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Abstract
In the present position paper, I explore biologically-
inspired computational processes that allow complex
high-level collective behaviors to arise from low-level
artificial agents (swarmers) – automatically. In contrast
to similar projects, I seek elimination of technical con-
straints that narrow the free development of biology-
analogous behavioral patterns. The result of such swarm
evolutions is a fascinating variety of biological, yet com-
pletely transparent, analyzable behavior. Results include
the spontaneous evolution of an exploration strategy that
recently has been mathematically proven to be the opti-
mal one under the conditions given.

The work (which is part of my diploma thesis [11])
originally contributes to the field of synthetic biology and
the goal was to make evolution milestones in biological
swarm collaboration visible. However, I feel that high-
level behavior generation techniques can be migrated to
the field of collaborative security and suggest approaches
to do so.

1 Introduction: Collective Behavioral Pat-
terns in Nature and Synthesis

Since the beginning of life on earth, nature has developed
a vast variety of collective behaviors. These behaviors
include, for instance, thousands and thousands of fire-
flies flashing synchronously in summertime, bathing en-
tire grasslands in sallow light. They include as well com-
plex structures built by social insects that appear techni-
cally mature and allow for storage or even production
of food, sophisticated ventilation mechanisms, breeding
and defense against predators. Some of those structures
are built to such perfection and precision that we have
just started to learn how they actually work [4, 21].

Collective behaviors observed in biology inspired a
variety of research work in recent times. Pursuing this
research, it surprisingly turned out that the complexity

of the observed collective behavior is in stark contrast to
the relative simplicity of participating individuals. How-
ever, the appearance of complex phenomena that arise
from local interactions of simple parts with each other
and the environment is not limited to the fauna. Works
such as [6, 14] observe similar phenomena in the fields
of physics and chemistry.

Enabled by continuously growing processing power
of up-to-date computers, collective behaviors could be
synthesized. From decentralized control of robot and
agent swarms [8, 19], over routing of traffic in commu-
nication networks to idealized synthesized collective be-
havior as a metaheuristic to solve complex optimization
problems [3, 18] the possibilities seem to be unlimited.

The ever further increasing processing power finally
made possible the synthesis of collective behavior in an
evolutionary way [12, 22]. Here, mechanisms of natu-
ral evolution are used to synthesize collective behavior,
which opens new possibilities for research. However,
the development of natural behaviors via synthetic evo-
lutions is usually significantly narrowed due to certain
technical constraints such as static sensor and actuator
parameters in swarmers or too bottom-of-the-line com-
munication methods among them.

In this work, I seek for elimination of some of those
constraints1, trying to evolve complex collective behav-
ioral patterns and make the process of behavioral evo-
lution visible. Particularly, I create behavioral patterns
analog to the ones found in nature in a swarm of insect-
like swarmers.

1I, for example, enable evolution of parts of sensors, actuators, mor-
phology as well as different forms of direct and indirect communication
and make use of extensive simulations obeying physical laws.
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2 Ingredients for Evolutionary Synthesis of
Collective Behavior

To evolve such collective behavior, I make use of the fol-
lowing methods and algorithms:

Parametrizable swarmer blueprint. I defined a
blueprint swarmer, whose controllers, sensors2,
actuators3, and certain internal values are heavily
defined by a set of parameters (genome). A
swarmer’s controller maps sensor perceptions to
actuator outputs that enable a swarmer to make use
of given capabilities I won’t discuss in detail here.
As controllers, I use recurrent neural networks
with freely evolvable topology, a data processing
structure that is inspired by biological sets of neu-
rons [7, 10]. Advantages of the distributed, parallel
information processing by lots of simple neurons
include the lesion tolerance and learning aptitude
through simple operators defined on the neural net-
work. Disadvantages include the difficult analysis
of what a neural network does, once trained. There
exists a variety of published evolutionary operator
packets, simulation frameworks, benchmark tests
and theoretical work concerning the evolution of
neural networks, see for instance [20, 23].

Artificial evolution. Swarmer genomes should not be
crafted, but evolved. Evolutionary optimization
(short in this paper: evolution) is a metaheuristic,
which is inspired from natural evolution and widely
used for generating adequate solutions for complex
nonlinear optimization problems [16]. This brief
introduction of evolutionary optimization is not in-
tended to follow a particular school or kind of evo-
lutionary optimization strategies, but to explain on
an abstract level, what evolutionary optimization is.
In evolving, one has to create an initial random
population of genomes (each of which represents
a solution candidate for the optimization problem
to solve), evaluate all of them, and finally let the
fittest ones act as parent genomes that are crossed
and mutated in order to create the next generation
of the genome population. This process is repeated
until a given amount of time has passed or certain
evaluation criteria are fulfilled.

Evaluation by physics simulations. A genome is eval-
uated by spawning swarmers from it and placing

2Swarmers can percept other swarmers that are nearby, as well as
objects in the environment, like food or pheromone analogons, etc.

3Swarmers incorporate many nature-inspired capabilities like mov-
ing, steering, dispersal of pheromones or food into the environment,
eating food that exists in the environment, communication, reproduc-
tion, etc. Discussing them in detail would go beyond the scope of an
position paper.

them in a simulated environment. Such environ-
ments are of two dimensions, space-continuous and
time-discrete, and simulated using a multi agent
simulation framework built upon an open physics
simulations core [5]. A simulated environment al-
ways contains analogons of food, that are necessary
for a swarmer to live and reproduce, and more or
less difficult to collect (depending on the particu-
lar experiment). The more reliable a swarmer man-
ages to grow and keep up a population of his species
in the environment, and the larger it grows, the
higher is the fitness of its genome. The fitness func-
tion was the average number of swarmers continu-
ously living during an evaluation simulation. Since
a swarmer’s lifetime is much shorter than an eval-
uation simulation lasts, swarmers have to maintain
their population by reproduction and – depending
on the experiments – more or less complex foraging
strategies.

Partly automated behavior analysis. Once evolved,
swarmer genomes are analyzed in a partly au-
tomated way by a test suite, which allows for
unveiling capabilities (like pheromone or food
dispersal or certain kind of sensor perception
...) that are important for the evolved behavior.
Casually spoken, if a capability is important, the
performance of the swarm would drop significantly
in case the capability is missing. Thereupon, I
designed a family of tests to measure importance
of several swarmer capabilities. Based on the
importance knowledge gained, I further analyze
evolved swarm behavior.

I am aware of the fact that, instead of fitness evalu-
ations as described above, other swarm evolution sys-
tems [2,17] recently published use a fitness-function-less
artificial ecology approach in order to not restrict the be-
havioral evolution by defining fitness functions. Further-
more, less pre-specified agents can be used for the same
reason. I agree with the voices saying that this approach
might be more free in terms of free behavioral evolution
alone, but in our case, it has two strong disadvantages:

1. It can’t be easily mapped to other problem domains
(for example, a fitness function can be easily de-
rived of most network epidemics problems, and
most of such problems incorporate heavily prede-
fined agents).

2. Evolution of complex behavioral patterns known
from biology may also be narrowed if the agents
are designed in a too simple and bottom-of-the-line
way: It may be just too difficult to evolve behaviors
sophisticated enough to solve given problems.
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Consequently, I deliberately chose the fitness-function-
approach (with the above very generic fitness function)
as well as partly predefined agents with a very rich set
of nature-inspired capabilities including direct and in-
direct communication (which however are most config-
urable through their genome). Nevertheless, my more
traditional approach is able to contribute competitive be-
havioral complexity, as we will see in the experimental
results.

In order to evolve manifold behaviors concerning a
single experiment, several separate evolutions were per-
formed in each experiment. My evolution framework
is capable of thousands of simulation steps a second on
a single CPU with possibly thousands of static objects
in a simulated world, as well as (in this work) 15 to
50 swarmers. Evaluations were carried out on a net-
work cluster of more than 100 CPUs in parallel, so elic-
iting many different behaviors each experiment was pos-
sible.4.

3 Example of Experiments and Results

As stated above, swarmers are evolved in environments
that vary throughout different experiments. To get
an idea of the complexity end efficiency of behaviors
evolved, I now want to examine one representative be-
havioral pattern evolution in one single experiment that
actually has been theoretically proven to solve the experi-
ment problem in an optimal way. As the experiment goal
was the observation of evolution milestones, first basic
skill were evolved, then complex ones. I will explain the
experiment results in this order.

In the experiment, swarmers were initially close to a
large accumulation of ”food” items, which makes them
learn quickly how to recognize this food, eat it, and re-
main close to food they see (fig. 1). Regularly after a
fixed number of simulation steps, the next large food ac-
cumulation appears in the simulated world – however, it
is placed out of the swarm’s sight. To further increase
a genome’s fitness in evolution after learning the basic
skills above, those far away food sources obviously have
to be exploited.

As a result, the swarmers not only learned the very
basic skills mentioned above, but – with the basic ones
as groundwork – also several higher level skills widely
known from biology.

4It is to note in this context, that significantly higher speeds and
therefore more complex experiments will be possible in future: The
number of PCs was fluctuating during runtime and most of the evo-
lution time the calculation was slowed down to keep the calculating
PCs available for daily work. Other changes to the whole framework,
like replacing the internal neural networks implementation with the re-
cently finished SNIPE [9] will provide us with significant speed-ups,
too. Other plans include using features of the evolutionary computa-
tion toolkit ECJ [15].

Figure 1: Swarmers (dark, with antennae) aggregating at
a food accumulation (yellow items) with two scouts leav-
ing it. The scout’s approximate trajectory is marked with
a dotted arrow. The sallow red spots mark pheromones
dispensed by swarmers. The dark blue filling color of
some swarmers as well as little arrows around them mark
ways of communication.

Ration existing food: Too much reproduction would
result in too quick eating, so that the swarm would
starve to death before a new food source appears.
Consequently, a swarmer’s food rationing strategy
is not to reproduce while it senses signals of other
swarmers nearby.

Optimal search strategies: Time by time, scouts leave
the swarm, searching for new food accumulations.
When scouts search for new food accumulations,
they do so in a spiral trajectory (fig. 1). This spi-
ral search strategy actually is, as Langetepe has re-
cently proven [13] based on work of Alpern and
Gal [1], the optimal searching strategy in 2D spaces
given only local environment knowledge. To the
best of my knowledge, this is the first time a search
strategy known as an optimal one has spontaneously
emerged out of such a nature-inspired evolution.

Communication: Both food rationing and scouting are
controlled by signals swarmers learned to exchange
locally.

Through more than one hundred evolutions, I elicited
many different behavioral patterns: For example, after
another evolution, a dense group of intensively commu-
nicating swarmers moved in a coordinated way towards
and around food sources (fig. 2). Pheromones are dis-
pensed around food sources and serve as landmarks.
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Figure 2: Swarmers moving in a dense group.

4 Multi-Agent Simulations in Computer
Security

The results shown above indicate how sophisticated
(spiral search) and resource-efficient (rationing) such
evolved collaborative behavior can be. In this section,
I consequently want to suggest how mechanisms, that
elicit life-like behavior as described above in synthetical
biology, can be applied in multi-agent security simula-
tions that seek for evolving attack or defense strategies
in collaborative security. Possible scenarios include:

Defense strategy evolution: Instead of evolving food
foraging strategies in a 2D space obeying physical
laws in simulation, one could evolve similar sophis-
ticated ”foraging” strategies for viruses or vulner-
abilities in communication networks. In doing so,
behavior of network maintenance agents (that may
be even more predefined than the ones above) could
be evolved. Such agents are computers, that patrol
the network, fight network epidemics and activate
resource demanding anti-virus routines or alterna-
tively perform scans for security vulnerabilities like
weak passwords or missing security patches. On the
one hand, one wants want to use limited number of
those agents (as they use expensive resources), but
on the other hand, sometimes it may be purposeful
to let them multiply fast (when epidemics are taking
place, for example). Instead of evolving swarmers,
that collaboratively forage for clusters of ”food”, I
suggest to evolve collaborative strategies to forage
for contaminated machines. Contaminations may
appear, and even spread quickly, and here the moti-
vation is to ”devour” them as efficiently as possible
with respect to network and machine capacities.

Attack strategy evolution: Alternatively, the evolvable
agents can model the attacking agents, namely
viruses. In this case, strategies to spread as much as
possible, without drawing too much attention, have

to be evolved. Like network maintenance agents,
a virus needs ”food” (machines, or free resources
on a machine that are not used). Both sophisticated
strategies and resource rationing are useful here,
too, because spawning too many virus instances will
be contra productive (as they cause network moni-
tors to notice them, and launch a counter attack).

To perform such evolutions, the simulation domain ob-
viously would have to be changed from 2D spaces to
network-like domains or even abstractions of those. This
results in programming effort, but also could decrease
the computational effort of the evolutions significantly,
thus narrowing the number of computers that is needed
to evolve. In both cases, importance tests would gain
knowledge of how to further increase efficiency of re-
sults, for security tests considered less important can be
spared.

5 Conclusions and Outlook

In conclusion, I managed to synthesize the process of
complex behavioral evolution, consequently enabling
deep behavioral analysis and evolution of sophisticated
behavioral patterns hardly possible so far.

There are primarily two research branches I want to
further investigate. First, from the synthetic biology
point of view I want to generalize from collectives of
insect-like beings to collections of cells, thus evolve mul-
ticellular organisms. Second, from the algorithmic point
of view I want to pursue more theoretical approaches for
better analysis of collective and collaborative behavior.
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