 for AH and ESP re-
spectively on the inbound leg, but no corresponding
rules on the outbound leg. However, with other fire-
walls, the order may be different and filter rules may be
needed for outgoing IPsec or for the incoming packets
after IPsec decryption.

3.4 Quality of Service

With coast-to-coast Internet bandwidth in the range of
several megabit per second, the need for quality of ser-
vice arrangements is easy to overlook until one encoun-
ters a problem that can only be solved with QoS. In our
case we had a bottleneck at the uplink of the remote
location, where the cable-modem limits outgoing band-
width to approximately 100 kbit/s. Such bottleneck can
make a H.323-based video-conferencing system unus-
able. Given that each application loses packets at the
bottleneck in proportion of their bandwidth, the more
critical but less bandwidth-intensive applications will be
impacted more than the highly-redundant video. In our
case, audio was delayed by up to 10 seconds and cut out

frequently so as to become useless; remote camera con-
trol was irresponsive.

The goal of a QoS arrangement under such circum-
stances is to allocate different bandwidth to the outgo-
ing flows according to the need of the overall applica-
tion rather than the greed of the individual part. An
H.261 video system will try to use as much bandwidth
as can be delivered without packet loss; on the other
hand, the H.261 codec can cope with lower bandwidths
and is automatically adjusted when packet drops are
detected. The task of the QoS facility is therefore to
drop many packets of the video stream forcing it to
lower its output. Conversely, a 64 kbit/s MP3 audio
codec will always need those 64 kbit/s of bandwidth to
function. TCP-based camera control (typically based on
a terminal-server type circuit) will in theory adjust to
decreased bandwidth, but not without delays intolerable
for a control-feedback circuit. Thus, our QoS arrange-
ment must allocate 64 kbit/s for audio, a small but
prompt 9.6 kbit/s for camera control, and must confine
the video signal to a budget of approximately 10 kbit/s
(discounting other TCP flows that also were given pri-
ority over the outgoing video signal).

The only reliable way of discerning the three flows
(session control, video and audio) from our video con-
ferencing application (VCON) is by the type of service
(ToS) IP-header field.

FreeBSD provides two alternatives to such a QoS
scheme, DUMMYNET and ALTQ. DUMMYNET is
part of the IPFW suite. Initially invented to simulate
realistic network behavior, it can be used for allocating
different bandwidth limits and delays for different
flows. The three main reason not to use
DUMMYNET/IPFW for QoS is if (a) we don’t use
IPFW but IPF, (b) IPFW had no way of filtering pack-
ets by ToS field, and (c) DUMMYNET is too inflexible
with bandwidth allocation.

The KAME suite of “Next-Generation-Internet”
(NGI) protocols includes Kenjio Cho’s Alternate Queu-
ing Framework (ALTQ). ALTQ provides a traffic flow
definition language, and several queuing disciplines,
including FIFO, priority queue, Weighed Fair Queuing
(WfQ) and Class-based Queueing (CBQ). For most
applications with a few defined flows, CBQ appears to
be the queuing discipline of choice.

After allocating 70 kbit/s for audio, 10 kbit/s for
camera control and 15 kbit/s for miscellaneous use (e.g.,
web-based medical record access), only 5 kbit/s were
available for video. This is an impossibly small budget
through which one can not expect any reasonable video.
In this situation, CBQ allows bandwidth to be borrowed
from parent to child classes if the bandwidth available
for the parent class is not fully used. This allows excess-
bandwidth allocated to audio and unused camera con-



trol bandwidth to be used for video. In practice we can
use between 10 and 30 kbit/s for the video channel.
This video signal would not be useful for examining
patients, but is enough for providing an image of the
physician to the patient, which the patient usually ap-
preciates.

Queuing is most effective at the ingress of a bottle-
neck, in other words on an outbound direction of an
interface. However, ALTQ can also measure, mark and
drop packets on an inbound direction of an interface.
We use this feature to reduce excess load of data into
the router, avoiding excess encryption of data that has
no chance of being forwarded.

Interaction between ALTQ and IPsec Since any
QoS scheme needs to inspect the outbound traffic to
discern flow classes, it would be impossible to use QoS
effectively on encrypted traffic. Since most bottlenecks
are at the ingress of or within public networks, IPsec
and QoS could almost never be used were it not for the
optional “ECN-friendly” behavior [13] that KAME im-
plements in its IPsec or IP-over-IP tunnels. ECN-
friendly means for outbound packets that the tunnel
agent copies most ToS bits of the payload packet into
the ToS bits of the tunnel IP header. On inbound traffic
the congestion notification bit of the tunnel IP header is
copied into the ToS bits of the payload packet after de-
cryption (hence the name “Early Congestion Notifica-
tion”, ECN). ECN-friendly behavior is the only way to
let ALTQ discern traffic classes in an encrypted tunnel.

Since the ToS field through ECN-friendly behavior is
the only way to use ALTQ on an encrypted tunnel, one
has to reflect all traffic flows by a specific marking in
the ToS bits. This can be done by using the ALTQ on
the inbound direction such that characteristics as source
and destination address protocol and port numbers can
be used to classify the unencrypted traffic. Each packet
is then marked with ToS bits indicating its flow class.
At the outgoing interface IPsec ESP traffic will be clas-
sified only by ToS bits and queuing can proceed as
usual on the encrypted traffic.

3.5 Novell NetWare IPX Tunneling

In a corporate networking environment, one frequently
has to deal with certain non-IP protocols, most likely
IPX. We use FreeBSD as a router to shield the wireless
network from excess traffic, and hence we have to route
IPX as well as IP. We also, experimentally, support IPX
tunneling through the VPN.

FreeBSD includes some support for IPX protocols
including multiple Ethernet frame types (Ethernet-II (by
default) and 802.2, 802.3 and SNAP through the
pseudo-device “ef”), IPX forwarding, and bindary-
mode Novell NetWare protocols (file system, printers,

login.) IPX routing requires nothing else than enabling
the respective IPX forwarding kernel option with
sysctl(8) and running the IPX routing agent
IPXrouted(8).

For IPX tunneling, we now use Boris Popov’s
pseudo-device “nwip” (if_nwip.c) that mimics an
Ethernet device and encapsulates the packets through
UDP/IP packets to a certain tunnel peer. This UDP/IP
traffic is then subject to our IPsec tunneling.

As FreeBSD evolves, Boris Popov’s nwip code is,
however, exceedingly outdated. We had to modify the
code to work properly with FreeBSD 4.2-RELEASE,
and we could not make it work with 4.4-RELEASE yet.
Since this nwip code doesn’t appear to be actively
maintained any more, we plan to develop a new nwip
facility outside the kernel using the generic Ethernet
tunneling pseudo-device tap(4).

4 DEVELOPMENT, DEPLOYMENT

FreeBSD comes with a development suite for small
stand-alone systems, called “PicoBSD”. The FreeBSD
installation process itself depends on such small systems
to bootstrap a new machine. One can fit a limited sys-
tem on a single floppy disk, including kernel, programs
and configurations (for another PicoBSD adaptation to
the SOEKRIS net4501 see http://sourceforge.net/
projects/thewall.)

Squeezing a stand-alone operational system on a 1.4
MB floppy disk is possible due to three key functions:
(a) the FreeBSD boot loader that can load a compressed
image of a memory-resident file system from the disk-
ette and mount it as the root file system; (b) the boot
loader that can decompress gzip-compressed a kernel
image; and (c) the crunchgen(1) utility that combines
multiple programs into one statically linked binary file.
This spares many copies of library code that would oth-
erwise be linked repeatedly to each of the programs
without the overhead of shared libraries.

The PicoBSD development suite allows the user to
generate small BSD system disk images controlled by
configuration files in combination with a menu-driven
interactive tool src/release/piocbsd/build/build.script.
We borrowed the principle approach to developing our
system images from the PicoBSD suite, but we have
modified the configuration and workflow significantly.

The menu-driven system did not lend itself well to
automatically producing several images of the same
kind with some minor variations. We therefore re-
placed the menu-driven system with a straight-forward
Makefile approach. Different configurations of images
are built by setting different options when make(1) is
invoked. The major options are HOST and MODEL.
The HOST determines the statically configured host



name, IP addresses, IPX addresses, and VPN tunnel
configurations, etc. The MODEL determines on what
kind of hardware this host is to be instantiated. Our
supported models are (1) the FlyTech NetPC with 8 MB
Disk-on-Chip and (2) the SOEKRIS net4501 with 16
MB CompactFlash device.

Conserving Memory Because we have to dis-
able swapping to solid state flash memory, we must
reduce memory usage by reducing the kernel to the bare
minimum and keeping the memory-resident root file
system small. Our root file system uses only 44% of 2
MB compared to the FreeBSD install floppy “mfsroot”
that uses 78% of 2.88 MB.

The reduction in size of the root file system is possi-
ble because unlike the install floppies, we have a rela-
tively generous 8 or 16 MB flash-ROM available to
store most of the program binaries. On the root file sys-
tem itself, we only use 688 kB for a crunched binary
(1822 kB on FreeBSD’s mfsroot.) Our root binary only
contains init(8), sh(1), mount(8), and fsck(8). When the
system boots, init is started that uses sh to execute the
autoboot script /etc/rc. This first mounts the flash-ROM
disk to /flash and copies a field-editable set of configu-
ration files to /etc. Then a script /etc/rc.real performs a
subset of the usual autoboot tasks.

To further reduce memory use, the bulk of the pro-
grams are distributed over 3 other crunched binaries. (1)
A setup crunch file (800 kB) contains only those pro-
grams that are needed during initialization (e.g., ifcon-
fig, route, setkey, etc.) (2) A system crunch file (900
kB) contains all daemon programs and those programs
that run most of the time, and thus, whose code seg-
ments would be paged into physical memory anyway.
(3) A user crunch file (1.9 MB) contains those pro-
grams that are only needed when an administrator logs
in for remote maintenance, and includes most of the
essential UNIX system management and productivity
tools (e.g., ps, netstat, ping, telnet, fetch, grep, sed, vi,
find, etc.) For each available program the memory-
based root file system contains a symbolic link from the
usual directories /bin, /sbin, /usr/bin, /usr/sbin, and
/usr/libexec to the respective crunched binary.

Robustness and Maintenance The flash file sys-
tem is mounted in read-only mode so that the router can
be powered down without concern to corrupting the
boot file system (we don’t actually require fsck(8) in the
root binary.) The flash file system is only written to at
two occasions: saving a field-customized configuration
and upgrading the whole system image. For saving cus-
tomizations applied in the field, the flash file system is
remounted writeable and contents of the /etc directory
of the running system written to a compressed tar file.

This file is reloaded into the running system on reboot-
ing just before the normal /etc/rc autoboot script is exe-
cuted.

System image upgrade is even simpler: we simply
use fetch(1), a command-line HTTP client, to copy the
new system image directly to the flash-ROM of the run-
ning system, then the system is rebooted. Replacing a
mounted flash-ROM file system on-the-fly has been a
very reliable process and has caused no problems. Only
when the download is aborted incompletely can the
system become unusable and requires physical access to
recreate. To reduce this small risk in the future, we plan
to save a compressed system image on the memory file-
system first, before we copy it to flash-ROM. This is the
main use where a memory file system with ample free
space is invaluable.

Having worked with both kinds of flash-ROM media,
Disk-on-Chip and CompactFlash, we find Compact-
Flash much easier to work with. Being a “consumer
product,” CompactFlash is much less expensive (gener-
ally less than ½ of the Disk-on-chip prices.) But most
importantly, the Disk-on-chip devices emulate disk ge-
ometry very disadvantageous if not erroneous, causing
the boot process to fail on Disk-on-Chip if the com-
pressed kernel and root memory file system image uses
blocks above the first 2 MB (approximately) of the disk.

Currently our VPN routers start from a statically con-
figured system image created by the development envi-
ronment just described. Should configuration parame-
ters change, the system administrator can log into the
remote router and manually modify some configuration
files and save them back to flash-ROM. Alternatively,
changed configurations can be branded on new images
and then reinstalled.

The need for manual interaction with the router sys-
tems is kept low, and indeed, we have not laid a hand on
most of the deployed systems for several months. We
have added some preliminary web-based monitoring
facility running the simple-http web server that is part of
the special PicoBSD source code. We also run a DHCP
server (ISC DHCP3) on both the office and private
LAN segments so that machines connected to these seg-
ments need no manual IP configuration.

5 CURRENT WORK IN PROGRESS

We are currently working some important upgrades to
our VPN routers with the objective of making configu-
ration and deployment even simpler and more flexible.
These changes include: (1) have outside IP addresses
dynamically assigned the ISP’s DHCP mechanism, (2)
make all devices load their configuration parameters
through the network rather than from flash-ROM, and



(3) have all tunnels established dynamically rather than
with statically shared keys.

With this redesign of the autoboot process we have
removed all configuration parameters that we anticipate
being subject to change from the static configuration
files (e.g., /etc/rc.conf, /etc/resolv.conf, /etc/dhcpd.conf,
and others). A booting system first sends a DHCP re-
quest to the outside interface connected to the ISP.
When an Internet-link is operational, the system queries
all its configuration parameters through DHCP. This
includes IP and IPX network addresses and masks, IP-
sec tunnel and funnel policies, QoS parameters, DHCP
server configurations, etc.

In order to query for individualized parameters, each
system needs to know its own identity. The only source
of identity for a VPN router system is its X.509 certifi-
cate and matching private key. Any two system images
are exactly the same except for a unique key and certifi-
cate file loaded onto the flash-ROM. When the system
boots it extracts its own DNS name from the certificate
and can then query all configuration parameters as that
DNS-name’s sub-domains.

The public key infrastructure and certificate is im-
plemented using OpenSSL and kept very simple. Be-
sides the necessary public key information, our certifi-
cate profile only include the issuer distinguished name
(DN) and a subject alternate name (“general name”) of
type DNS. Because OpenSSL’s “ca” tool does not work
for our simple certificates without subject DN (which is
a valid certificate as per the PKIX specification [14]),
we only use the “req” and “x509” tools and we had to
modify parts of OpenSSL. We also added a function
into the x509 tool that lets us extract specifically the
DNS subject alternate name from a certificate.

In order to set up tunnels dynamically, racoon sup-
ports authentication via X.509 certificates and a “pas-
sive mode” where security policies are dynamically
generated from the client ISAKMP proposal (gener-
ate_policy on). Notice the difference between dynami-
cally negotiated security associations (SA) and dynami-
cally established tunnel security policies (SP). Every
ISAKMP agent can negotiate SAs, but usually the tun-
nel SPs still need to be statically configured. However,
as we turn to having the ISP assign our VPN routers’
outside IP addresses through DHCP, we cannot estab-
lish fixed tunnel policies, because that would require
knowing the remote tunnel endpoint address.

On the client side, tunnel policies are set up through
the DNS based remote configuration. With racoon’s
generate_policy option enabled on the central VPN
router, the server’s racoon will add a pair of SPs that
match the SPs on the client that triggered the initial con-
tact between client and server. However, we found that
this alone will not support our funnel policies. The

problem is that after the SA is established, ISAKMP
will not be involved in any further data exchanges
through the tunnel. The client assumes that the tunnel is
established and funnels other traffic through the tunnel,
however, on the server side no funnel policies exists
apart from the one policy that took effect for the first
contact. We have modified racoon and added support
for funnels. One can now configure racoon to use a cer-
tain shell script when an initial contact between tunnel
client and server is made. That shell script will then
query the DNS-based configurations to determine and
establish all the funnel policies. (We borrowed the idea
of a shell-escape in a daemon process from the ISC’s
DHCP client.)

In the future we will use the hardware encryption op-
tion based on the HiFn 7951 that is available from
SOEKRIS as a mini-PCI module for the net4501 or a
full size PCI module for other systems. At a cost of $80
this chip can significantly reduce the CPU cost of en-
cryption and public-key cryptography. At this time,
however, this chip is supported on OpenBSD but not
yet on FreeBSD.

6 DISCUSSION

Our task was generally to install and configure existing
open source components to form one functional and
maintainable system, not to develop these components
from scratch. Thanks to the work done by others we
have been quite successfully in our project. Although
we did have to use kernel debugging techniques and
modify some components, there were very few prob-
lems that others did not fix promptly or that we could
not fix ourselves. In this section we list the major issues
we found.

6.1 Maturity of the IPsec and KAME

While the KAME IPsec implementation has an excel-
lent track record of interoperability testing
[www.vpnc.org] we found several bugs and issues that
apparently are manifest only in more advanced and
complex scenarios that we had to work with to integrate
our system into an existing networking infrastructure.
We had network blockage and kernel crashes related
with multiple SAs and SPs. We were very pleased with
the rapid bug fixes we received once our problems had
been isolated. However, our experience suggests that
the testing scenarios in interoperability tests may be too
simplistic to make those tests valid for “real-world”
applications.

Stale SAs, an IPsec/ISAKMP robustness issue.
We are not entirely confident yet whether the use of



ISAKMP and racoon in particular will be robust
enough. One possible problem case is that the server’s
and the client’s SA data may not be always in synchro-
nization. For instance, when the server is rebooted its
SAs are lost, while the client still holds on to the now
stale SAs with the server. The client will continue to
send IPsec packets to the server using the stale SA,
whereas the server does drops those IPsec packets be-
cause they don’t match any of the server’s SAs. The
client has no way to notice that the tunnel is broken and
the server does not reinitiate an ISAKMP negotiation
for a new SA.

This appears as a flaw in the IPsec/ISAKMP protocol
design: IPsec with ISAKMP depends on a state (the SA
database) that two peers negotiate and must maintain
synchronized, but it has no way of promptly recovering
from one peer loosing its state. Obviously, the fact that
ISAKMP negotiated SAs expires after a certain time
(usually several hours) will cause this problem to be
solved automatically at time of SA expiration. However,
the protocol is still not robust if network downtimes can
happen, even if only for several minutes. Also, the
ISAKMP negotiation is too costly both in terms of
elapsed time and CPU time to expire SAs very fre-
quently. We believe that the IPsec/ISAKMP protocol
needs to be amended to provide for detecting and re-
solving the problem of stale SAs promptly.

6.2 Excessive IP Packet Matching

Most network components such as (1) router, (2) packet
filter, (3) NAT, (4) IPsec policy engine, (5) IPsec asso-
ciation matcher, (6) traffic shaper, (7) traffic condi-
tioner, (8) raw IP handler, and (9) IP-in-IP tunnel han-
dler all use rules that operate on some characteristics of
IP packets, typically of the IP header. Even though the
task of matching packets with criteria is common to all
of these components, each uses its own syntax for the
criteria and/or its own code to compare actual packets
against those criteria. Not only will users have some
added difficulty mastering the many criteria languages,
the duplication in poorly optimized (linear search!)
matching code contribute to “kernel bloat” and increase
the CPU time spent on each packet flowing through the
system. We feel that the packet processing components
and their configuration could be better coordinated per-
haps using a more efficient packet matching algorithm
such as the Berkeley Packet Filter (BPF) [15].

6.3 Automation-Friendly Tools

UNIX is well-known for its large set of tools that “do
one thing and do it well” [McIlroy in 16]. Together with
pipes and the shell command interpreter, one can build
powerful automated scripts quickly. We do this exten-
sively creating most of the networking components’

configuration files from templates and generators at
system boot time. In a few cases we saw no choice but
to create some of our own tools.

IP address calculations. We missed a tool that
would allow us to do some common address calcula-
tions on the fly. This was necessary because we wanted
to reduce the number of manually maintained configura-
tion parameters but the various configuration files re-
quired many parameters that could be derived from
fewer parameters. For example, some components (e.g.,
dhcpd(8)) require netmasks (e.g., 255.255.255.0) for
specifying subnets while others (e.g., setkey(8)) would
take only network prefix lengths (e.g., /24). So we had
to have a tool that could convert between both. Some
would require a host-independent network address (e.g.,
setkey(8) or route(8)) that could be derived from an IP
address in the network (e.g., 172.31.24.1/24 has net-
work address 172.31.24.0). For these and other address
calculations we developed ipac, am IP Address Calcula-
tor. The ipac tool can increase or decrease host num-
bers, or network numbers, test if one network subsumes
another network and convert addresses in different rep-
resentations (hexadecimal, dotted decimal, simple
decimal). This tool simplified many of our configura-
tions and we believe it could be useful for a broader
community. (The only shortcoming being that it only
supports IPv4 addresses at this time.)

Querying the DNS. While there are many tools
to query the DNS, such as nslookup or dnsquery, all of
the tools we found seemed to be geared to interactive
use or at least human interpretation of their output. For
our DNS-based remote configuration mechanism, we
required a tool that could query the DNS for various
resource record types (e.g, A, TXT, PTR) and return the
resulting data in a simple non-verbose form. Thus we
developed dnsq, a DNS Query tool that is based on the
standard BSD resolver and uses Dave Shield’s resparse
library for parsing the DNS results.

7 CONCLUSIONS
This work has shown that FreeBSD is a very useful
platform to develop custom networking solutions that
offer at a very low cost a host of functionality that we
could not otherwise implement using commercially
available products even for prices 5 to 10 times higher.
Self-designed network infrastructure equipment such as
ours can be economically feasible even for such institu-
tional users who do not consider themselves hardware
systems developers. The effort it takes to acquire skills
in designing custom FreeBSD-based solutions probably
is not much higher than what it takes to successfully



implement a commercial product: instead of wading
through amounts of sales brochures hunting for the in-
formation to figure out if a commercial product will
meet one’s needs, instead of having endless phone calls
to figure out the pricing options with sales representa-
tives who cannot answer technical questions, instead of
spending hours on waiting loops with customer service
call centers to figure out that the commercial product
has one little missing feature or bug that will fail the
entire implementation or require awkward workarounds;
that same time can be more productively spent on de-
veloping a custom solution with standard UNIX-based
tools that can be made to work even if it does not ini-
tially work out of the box. The open source community
around FreeBSD and KAME have provided excellent
“customer support” to us: we received one critical ker-
nel patches within a month and another one in just 24
hours, few questions remained unanswered on e-mail
lists, and those that didn’t get answered could eventu-
ally be answered by studying the source code.

We plan to contribute our development environment
and tools back to the open source community once we
have finalized our upcoming major version. The code
will be available from http://aurora.regenstrief.org.
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