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Abstract

The C++ Standard Template Library provides effi-
cient storage of data in containers, and efficient op-
erations on such containers. While STL can be pa-
rameterized with custom allocators, these cannot be
used to add persistency to the container classes pro-
vided by STL. Thus, we have designed the Persis-
tent Standard Template Library (PSTL) that over-
comes this by providing its own containers that are
compatible with STL, but store their elements on
disk. This compatibility provides a programming
model that is known and more natural to C++ pro-
grammers and enables the reuse of many of the algo-
rithms provided by STL in combination with PSTL.
In this paper we discuss PSTL’s design, show the
challenges we faced, and how STL’s design would
have to be extended to provide native support for
persistency.

1 Introduction

Persistent container libraries such as [GND99,
Sle00] have two key advantages. Compared to
volatile containers, the size of their database can
grow beyond the size of the available memory and
compared to transactional databases, they exhibit
less overhead since they do not provide any func-
tionality to rollback transactions. Persistent con-
tainer libraries are the key element of many pro-
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grams such as sendmail [CA97], NNTPCache [AB],
or NewsCache [GH99].

Today, a large number of persistent storage libraries
exists, ranging from simple text-files to complex
databases. The most prominent among these are
the various types of dbm databases used for instance
by sendmail. The creators of the Java program-
ming language have even added a type to Java to
indicate whether a given object may be stored on
external storage [AG97]. Any object implementing
the Serializable interface can be serialized and
deserialized transparently.

We have not found any persistent container for
C++ that is compatible with STL and fulfills the
requirements to be used within a server applica-
tion. The importance of persistent libraries has al-
ready been identified by Bjarne Stroustrup. Accord-
ing to [Ste95], his assumption was that persistency
could be provided using custom allocators. This
assumption, however, was based on an early ver-
sion of STL that had allocators that were real ob-
jects [Str94, Str00]. In later versions of STL the al-
locator mechanism was simplified due to logical and
performance problems with that kind of generality.
However, it is still unclear whether these problems
would have been unsurmountable [Str00]. Problems
with the current allocator mechanism have also been
identified by [Ste98b] and will be explained in detail
in Section 3.

We think that compatibility with STL is one of the
key requirements since it allows for a more natural
object-oriented programming style and the reuse of
many of the algorithms provided by STL. These al-
gorithms range from iterating over the container’s
elements to sorting the container and exchanging
elements between different containers. Compatibil-



ity is also one of the key challenges since some key
properties of persistent containers such as serializa-
tion are not necessary for their volatile counterparts.

The paper is structured as follows. Section 2 gives a
brief description of the requirements for a persistent
container library. Section 3 explains why the allo-
cator mechanism provided by STL is not sufficient
to fulfill these requirements. The design and imple-
mentation of PSTL is presented in Section 4 along
with the challenges we faced in preserving compat-
ibility with STL. Section 5 presents an evaluation
and related work is considered in Section 6. We
outline our ideas for improving PSTL in Section 7
and draw our conclusions in Section 8.

2 Requirements

The requirements for persistent containers are sim-
ple. Data has to be stored on persistent storage,
each container should use its own file, and the con-
tainer should be able to store more elements then
fit into the computer’s memory (main memory plus
swap space). Additionally, the containers should be
simple to use and compatible with existing stan-
dards.

Since data is stored on disk, the objects stored in the
container need to be serialized. Depending on the
object, a memcpy() operation might be sufficient.
In the following, we refer to these objects as simple
objects and to those that require special serialization
functionality (i.e., objects using pointers) as fragile
objects.

Since persistent containers are frequently used by
server daemons to store their databases (e.g., send-
mail, NewsCache, .. .), the database must be acces-
sible by several different processes. This is because
daemons handle several clients simultaneously and
typically spawn a new process for each client con-
nection. Depending on the daemon, the database
is created once and accessed read-only or is manip-
ulated during the program’s operation. If the con-
tainer is manipulated, support for locking is needed
and changes need to be visible to other processes
immediately.

In case of the C programming language, these re-
quirements are fulfilled by [GND99], for instance.
For C++, however, we could not find a persistent
container class library fulfilling these requirements
and seamlessly integrating with STL.

PSTL was primarily developed to replace News-
Cache’s [GH99] newsgroup and article database.
Thus, the containers have to be efficient enough
for handling the typical Usenet traffic. The typ-
ical spool size of a Usenet News server is about
60GB and the traffic is at least 3-5GB of article data
per day [CBB97] excluding the traffic generated by
news reading clients. To ease the maintenance of
the spool area, NewsCache stores each newsgroup
in a separate file/container.

3 STL and Persistence

The containers provided by STL are stored in main
memory which is volatile, but can be parameterized
with different memory allocators. Thus, our initial
approach was to provide a custom allocator that
allocates its elements on persistent storage.

While the constructors of the container classes do
not directly provide an argument to pass the name
of the file the container should be stored in, they
provide constructors taking a custom allocator class
as argument that could encapsulate the container’s
filename.

The custom allocator class, however, only provides
methods that allow to allocate and free memory
and to construct and destroy a given object [Str97,
ISO98]. There is no mechanism to query the al-
locator for previously stored elements. Thus, the
constructors of STL’s container classes do not check
for pre-existing elements. The only way to fix this
problem is to subclass the original STL class and re-
place the constructors and destructor as identified
in [Ste98b, Ste98a.

It is insufficient, however, to simply replace the con-
structors and destructor of the original STL con-
tainer except in the simple case where the construc-
tor reads all elements from the file and the destruc-
tor writes all elements back to the file [Ste98b]. This
is due to the fact that typical STL implementations
make certain but legitimate optimizations based on
the internal representation of the container. For
instance, GNU C++’s STL implementation uses a
pointer as the vector’s iterator. While this is fine for
a non-persistent container, it cannot be used for a
persistent container as we will show in the following
sections.

Another drawback is that a standard allocator is
assumed to hold no per-object data [Str97, Chap-



ter 19.4.3] allowing the library to implement some
container-manipulation functions by relinking ele-
ments. For instance, splice () may be implemented
by moving an element from one list to another with-
out copying the element. This is not possible if
different lists can be stored in different files. In
this case the elements have to be copied from one
container/file to the other. Thus, the allocator is
bound to the type the container is parameterized
with rather than to the container. Hence, this would
restrict a program to use the same file for all con-
tainers parameterized with the same value type.

Due to these reasons it is not possible to convert
an STL container into a persistent STL container
just by supplying a different allocator class to its
constructor. Adding persistence requires a tighter
coupling between the container and its correspond-
ing allocator. Thus, we were forced to reimplement
the containers provided by STL. The containers pro-
vided by PSTL are compatible with their corre-
sponding STL containers, but use an extended in-
terface provided by our persistent allocators.

4 Design and Implementation

Since PSTL tries to adhere to the STL specification,
most of PSTL’s design is equivalent to STL’s design.
The differences between PSTL and the typical STL
implementation are outlined in the following sec-
tions. For instance, we had to add a serialization
mechanism that provides transparent serialization
of the container’s elements. Additionally, we added
an argument to the container’s constructors to in-
dicate the file where the elements should be stored
in. This allows the user to instantiate a container
without having to explicitly instantiate the corre-
sponding persistent allocator.

4.1 Serialization

As mentioned in Section 2 special care needs to be
taken when fragile objects need to be stored in the
persistent container. C/C++ pointers cannot be
stored because the data stored at the address the
pointer is pointing to will likely be located at a
different address at the program’s next invocation.
This problem can be solved by using a pointer swiz-
zling technique as presented in [SKW92] or by se-
rializing the object before storing it on disk. Since

the pointer swizzling technique has a major draw-
back with regards to concurrent accesses, as we will
point out in Section 6.5, we have chosen to store the
objects in a serialized form.

STL itself does not provide any functionality for the
serialization of its elements because the container’s
elements are stored in memory and do not have to
be made persistent. Thus, we had to extend the
interfaces defined by STL with a means for serializ-
ing and deserializing fragile objects. Typically, this
functionality is implemented using one of the follow-
ing approaches.

e Instrumentation of the data structures [Kni99].

e Requiring the user to provide the code for se-
rializing and deserializing the data structures
stored within the container [GND99, Sle00].

The first approach allows the container to iden-
tify the type of the data stored at each position.
This makes it possible to use a generic algorithm
for garbage collection and defragmentation of the
database. The price for this, however, is an in-
creased size of the container and that only instru-
mented data structures may be stored. Another
disadvantage is that the layout of the data struc-
ture is pre-determined and cannot be changed at
run-time thus making the exploitation of polymor-
phism difficult. Since we want our implementation
to be as compatible with the STL as possible, and
no garbage collection mechanisms are provided by
STL anyway, we have chosen the second approach.

A straightforward implementation would be to re-
quire the classes of the data structures to be stored
to provide a member function that implements the
serialization and deserialization functionality. This
implementation, however, would have two short-
comings. It cannot be easily added to any exist-
ing class and it does not work in combination with
builtin types.

Thus, we have decided to use traits [Mye95, Str97]
for PSTL. Traits allow us to extend a template ar-
gument without requiring it to provide the exten-
sion. The extension is moved to a trait class which
is supplied as an additional template argument to
the container class. An advantage of this implemen-
tation is the possibility to use different serialization
algorithms for different container instances param-
eterized with the same value type.



template <class T, class Tr=serialize_trait<T>>
class pvector {
// typedefs,
reference
front() {
// See Section 4.5 for a description
// of getdata
offset_type head=alloc.getdata();
return Tr::deserialize(head);
}
}

Figure 1: Vector Using Serialization Trait

A simplified version of the pvector container us-
ing the serialization trait class is shown in Figure 1.
Whenever the container needs to serialize or deseri-
alize an object it calls the corresponding functions
of the trait class. The container and the serializa-
tion classes have both a reference (alloc) to the
persistent allocator class and can use its functions
for allocating memory on the persistent file and con-
verting offsets to pointers and vice versa.

Our persistent container classes provide trait classes
for storing builtin types, objects that do not have
any pointers, and strings. The traits for the serial-
ization of other classes must be provided by the user
of the persistent template library. The implementa-
tion of a custom serialization trait is fairly simple.
The interface that has to be provided is shown in
Figure 2.

4.2 Low-Level Disk Access

So far, we have not discussed how and when the
data is stored onto disk. Typical solutions to this
problem are:

e Read the data from disk in the constructor of
the container and write it back in its destruc-
tor [Ste98b]. Unfortunately, this approach vio-
lates two of our requirements. It does not al-
low the container to grow beyond the memory
size and modifications of the container won’t be
visible to other processes until the container is
freed or flushed explicitly.

e Whenever an element needs to be accessed, seek
to the element’s position and read it from or
write it to disk [GND99, Nel98]. This requires
the elements to be read from disk and to be
copied from/to the I/O buffers every time an

template <class T> struct serialize_trait {

// typedefs,

pstl_serialize_traits(allocator_type &a)
: alloc(a) {}

void

serialize(const T &t, offset_type o) {
// serialize t to alloc.off2ptr(o)

}

reference

deserialize(offset_type o) {
// deserialize element and return a
// reference to it

}

const_reference

deserialize(offset_type o) comnst {
// deserialize element and return a
// constant reference to it

}

size_type

size() {
// return T’s size; in case of a complex
// object use an offset here and allocate
// extra memory via the persistent
// allocator

}

Figure 2: Sample Serialization Trait

element is accessed. Since all modern operat-
ing systems provide elaborate caching strate-
gies, the disk access is negligible. The real prob-
lem is that every element needs to be copied at
each access no matter whether it actually would
have to be serialized or not.

PSTL, however, uses memory mapped files, an ap-
proach different from both of the approaches pre-
sented above. Memory mapped files have the ad-
vantage that the operating system maps the file as-
sociated with the container into the program’s ad-
dress space and the program can read and write the
file like memory allocated using malloc().

As shown in Figure 3, PSTL maps the container’s
file storing the serialized representation of the con-
tainer into its address space. Whenever an object is
accessed, it is deserialized and thus copied. In the
Figure below, this is the case with the container’s
first element, the author’s address. Now, the pro-
gram can interact with the object representing the
element like with any other object. Finally, when
the object is destroyed, it is serialized back to the
memory mapped file.
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Figure 3: Serialization and Deserialization of Ele-
ments

Using memory mapped files has several advantages:

e The program can operate directly on the mem-
ory mapped file. No copying from and to I/O
buffers is necessary.

e When virtual memory gets tight, the contents
of the container’s associated file are swapped
back to the file instead of to the swap space.

e User programs may use pointers pointing into
the memory mapped file and may act on them
like on all other pointers.

o Simple objects do not have to be deserialized
and copied from the container. Since their de-
serialized representation is the same as their
serialized one, it is sufficient to return a ref-
erence/pointer to the object’s address in the
memory-mapped area.

While this approach sounds simple, much care needs
to be taken with its implementation. The size of the
area to be mapped into memory needs to be known
a priori. If more space is required than originally re-
quested, the file needs to be resized and the memory
area needs to be remapped. In this case all pointer
references to the memory mapped region might have
to be calculated anew since it cannot be guaranteed
that the resized container can be remapped to the
same address as before [Bac86, LMKQ90].

Theoretically, it would be possible to map different
parts of the file to different memory regions and
thus getting around this problem. This, however,
would require the container to maintain a mapping

for each region and address calculation would get
complicated and most probably inefficient.

Unfortunately, no memory management is available
for the memory provided by the memory mapped
file. Thus, we had to implement our own persis-
tent allocator class that manages the free blocks of
the memory mapped file. The interface provided by
the persistent allocators is explained in Section 4.5.
Similar to STL, this allocator class is used by all
persistent containers.

4.3 References

The most challenging part of PSTL with regard
to STL-compatibility was the references returned
by some of the container’s member-functions (e.g.,
front()). For this problem, however, it is impor-
tant to distinguish between fragile objects (objects
using pointers) and simple objects (objects without
pointers).

If the container only stores simple objects, it is suf-
ficient to return a reference to the memory address
the object is stored at. This is because the object’s
serialized and deserialized representation is the same
and the object’s size is well known and does not
change. Hence, there is no danger of accidentally
overwriting the container’s internal data.

If the container stores fragile objects, however, the
object needs to be deserialized and thus copied into
a temporary buffer. Otherwise, the user would not
be able to use it. However, if the deserialized copy
changes, we want the serialized version of the ele-
ment to be changed as well.

The straightforward approach would be the provi-
sion of a wrapper class overriding all of the original
methods and serializing the element back to disk
when necessary. This is ugly, however, and is not
guaranteed to work since some of the class’s non-
virtual functions might have been expanded inline.
Fortunately, this problem can be solved cleanly us-
ing templates.

PSTL returns a reference object that encapsulates
the position of the data structure in the memory
mapped area, provides a deserialized copy of the
data structure and in case of a non-constant refer-
ence writes the element back to disk when the ref-
erence object is destructed. This is achieved by a
generic wrapper similar to the one shown in Fig-
ure 4. The wrapper only needs to be parameterized
with the value-type’s serialization trait.



template <class Tr>
class __pstl_ref: public Tr::value_type {
// typedefs,
serializer_type *s;
offset_type o;
public:
__pstl_ref(const value_type &x,
Tr *ser, offset_type off)
: value_type(x), s(ser), o(off) {}
“__pstl_ref() {
s->destruct (o) ;
s->serialize(*(value_type#*)this,o);
}
I

Figure 4: PSTL’s Reference Class

While PSTL’s reference objects ensure that changes
will be written back to disk after the element’s mod-
ification, the element will be written back to disk
only after the reference’s destruction. To prevent
multiple wrappers of the same element from inter-
fering with each other a cache object should keep
track of the instantiated wrapper classes and en-
sure that no more than one wrapper is instantiated
for a given element within one process. The lock-
ing mechanism ensures that different processes are
only allowed to have constant references at the same
time.

4.4 Locking

Since we want several processes to be able to ac-
cess PSTL’s container’s simultaneously, we added a
locking mechanism that ensures mutual exclusion.
The current implementation of PSTL simply adds
two new functions to each container: lock() and
unlock(). lock() locks the container for shared
or exclusive access and unlock() unlocks the con-
tainer. PSTL also maintains an internal lock stack
to ensure that different functions locking the same
container do not interfere with each other. For in-
stance, a function might request to lock a container
that has already been locked by its process (i.e., by
its caller). In this case lock() does not have to
lock the container since it is already locked. When
the function unlocks the container, however, the
container must not be unlocked since the container
should be still locked by the caller.

Based on the design of STL, however, it should be
possible to add a transparent locking facility. When-
ever an iterator is requested, the container could be

locked and with the iterator’s destruction it could be
unlocked. Depending on a constant or non-constant
iterator, the container would be locked shared or
exclusively. The same would apply to references re-
turned by the container. Unfortunately, depending
on the container’s value type PSTL uses a wrap-
per class or a builtin C++ reference. While the
wrapper class would support a transparent locking
mechanism, the latter does not since C++’s builtin
references do not provide a destructor that could be
used for unlocking the container. A simple solution
of course would be to always return a wrapper ob-
ject. This issue will be attacked in future versions
of PSTL.

4.5 Implementing More Persistent Con-
tainers

In case the container types provided by PSTL are
not sufficient, it is easy to implement new ones that
better fit the requirements of special purpose appli-
cations. The implementation of a persistent con-
tainer is similar to the implementation of a volatile
container, except that offsets have to be used in-
stead of pointers and instead of allocating memory
using new, it has to be requested from the persistent
allocator class. The persistent allocator class pro-
vides the following functions for the management of
the container’s persistent memory:

off2ptr () /ptr2off () convert offsets to pointers
and vice versa. While offsets must be stored in
the container, they need to be frequently con-
verted to pointers to operate on the memory-
mapped storage area.

nvalloc() /nviree() allocates/frees a memory
area within the file. Whenever one of these
functions is called, the container’s storage area
might have to be resized and might have be
remapped to a different memory area. Thus,
pointers into the persistent storage area need
to be recalculated or verified after calling this
function.

getdata() /setdata() returns/sets the offset to
the root memory area of the container’s data
structure. Using getdata(), the persistent
containers gain access to pre-existing elements
at the container’s construction time.



5 Evaluation

We evaluated PSTL in terms of compatibility by
adapting some sample applications we had written
previously to be used by the containers provided by
PSTL instead of those provided by STL. Though
PSTL has not yet been tuned for performance, we
will also give a short performance evaluation to give
the reader a rough estimate of PSTL’s current per-
formance.

5.1 Compatibility

The main difference from STL is the extension to
allow the user to supply a custom serialization func-
tionality. While we have included some serialization
classes for common value types, it is likely that the
user will have to supply a custom serialization trait
for his own value types. Additionally, the filename
of the container needs to be specified when instan-
tiating a PSTL container.

vector<int> v(); // STL vector

pvector<int> pv("/tmp/vector"); // PSTL vector

pvector<int,pallocator,myserializer>
pv2("/tmp/vector2"); // use my serializer

When converting our test applications from using
the containers provided by STL to the ones pro-
vided by PSTL, we identified that users typically
make assumptions about the implementation of the
containers. A common assumption is that the it-
erator of a vector is implemented as a pointer or
that a reference is implemented as a C++ refer-
ence. While this works in combination with most
STL implementations, it is not compliant with the
standard [ISO98].

T* i=pv.begin(); // error
pvector<T>::iterator j=pv.begin(); // ok
T& r=pv.front(); // error
pvector<T>::reference s=pv.front(); // ok

As we have explained in Section 4.3, PSTL uses its
own wrapper class as a reference. Fortunately, this
is identified by the compiler and thus can be cor-
rected by the user easily. The same applies to ref-
erences returned by PSTL.

PSTL’s non-constant references copy their elements
back to disk, regardless whether they have been
modified or not. This is not the case for constant

references as they must not be changed by defini-
tion and thus do not have to be written back to
disk. Hence, if performance is of importance, one
should distinguish between member functions re-
turning constant (e.g., front() const) and non-
constant references (e.g., front () ()).

C++ resolves the member function to be called
based on its function name and the arguments in-
cluding the implicit this argument. Only in case
of a constant object pointer/reference, the constant
method will be chosen. The following code clarifies
this.

pvector<int> pvi("/tmp/filename");
const pvector<int> &pv2=pvi;

/**¥x ok, but inefficient *¥**/
pvector<int>::reference ref=
pvl.front(); // call ref begin()
pvector<int>::const_reference crefl=
pvli.front(); // call ref begin() and
// convert ref to const_ref

/*xx* ok, and efficient **¥x/
pvector<int>::const_reference cref2=

pv2.front(); // call const_ref begin() const

A set of polymorphic elements is typically stored
by parameterizing the container with the pointer to
the base class (<base_type*>) and allocating the
elements on the heap. Achieving the same behav-
ior with PSTL requires the user to specify a custom
serialization trait for base_typex. Serialization is
straightforward by calling the appropriate serializa-
tion function. To allow for extensibility the deseri-
alization function should be implemented using ex-
emplar types [Cop92] (sometimes also referred to as
virtual constructors).

If the performance of manipulating persistent el-
ements is of major concern the user may spec-
ify his own reference type within the serialization
trait. This allows the reference type to gain access
to PSTL’s data allocator and manipulate the data
structure in the persistent storage area directly.

Even though, in case of concurrent access to the con-
tainers, PSTL requires to lock and unlock the con-
tainers explicitly, this is not a compatibility prob-
lem. STL implementations do not implement per-
sistent containers and thus do not allow simultane-
ous access. In case a program should be retrofited
to allow multiple processes to access the same data



structure, it is necessary to review the code for pos-
sible deadlock situations anyway. In future versions
of PSTL, however, we will try to implement a trans-
parent locking facility as mentioned in Section 4.4.

5.2 Performance

So far, our efforts on PSTL focused on compatibil-
ity with STL and not on its performance. How-
ever, we were still curious to see how it would per-
form in comparison to Berkeley DB [Sle00] (with
logging for recovery or transactions disabled) and
gdbm [GND99], the leading persistent container li-
braries available for Unix.

The computer used for this benchmark was a
Pentium II (350MHz), 256MB of RAM, and a
Seagate 4GB hard drive (ST34323A). The com-
puter was running RedHat 6.1 (Linux kernel 2.2.12,
glibc 2.1) and all container libraries and test ap-
plications were compiled using gcc-2.95.2 using -02
for optimization. Each application was executed
5 times and the median was chosen for our perfor-
mance comparison.

Due to the lack of available benchmarks for the eval-
uation of persistent container libraries, we have im-
plemented our own applications: an address book
mapping family names to addresses and phone num-
bers and a resource reservation system. Both appli-
cations are based on associative containers with the
difference that the resource reservation system uses
a simple object as key and thus favoring PSTL. In
the following, however, we will limit our discussion
to the address book application (Table 1). The re-
sults of the resource reservation system are available
from the PSTL web site together with the source
code of the benchmarks.

59840 entries 148397 entries

Database | PSTL BDB gdbm | PSTL BDB
Insertion 9.23 14.73 15.59 31.65 45.28
Iteration 4.30 7.32 8.50 10.30 20.28
Lookup 2.21 5.10 3.00 5.86 16.00
Deletion 69.23 16.27 12.53 | 482.19 27.58

Table 1: Address Book Benchmark (seconds)

Table 1 shows the results for two different database
sizes. One with 59840 entries without duplicates
since gdbm does not support duplicate keys and one
with 148397 entries with duplicates. Insertion refers
to inserting all the elements, iteration to iterating

over all of the elements 10 times, lookup looking up
each element, and deletion to removing all elements
one after the other.

Astonishingly, in many cases PSTL performs better
than its competitors. We assume that one of the
reasons is PSTL’s use of memory mapped files.

Typically, Berkeley DB does not use memory
mapped files since this would restrict the size of the
database to the size of the address space. With the
advent of 64bit computers, however, we do not be-
lieve this to be a problem for PSTL. Berkeley DB
only uses memory mapped files for databases opened
read only and smaller than a given threshold. If the
smaller Berkeley DB database is opened read only,
iterating over the elements takes 6.43 seconds and
2.03 seconds for looking them up. This does not
show much potential for performance improvement
of PSTL here. It is interesting to note that Berke-
ley DB scales better for inserting new elements and
PSTL scales better for iterating over elements and
looking them up. This might be due to the fact
that PSTL uses a red-black tree and Berkeley DB a
B-tree.

GNU gdbm uses a hash table for its internal repre-
sentation. This also gets clear by looking at its fast
lookup speed, even though it uses normal disk I/0.
Iteration over the elements is poor since gdbm only
returns the key when iterating over the container re-
quiring another lookup for the associated value. If
the key is sufficient, the time for iterating over the
elements is just 4.05 seconds.

PSTL’s performance, however, for deleting the el-
ements shows plenty of potential for improvement.
This is due to the fact that PSTL uses a linear list
for the management of free blocks sorted by their
location within the file. Deleting all of the elements
one after the other in random order populates the
list with a huge number of elements even though
adjacent free blocks are merged immediately. This
problem will be attacked in future versions.

6 Related Work

Currently, several persistent container class libraries
are available. The most prominent are the various
*xdbm databases.



6.1 dbm and Variants

dbm is one of the oldest libraries that provide
access to persistent containers. Under Unix,
dbm [Unia] and its newer variants (ndbm [Unib],
gdbm [GND99], Berkeley DB [Sle00]) are a de-facto
standard for persistent information storage.

The most advanced of the dbm databases is Berke-
ley DB. Unlike the older variants, it does not only
provide a hash table for its internal representation,
but also a B-tree and two different kinds of queue
formats as well as optional transaction management.
Additionally, it provides bindings for C, C++, Java,
and Tcl.

Berkeley DB requires the elements to be stored in
the database to be serialized before the database al-
locates the element’s memory forcing the element
to be copied twice. Additionally, the serialization
function does not have access to Berkeley’s memory
allocator and is forced to store the whole element in
one chunk. On the other hand, this approach en-
sures that the database cannot be easily corrupted
by the serialization algorithm.

Even though Berkeley DB provides C++ bindings,
it provides a very low level API like the older dbm
variants. Most of its functions work on DBTs (Data
Base Thangs) representing raw regions of memory.
Whenever a key/value pair needs to be stored in a
database, both key and value need to be converted
into a DBT. Additionally, when a value correspond-
ing to a key needs to be requested, the key needs to
be converted into a DBT and the database returns
a DBT representing the value.

PSTL, however, has an API compatible with STL
and the serialization function is part of the con-
tainer’s type. Besides that, the serialization func-
tion is called transparently and the user does not
have to deal with it. Based on our work on PSTL
it might be fairly simple to provide a C++ API for
Berkeley DB which is compatible with STL too.

6.2 Disk Based Container

The disk containers presented in [Nel98] use the
same approach as used by the *xdbm databases to
access elements stored in its containers. Similar to
PSTL, the elements in the database are referenced
by offsets instead of pointers.

Unfortunately, this work seems to be more an ex-
periment on how persistency could be achieved in

C++ without going into much detail. For instance,
the management of the free blocks in the container
is overly simple and only provides a fixed-size block
allocation scheme. This makes it difficult and inef-
ficient to use these containers in combination with
variable sized elements. The library is also incom-
patible with the containers provided by STL.

6.3 Persistent Template Library

The Persistent Template Library is presented in
[Ste98b] and [Ste98a]. PTL is a library that pro-
vides containers compatible with the ones provided
by STL. Unfortunately, the containers have some
severe drawbacks:

e Whenever a PTL container is allocated it is
copied from disk into main memory. After-
wards it behaves like the STL containers. This
is trivial since it uses the same code. When the
container is destroyed, its data is written back
to disk.

e Due to the above, the size of the container is
limited to the size of the main memory. A per-
sistent container, however, should be able to
accommodate more elements than fit into the
memory. This demand is essential for programs
that have to manage huge amounts of data.

e Only one process may instantiate a container
at one time since the container is copied into
main memory and other processes will see the
changes only when it is saved back to disk at
destruction.

This work is interesting because the author comes
to the conclusion that it is not possible to use the
allocator mechanism provided by STL to add per-
sistency. The author has solved the problem by
subclassing the corresponding container provided by
the STL and by supplying his own constructors for
reading the elements from disk and destructor for
writing them back. This, unfortunately, led to the
above disadvantages.

6.4 POST++

While POST++ does not provide persistent con-
tainers directly, it provides a simple and effective
storage for application objects [Kni99] and supports
the use of different storages for different objects.



Except for a slight instrumentation of the data
structures to be stored persistently, POST++ trans-
parently manages the persistence of the objects.
For the instrumentation of the data structures,
POST++ uses C preprocessor macros that regis-
ter the attributes to be made persistent. A special
macro is provided for the identification of pointers as
their management is more complex. Due to the ex-
plicit identification of pointers, POST++ even pro-
vides garbage collection to reclaim unused storage.

POST++ uses a different but nevertheless interest-
ing approach. The choice whether to use PSTL or
POST++ depends largely on the application do-
main. For instances, POST++ does not provide
persistent containers per se, it only provides the in-
frastructure to make your objects (including con-
tainer objects) persistent. Thus, if special purpose
data structures need to be made persistent and their
instrumentation is possible, POST++ might be a
good choice. Otherwise, we recommend the use of
PSTL.

6.5 Texas

Texas [SKW92] is a persistent storage system sim-
ilar to POST++ but instead of requiring the user
to instrument the data structures, it uses a pointer
swizzling technique in combination with runtime
type descriptors and slightly modified heap alloca-
tion routines. Runtime type descriptors are gener-
ated using an optional feature of gcc.

Objects are either allocated on the conventional
(transient) heap, or the persistent heap. In the im-
plementation presented in [SKW92], all the objects
allocated on the persistent heap are stored within a
single file, but the authors claim that it would not
be difficult to remove this restriction.

While Texas provides a simple and powerful way to
manage data structures located on persistent stor-
age, it has some shortcomings with regards to shar-
ing the persistent database. If several different pro-
cesses need to share the same database, they need
to share the same persistent page mappings. While
this might be simple in case of a single file used for
all persistent objects, it cannot be easily achieved if
different files are used for different persistent objects
and the files to be shared between the processes (or
the processes sharing the files) cannot be known a
priori.

7 Future Work

For the maintenance of free blocks, PSTL uses a lin-
ear list, sorted by the memory location of the free
blocks. This representation is highly efficient for
debugging purposes since it allows an efficient way
to check the allocation status of the whole file and
whether the free list has been corrupted (e.g., by a
method writing past its allocated memory area). As
we have shown in Section 5.2, however, it is ineffi-
cient from a performance point of view. To alleviate
this problem, we plan to provide a better allocator
class using a binary tree for the management of free
blocks.

PSTL does not yet implement all the containers
efficiently. It might be interesting to see whether
PSTL could profit from a data structure opti-
mized for block-sized access patterns like a B or
B+tree [Com79] or whether the operating system’s
cache management is sufficient.

We also plan to provide an associative container op-
timized for lookups using a hash table. It might also
be interesting to see whether gdbm’s algorithms can
be reused for this container to achieve not only inter-
operability with STL, but also with the most widely
used type of persistent container.

In future versions of PSTL we will also try to imple-
ment a transparent locking mechanism as explained
in Section 4.4.

8 Conclusions

Persistent STL (PSTL) containers provide a vari-
ety of benefits not available with existing persis-
tent container implementations available for C++.
They provide a variety of different persistent con-
tainers, allowing the container’s size to grow beyond
the available memory, and supporting STL’s object-
oriented programming model known to many C++
programmers.

In this paper we have shown the problems of adding
persistency to STL and demonstrated why it is im-
possible to use STL’s allocator mechanism to add
persistency to existing STL containers. This im-
possibility forced us to implement our own con-
tainer classes that are interface compatible with
STL. Based on this implementation, we have pre-



sented how STL’s design had to be extended to sup-
port persistency.

Based on PSTL, we explained how to implement
a transparent serialization facility without break-
ing interface compatibility with the corresponding
STL containers and without requiring any support
from the objects to be stored in the persistent con-
tainer. We solved this using a traits approach that
encapsulates the serialization functionality and al-
lows different containers to use different serialization
algorithms.

Except for the declaration of the container, ele-
ments are serialized and deserialized transparently.
This has been solved using a reference wrapper that
works in combination with both objects using vir-
tual and non-virtual member functions. Addition-
ally, the persistent allocator class used by PSTL’s
containers provides a simple but efficient means to
create new persistent container classes for special
purpose applications.

In an evaluation of the library we identified that
STL containers can easily be replaced with PSTL
containers. Only little modifications are necessary
in case of implicit assumptions about the container’s
implementation. This, however, is detected by the
C++ compiler. We have also included a perfor-
mance evaluation which will serve as a basis for fu-
ture improvements of PSTL.
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Availability

PSTL is distributed under the GNU Public License
and is available at http://www.infosys.tuwien.ac.at/-
NewsCache/pstl.html.
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