
Eperio: Mitigating Technical Complexity in Cryptographic
Election Verification

Aleksander Essex
University of Waterloo

aessex@cs.uwaterloo.ca

Jeremy Clark
University of Waterloo

j5clark@cs.uwaterloo.ca

Urs Hengartner
University of Waterloo

uhengart@cs.uwaterloo.ca

Carlisle Adams
University of Ottawa

cadams@site.uottawa.ca

Abstract

Cryptographic (or end-to-end) election verification is a promis-
ing approach to providing transparent elections in an age of
electronic voting technology. In terms of execution time and
software complexity however, the technical requirements for
conducting a cryptographic election audit can be prohibitive.
In an effort to reduce these requirements we present Eperio:
a new, provably secure construction for providing a tally that
can be efficiently verified using only a small set of primi-
tives. We show how common-place utilities, like the use of
file encryption, can further simplify the verification process for
election auditors. Using Python, verification code can be ex-
pressed in 50 lines of code. Compared to other proposed proof-
verification methods for end-to-end election audits, Eperio low-
ers the technical requirements in terms of execution time, data
download times, and code size. As an interesting alternative,
we explain how verification can be implemented using True-
Crypt and the built-in functions of a spreadsheet, making Epe-
rio the first end-to-end system to not require special-purpose
verification software.

1 Introduction

Voting and cryptography make strange bedfellows. One
has been the manifest duty of the members of free so-
cieties since antiquity. The other is a specialized and
mostly recent discipline of mathematics. As such, de-
signing a cryptographically verifiable election is as much
of a technical pursuit as it is a negotiation between sci-
entists and citizenry.

In the experience of ourselves and others, crypto-
graphic election verification has faced criticism and re-
sistance engendered by an ostensible lack of understand-
ability as a result of the use of cryptography. We there-
fore consider improving understandability among the
general public a critical direction of research and that
as a step in this direction, we must examine approaches
to reduce the technical complexity of implementing and
conducting cryptographic election audits.

In this paper we present Eperio, a protocol for crypto-
graphic election verification with this goal in mind. In its
basic form, verifying an election with Eperio involves an
auditor downloading a set of encrypted audit files from
an election website, opening a subset of them by enter-
ing a password and comparing the files to one another
for consistency using a spreadsheet application or small
software script. We believe this can greatly simplify the
typically in-depth technical component of cryptographic
election verification, especially relative to related sys-
tems.

We approach the design of Eperio in two related set-
tings. Firstly, the system should be secure under standard
computational assumptions, while using cryptographic
primitives that are simple and efficient. Secondly, the
verification software of the desired system should be
implementable, wherever possible, using either familiar
software tools, or custom open-source software with an
emphasis on compact code size.

Contributions The contributions of this paper include:

• The Eperio cryptographic election verification pro-
tocol and a proof of its security,
• A proposal for implementing cryptographic com-

mitments using symmetric-key encryption,
• A software implementation of the Eperio system,

which includes,

– An election verification script written in 50
lines of Python,

– An election verification procedure using True-
Crypt and OpenOffice Calc spreadsheet appli-
cation as an alternative to an automated script,

• A performance analysis of Eperio demonstrating
that it requires fewer cryptographic operations,
smaller audit datasets, less execution time and fewer
lines of software than other recently deployed crypt-
ographic election verification systems.

1



2 Challenges and Approaches to Voting
with Electronics

Electronic vote-counting methods have become increas-
ingly prominent. By 2006, less than 1% of the United
States voting-age population still voted by hand-counted
paper ballot, with over 88% of the votes being tal-
lied either by optical-scan, or some other form of elec-
tronic ballot tabulation [22]. However, software execu-
tion is not inherently observable, which has generated
widespread concern over its use in elections. Further-
more, beginning in 2004 with Kohno et al. [33], in-
dependent reviews have continued to uncover serious
security vulnerabilities in widely-used commercial sys-
tems; vulnerabilities that allow, among other things, un-
detectable tally manipulation if an attacker gains ac-
cess to the system under reasonable threat scenarios.
Recent studies have examined systems by ES&S [5],
Premier/Diebold [11, 12], Sequoia [4, 10], and Hart-
InterCivic [11, 29].

In response, a return to hand-counted paper ballots has
been suggested; however tallying by hand can be time-
consuming for the long, multi-contest ballots common in
many US precincts. Furthermore, while offering greater
transparency than electronic voting, full confidence in
an election result would require observing the process
end-to-end, which is a large time-commitment, extends
to only a single polling place, and is nullified if the bal-
lots are recounted at a later date. We seek a solution that
offers full confidence for all precincts and whose audit
can be conducted at any convenient time after the elec-
tion using commonplace computer software.

Our solution rests in cryptographic election verifica-
tion, which allows voters, and other public organizations,
to audit election results through the addition of three spe-
cialized components in the election process: an enhanced
ballot, a privacy-preserving vote receipt, and a crypto-
graphic proof of robustness. Through these components,
a voter can be convinced that their vote was counted
without being able to reveal to anyone how they voted.

Over two decades after the seminal groundwork was
laid by Chaum [14], Benaloh [7] and others, crypto-
graphic election verification has been used in real elec-
tions with binding results. An early Internet voting sys-
tem to use cryptographic verification was RIES, used in a
parliamentary election for about 70,000 absentee ballots
in 2004 in the Netherlands [28]. In 2007, a university
election in Canada used the optical-scan system Punch-
scan for 154 voters [24]. In 2009, the Internet system
Helios was used in a university election in Belgium for
5,142 registered voters [2], and in a university election
in the United States for 567 voters.1 In 2009, the optical

1http://princeton-helios.appspot.com

scan system Scantegrity was used in a municipal election
in the United States for 1,722 voters [13].

Despite these important milestones, cryptographic
voting is often criticized, among other things, for being
difficult to implement and conduct. The recent munici-
pal election in the United States provides a good exam-
ple: the two independent auditors of that election each
wrote several hundred lines of software code to pore
over the two and a half gigabytes of cryptographic au-
dit data.2 Many systems in the literature employ ad-
vanced cryptographic primitives and techniques not typ-
ically found in standard software libraries. This often re-
sults in the cryptographic software components of such
protocol needing to be custom coded, and has pointed us
toward being less reliant on custom implementations.

Is simplicity central to the acceptance of cryptographic
voting? On the one hand, there are examples of the gen-
eral population accepting cryptography without under-
standing the protocols that enable it (e.g., online bank-
ing or wireless network privacy). It is also the case that
some citizens do not fully appreciate current voting pro-
cedures (e.g., statistical recounts or ballot counterfoils)
used to add some level of election integrity.

We contend that universal verification—the ability of
anyone to participate in the election audit—is fundamen-
tal to the spirit of cryptographic election audits, and that
lowering the technical complexity of the audits follows
in that spirit.

2.1 End-to-End Election Verification

Eperio implements what the United States Election As-
sistance Commission defines as end-to-end (E2E) verifi-
cation [44]. We consider E2E verification to be the con-
junction of two properties: voter verifiable robustness
and ballot secrecy. The notation of robustness requires
that proof, or strong evidence, is made available to any
voter that his/her voting intent is included, unmodified, in
the election outcome. Simultaneous to this proof, ballot
secrecy should maintain anonymous association between
a voter and his/her voting intent. The security guarantees
of these properties range from computational to uncon-
ditional (with robustness and ballot secrecy never being
simultaneously unconditional). For the purposes of this
paper we pursue robustness and privacy in a computa-
tional setting.

As a formal definition of ballot secrecy, Benaloh and
Tuinstral define receipt-freeness as the property that a
voter is not able to provide useful information about their
vote after it is cast [9]. This definition is strengthened

2Software and audit results available online at
http://github.com/benadida/scantegrity-audit/
and http://zagorski.im.pwr.wroc.pl/scantegrity/

2

http://princeton-helios.appspot.com
http://github.com/benadida/scantegrity-audit/
http://zagorski.im.pwr.wroc.pl/scantegrity/


by Moran and Naor to account for an adversary that in-
teracts with the voter before and after casting [34]. An
even stronger notion, coercion resistance, is possible to
achieve in remote and Internet voting settings [31].

With regards to robustness, a prevalent model for E2E
voter verifiable robustness is to ensure three sequen-
tial properties. Firstly an auditor must be able to be
convinced that if a voter were to attempt to obfuscate
their vote, it would be obfuscated correctly (Marked-as-
Intended). Secondly a voter must be able to be convinced
that the obfuscation of their vote is included in a collec-
tion of obfuscated votes (Collected-as-Marked). Finally
an auditor must be able to be convinced that the collec-
tion of obfuscated votes is properly deobfuscated, pro-
ducing a self-consistent and correct tally (Counted-as-
Collected). When these properties are individually and
simultaneously shown to hold on the same data set we
say the election was Counted-as-Intended.

E2E Ballot and Receipt In addition to being a means
for a voter to register their vote, an E2E ballot provides
a means for generating a privacy-preserving receipt of
their vote. The literature proposes several methods for
obfuscating a ballot to create an E2E ballot receipt such
as encrypting a reference to the candidate and retain-
ing only the ciphertext (e.g., [1]), applying a randomized
permutation to a canonical list of candidates and retain-
ing only the position marked (e.g., [17]), substituting a
randomized code for each candidate and retaining just
the code (e.g., [16]), and splitting the vote into random-
ized partial shares and retaining only one of the shares
(e.g., [39]).

Although randomized candidate orderings are not le-
gal in all jurisdictions, its simplicity facilitates our dis-
cussion. In this paper we will consider a ballot to be a
paper ballot similar to the Prêt à Voter system [17] in
which the list of candidates is independently shuffled on
each ballot. To use this ballot style, a voter first locates
their preferred candidate and marks the associated posi-
tion. The voter then tears off just the marks (Figure 1
illustrates this), which is scanned and then retained as a
receipt. The candidate list is shredded by the voter be-
fore leaving the polling place. We refer to each position
(bubble) on the ballot that can be marked as a unique
markable region (UMR). Adapting Eperio to accommo-
date a range of ballot styles (both paper and electronic)
we leave for future work.

2.2 Election Auditors (A Who’s Who)
At first glance it may seem necessary for average vot-
ers to understand the underlying cryptographic protocol
in order to meaningfully participate. Although ideally
every participant would possess such a knowledge base,

realistically we see it as a collaboration between three
user types: voter, election auditor and protocol analyst,
each of which is associated with different knowledge and
technical requirements.

Voter A voter is someone who casts a ballot (and re-
ceives a receipt) in an election. The primary respon-
sibility of a voter with regard to E2E verification is to
substantiate their contribution to the election using their
ballot receipt. At a technical level this requires a voter
to confirm the election’s audit dataset is consistent with
their ballot receipt. Conceptually they should be aware of
the E2E properties and what role checking their receipt
plays in the broader verification process. A voter may
also participate as an election data auditor and/or proto-
col analyst, or delegate it to someone they trust. Alterna-
tively they may choose to ignore the verification process
altogether.

Election Data Auditor An election data auditor under-
takes to substantiate the outcome of a particular election
using the E2E protocol and the public audit dataset for
that election. At a technical level they must be able to
perform each of the audits either by using existing veri-
fication software, or by creating it themselves based on
a protocol specification and be able to interpret the re-
sults. If using existing verification software, they must
trust its correctness (or review the source code). They
must understand the technical details of each audit and
be convinced, at a high level, that the protocol is sound
(i.e., convincing).

Protocol Analyst The role of the protocol analyst is to
substantiate the security properties of the E2E protocol
to the voters and elections auditors. They must poses
sufficient expertise to decide at a formal level whether
the protocol is complete, sound and secret.

As we demonstrate in section 7, Eperio simplifies
the technical requirements of the election data auditor
through smaller data and code sizes, execution times, and
wider implementation options.

3 The Eperio Protocol

Eperio is closely related to the Punchscan and Scant-
egrity cryptographic election verification protocols. Un-
like Punchscan and Scantegrity which use a mixnet-like
structure to achieve the E2E integrity and privacy proper-
ties, Eperio combines its audit data into a single crypto-
graphic table structure. This in turn permits a coarser,
more efficient, cryptographic commitment scheme. It
also facilitates interesting implementation options such

3



as cryptographic commitments based on file-encryption
and E2E verification in a spreadsheet.

As an intuition of this structure consider several ballot
boxes, each of which contains a photocopy of each ballot
cast in an election. If you shake one of the ballot boxes,
the ballots will land with and ordering that is random and
independent of the other boxes. However if you were to
open that box and tally up the ballots, it will still pro-
duce the same winner as all the other boxes. In this way,
verifying an election tally with Eperio constitutes prov-
ing that each such ballot box is a shuffled copy of (i.e., is
isomorphic to) every other box.

This physical analogy is inherited from Aperio, a non-
electronic, non-cryptographic E2E protocol upon which
Eperio is based [23]. Aperio achieves the E2E proper-
ties based on physical security assumptions which, in the
following sections, we will translate into a cryptographic
setting.

3.1 Protocol Sketch
As a brief overview of the protocol, a set of trustees will
jointly generate a table with three columns. The first
column will contain a unique reference for each mark-
able region (e.g., optical scan bubble) on each ballot in
the election. The second column will indicate whether a
given region was marked or not marked (or alternatively
if the ballot was selected for an audit). Finally the third
column will contain the candidate/choice associated with
each markable region.

The rows of this table are randomly shuffled (analo-
gous to shaking a ballot box). It is easy to see that if the
first two columns are revealed, the information should
correspond to the set of all of the receipts in the elec-
tion. If the last two columns are revealed, the information
should correspond to the final tally. If all three columns
are revealed (or the contents of an unrevealed column are
implied through some functional dependency), then bal-
lot secrecy is compromised. The Eperio protocol proves
the correct formation of all three columns by only reveal-
ing the information implied in two of the three columns.
It uses a composition of cut-and-choose and random
audit techniques inspired by randomized partial check-
ing [30].

3.2 Entities
The Eperio protocol relies on the following entities,
which are standard in most E2E voting systems:

• A set of n election trustees (or the prover), P ,
tasked with generating a verifiable tally. P is as-
sumed to be a set of mutually distrustful and non-
collusive trustees. However the protocol can toler-

ate t ≤ n−1
2 trustees who collude or refuse to par-

ticipate.
• The set of authenticated voters who cast ballots in

the election.
• The first set of verifiers, V1, who verify that

their receipts were collected correctly (Collected-
as-Marked). V1 are either voters, or auditors that
were given access to a copy of a voter’s receipt.
• The second set of verifiers, V2, who verify that the

ballots are printed correctly (marked-as-intended).
V2 are either voters or auditors who went in person
to obtain a ballot to audit.
• The third set of verifiers, V3, who verify that the

tally is computed correctly from the collected re-
ceipts (Counted-as-Collected). V3 can include any-
one in any location with access to the election data.
• A malicious adversarial prover, P ′, who will at-

tempt to convince the verifiers that an incorrect tally
is correct.

• A malicious adversarial verifier, V ′, who will at-
tempt to break voter privacy and determine which
candidate was selected on a given receipt (or any
non-negligible information about this selection).

3.3 Functions

The Eperio protocol requires a set of standard functions
from the cryptographic literature: a threshold key agree-
ment modeled after the one due to Pedersen [37], a
cryptographically secure pseudorandom number genera-
tor (PRNG), a perfect shuffle algorithm, a message com-
mitment scheme (either perfectly binding or perfectly
hiding), and a public coin (or random beacon) to gen-
erate non-interactive challenges.

3.3.1 Distributed Key Generation/Reconstruction

◦ (y1, . . . , yn, κ)← DKG(n, t, l, f1, . . . , fn)
◦ κ← KeyRec(y1, . . . , yt+1)

DKG accepts from each of the n trustees a polyno-
mial of degree t, fi, with coefficients of bit-length l.
The coefficients are summed together, mod 2l, to
produce a new polynomial f̂ . Each trustee i receives
yi = f̂(i) as their share and the value κ = f̂(0)
forms a shared secret of bit-length l. t should be set
such that n ≥ 2t+ 1. KeyRec accepts at least t+ 1
shares, y1, . . . , yt+1, from a subset of the trustees
and outputs the shared secret κ.

3.3.2 Pseudorandom Number Generation

◦ {0, 1}l ← PRNG(κ, l)

4



Figure 1: Left: E2E-enabled optical scan ballots. Each
ballot consists of a unique serial number, a candidate list
printed in an independent random order, and a perfora-
tion between the optical scan ovals and the candidate
list. Upon marking the ballot, the candidate list is de-
tached and shredded. The remaining piece is scanned
and granted as a receipt. Because the candidate order-
ings are independent across ballots, knowing the mark
position alone does not reveal how a voter voted. Right:
Eperio table. Each optical scan oval (referenced by
a serial number and absolute position), its mark-state
(marked or unmarked) and the corresponding candidate
name are recorded in a randomly assigned row.

PRNG is a stateful function which takes as input
the shared secret, κ, as a seed and returns l new
pseudo-random bits each time it is invoked. For
simplicity, we omit l if the size of the output is clear
from the context.

3.3.3 Permutation

◦ π(Wi)← Permute(w1, . . . , wu,Π)
◦ π(Wi)← PermuteBlock(w1, . . . , wu, s,Π)

Permute accepts as input a list Wi of u elements
and a number, Π = O(u log(u)), of random bits
sufficient to perfectly shuffle the list3 and returns
a list containing elements w1, . . . , wu in permuted
order. For some s which divides u, PermuteBlock
applies Permute independently to each of the u/s
non-overlapping sub lists in Wi.

3.3.4 Commitment

◦ c← Commit(m, r)
◦ {0, 1} ← Reveal(c, r,m)

3Generating a random integer from random bits is non-deterministic
when the integer is not a perfect power of 2. Perfect shuffling algo-
rithms, like Fisher-Yates, require random integers. An upper bound on
the expected number of bits is 2(log2 u!).

Commit takes as input an arbitrary length message
m and a random factor r. It outputs a commitment
to the message c. Reveal accepts values m, r, and
c, and outputs 1 iff c is a valid commitment to m
and r. Otherwise it outputs 0.

3.3.5 Public Coin Toss

◦ {0, 1} ← PublicCoin()

PublicCoin returns a uniformly random bit. The
output should be unpredictable prior to being in-
voked and verifiable a posteriori.

3.4 Lists and Tables

The Eperio protocol relies on a particular data structure,
called the Eperio table, which is constructed from a set
of private inputs by the trustees. The Eperio table is a
novel data structure and the primary contribution of this
paper. It is shown in Figure 1 with a permutation-style
ballot, which we use to illustrate the protocol.

To facilitate clarity, we also denote some intermediate
lists and tables used in its construction. We use a bold
typeface to denote ordered lists and tables, and a script
typeface to denote unordered sets.

The following list and set are public inputs to the sys-
tem decided on prior to the election.

UMR List: U is the list of each unique mark-
able region (UMR) for the s candidates on
each of the b ballots. Elements are en-
coded as a ballot serial number and a posi-
tion, and are listed in ascending order. The
length of the list is u = s · b.

Candidate/Selection Roster: S is the set
of selections or candidates to appear on
the ballot, for each contest. Elements are
encoded as a character string of arbitrary
length. The size of the set is s. Without
loss of generality, we assume a single con-
test.

These are used by the trustees, in conjunction with the
functions defined above, to create the following private
list.

Candidate/Selection List: S ← U × S is
the list of candidates for each position on
a ballot composed by randomly selecting,
without replacement per ballot, an element
from S. It is ordered by U. The length of
the list is u.

5



The marks list will denote the final status of a markable
region. It is empty prior to the election and is provided
as a public input to the system after every ballot has been
cast.

Marks List: M is the list of marks corre-
sponding to each markable region in U. El-
ements include marked (1), unmarked (0),
and print audited (-1). The length of the list
is u.

The concatenation of these three lists defines a table that
collects all the private information of the election.

Print Table: P is a table formed by joining
U,M, and S. The dimensions of the table
are u× 3.

A proof of election integrity subsumes a proof that the
relations between each list in P is consistent with a uni-
versal view of the election. Pairwise, a correct U-M rela-
tion implies ballots were collected as marked (Collected-
as-Marked), a correct U-S relation implies ballots were
printed correctly (Marked-as-Intended), and a correct M-
S relation implies the ballots were counted as collected
(Counted-as-Collected). Note that revealing P(i,j) for
all i and j is sufficient, under our assumptions, for in-
dependently verifying the correctness of the tally. Un-
fortunately, this trivial approach would also destroy the
privacy preserving property of the ballot receipt—in con-
junction with P, receipts would provide proof of which
candidate was selected. Instead, we require a non-trivial
approach that can both establish integrity and preserve
ballot secrecy.

The Eperio table is a data structure that, with a set
of queries, can prove the correct formation of P while
maintaining the same level of privacy provided by only
revealing the list of receipts and the final tally. Specifi-
cally, it is a collection of x instances of P that have been
independently shuffled row-wise. By revealing portions
of and relations on this structure, we will show that a
complete and robust proof of integrity can be established
with this minimal disclosure.

Eperio Table: E is a table formed by x in-
stances of P, each of them independently
shuffled row-wise. The dimensions of the
table are u× 3× x.

3.5 Protocol
We now outline the protocol for generating an Eperio ta-
ble and the various outputs required for proving it en-
codes a correct tally. The focus of this paper is on the
protocol for verifying this proof, which is orthogonal to

the issue of how the data is generated. However the se-
curity proof we provide in the next section encompasses
the generation of the data, and so we give it considera-
tion. The first three steps of the protocol are conducted
prior to the election: initial setup, generating the Epe-
rio table, and generating the commitments to the Eperio
table. These steps are performed with a blackbox com-
putation (for more on this primitive, see Section 5).

3.5.1 Initial Setup

The setup assumes that a list of candidates, S, is avail-
able as well as the number of ballots, b, to be used in the
election. The first task is for the trustees to generate an
election secret and receive shares of this secret.
◦ (y1, . . . , yn, κ)← DKG(n, t, l, f1, . . . , fn)

3.5.2 Generate Eperio table

Next, the trustees generate the Eperio table E. U is
formed by listing the ballot and position numbers in or-
der. To form S, the candidate list is repeated b times and
then randomly permuted on a ballot-by-ballot basis.
◦ ΠS ← PRNG(κ)
◦ Si ← PermuteBlock(Sb, s,ΠS)

Table P is created by placing U, M, and S beside each
other in columns. M is initially empty, but in future
meetings will include the marks recorded during the elec-
tion. P is used to print the ballots. We use the symbol :
to denote an entire vector within a matrix.
◦ P(:,1) ← U
◦ P(:,2) ←M
◦ P(:,3) ← S

Finally, x independent row-wise shufflings of P are gen-
erated. Each shuffled instance of P is stored in the Eperio
table, E(i,j,k).

◦ For k = 1 to x,
◦ ΠE ← PRNG(κ)
◦ E(:,1,k) ← Permute(P(:,1),ΠE)
◦ E(:,2,k) ← Permute(P(:,2),ΠE)
◦ E(:,3,k) ← Permute(P(:,3),ΠE)

We define, for future use, the following function. It en-
capsulates all the steps in this ‘generate Eperio table’ sec-
tion.
◦ E← GenE(κ)

3.5.3 Generate Commitments

The trustees are now ready to commit to the data in E.
For each instance 1 < k < x, they will commit to both

6



the E(:,1,k) and E(:,3,k) columns. This requires x × 2
commitments. The random factors for these commit-
ments are stored in an x× 2 table R. The resulting com-
mitment is stored in the corresponding table C.

◦ For i = 1 to 2, j = 2i− 1, and k = 1 to x,
◦ R(i,k) ← PRNG(κ)
◦ C(i,k) ← Commit(E(:,j,k),R(i,k))

◦ Publish C

Note that 2i− 1 is simply the mapping {1→ 1, 2→ 3},
used to denote that commitments to the first and third
columns of E are stored, respectively, in the first and sec-
ond rows of C. C is published to the bulletin board.

3.5.4 Voting

Registered and authenticated voters are issued a paper
ballot with a randomized candidate list according to P.
After marking the ballot, the candidate list is detached
and destroyed (e.g., placed in to a paper shredder). The
remaining strip is scanned by an optical scanner and the
strip is retained by the voter as a receipt. The optical
scanners will record for each ballot which position was
marked, as well as the ballots that were print audited. Af-
ter the election, these are placed into the list M. Without
knowing P(:,3), this information does not reveal which
candidate was voted for and can be published.

◦ PublishM

3.5.5 Compute Tally

At least t + 1 trustees submit their election secrets to
the blackbox computation, which regenerates the key and
the Eperio table. This time, the completed marks list is
shuffled along with the rest of the table.

◦ κ← KeyRec(y1, . . . , yt+1)
◦ E← GenE(κ)

For each instance x, they publish the corresponding
marks list. Each of these lists is a shuffled version of
the original M.

◦ Publish: E(:,2,:)

Finally, a tally is computed from any E(:,2,k) and E(:,3,k)

pair of columns, and the list of totaled values for each
candidate, denoted τ , is published. This can be consid-
ered an asserted tally, as the purpose of E2E verification
is to prove that this tally is correct.

3.5.6 Generate the Linkage List

To ensure that the Eperio table is consistent with what ac-
tually appears on the printed ballots in the election, veri-
fiers have the ability to keep an issued ballot for purposes
of auditing its printing. If a ballot was chosen to be print

audited and the first position contained candidate Bob,
then a row corresponding to this markable region will
exist in E at an unknown row. The row will be differ-
ent for each instance. If the ballot is printed correctly,
each corresponding row in each instance should contain
Bob in the third column. The print auditor would like
assurance of this fact.

However since commitments to only entire columns
E(:,1,k) and E(:,3,k) exist, this fact cannot be directly re-
vealed without revealing both columns for a given in-
stance. Doing this would reveal which candidate was
selected for every receipt and cannot be pursued. In-
stead, the election trustees will indirectly establish this
fact. The trustees assert the row number, a, in each in-
stance corresponding to every audited markable region.
Which markable regions are audited is contained in the
marks list, M, with -1 recorded for that entry. The list of
asserted row numbers is called the linkage list, L, and it
is made public.
◦ for i = 1 to u and k = 1 to x:
◦ if Mi = -1:
◦ Find: a s.t. E(a,1,k) = Ui

◦ L(i,k) ← a

3.5.7 Audit Challenge and Response

After the tally has been posted, the trustees prove to
an independent auditor that the tally was calculated cor-
rectly. They do this through a cut-and-choose protocol.
First the trustees regenerate the election secret and the
Eperio table.
◦ κ← KeyRec(y1, . . . , yt+1)
◦ E← GenE(κ)

Next, they invoke the public coin toss function to gener-
ate one flip for each of the x instances.
◦ for k = 1 to x:
◦ z ← PublicCoin()
◦ Zk ← z
◦ Publish: R(z+1,k)

◦ Publish: E(:,2z+1,k)

Each flip is recorded in Zk. Depending on the flip, they
either reveal the first two or last two columns in each
instance. Recall that E(:,2,:) was published previously.
This is illustrated in Figure 2.

3.6 Verification
We now show the steps that the verifiers take to check
that the published data corresponds to a tally that is
correct. Recall there are three sets of audits (and cor-
responding verifiers). The first set, V1, are the voters

7



Figure 2: Auditing Eperio table instances. Two exam-
ple instances of the Eperio table during auditing. Each
instance alleges to contain the same information, but in
an independently shuffled order. Left: E(:,3,1) was
challenged (then revealed), allowing verifiers to tally the
election. Right: E(:,1,2) was challenged (then re-
vealed) allowing voters to check their receipts. The grey
bars symbolize cryptographic commitments that will re-
main unopened to protect ballot secrecy.

who check their receipts (or provide a copy to some-
one they delegate to check on their behalf). If the re-
ceipt corresponds to ballot number b and contains s po-
sitions that are either marked (1) or unmarked (0), the
auditor should check that the status of each position i
on the receipt matches the status recorded at Mj , where
j = s(b− 1) + i.

The second set of verifiers, V2, should check the link-
age list against their print audited ballots. Let a = L(i,k)

for an i on their ballot and an instance k. Depending
on the random coin for instance k, V2 should check that
E(a,1,k) matches the associated markable region on the
ballot or E(a,3,k) matches the associated candidate. They
should do this for all i on their print audited ballot and
each k in the election.

These two audits establish that the reported marks cor-
respond to what appeared on voter’s completed ballots
and that what appears on the ballot corresponds to what
is in the pre-committed Eperio table. The final step is
to ensure that the asserted tally, τ , corresponds to the
marks. Recall that for each of the x instances, a random
coin was flipped to reveal value z ∈r {0, 1}. The third
set of verifiers, V3, should do the following.
◦ for k = 1 to x:
◦ z ← Zk

◦ CheckReveal(C(z+1,k),R(z+1,k),E(:,2z+1,k))
◦ If z = 0:
◦ Check {E(:,1,k),E(:,2,k)} ∼= {Ui,Mi}

◦ If z = 1:
◦ Check {E(:,2,k),E(:,3,k)} ∼= τ

Here ∼= means that the two pairs of tables are
isomorphic—i.e., they are a permuted representation of
the same information.

4 Security

In this section, we summarize the main results of our se-
curity proof, which can be found in the full technical re-
port version of this paper (see Section 11 for link). Given
a transcript of the entire protocol, the asserted tally can
be either accepted or rejected. If the asserted tally is
correct, the decision will always be to accept (complete-
ness). If the asserted tally is not correct, the decision will
be to reject with a high probability (soundness). Finally,
the outputs do not provide any information that can be
used by a computationally bounded adversary to deter-
mine any non-negligible information about which candi-
date was voted for by any voter (computational secrecy).

Let P be an unbounded prover (the election authority)
and V be a PPT-bounded verifier. Either entity may em-
ploy a malicious strategy and we denote this with a prime
(P ′,V ′). Recall that τ represents the asserted tally and
let ρ be the asserted receipts.

Soundness The soundness of Eperio relies on two as-
sumptions:

1. The function Commit(m, r) is perfectly binding.
That is, for any m1 such that Commit(m1, r1) =
c1, there does not exist any r2 and m2 6= m1 such
that Reveal(c1, r2,m2) = 1.

2. The function PublicCoin() is perfectly unpre-
dictable before invocation.

Let b′r be the number of modified ballot receipts, and
0 ≤ p1 ≤ 1 represent the fraction of voters who conduct
a receipt check. Let b′p be the number of misprinted bal-
lots, and 0 ≤ p2 ≤ 1 be the fraction of ballots that are
print audited. Recall there are x instances are in E(:,:,k),
for 1 ≤ k ≤ x. Given the above assumptions hold, it is
proven (in the technical report) that the probability of V
rejecting a malformed transcript from P ′ is:

Pr[REJECTP′,V ] = min[(1− (1− p1)b
′
r ),

(1− (1− p2)b
′
p)(1− 1

2x
)].

Computational Secrecy The secrecy of Eperio relies
on the following assumptions:

1. The maximum number of colluding trustees is t.
2. At least one trustee submits to DKG an fi drawn

with uniform randomness from Zt
l .

8



3. All outputs are computed with a blackbox.
4. Any polynomial-sized output from PRNG(κ) pro-

vides no non-negligible advantage to a PPT-
bounded adversary in guessing either κ, the next bit
in the output, or any unobserved previous bit.

5. The function Commit(m, r) is semantically secure
and computationally hiding. That is, given either
c1 = Commit(m1, r1) or c2 = Commit(m2, r2) for
any chosen m1 and m2, a PPT-bounded adversary
should have no non-negligible advantage in guess-
ing which message was committed to.

Let εA4 and εA5 be the advantage specificied in as-
sumptions 4 and 5. Given all of the assumptions hold, we
prove (in the technical report) that the advantage of P ′
recovering non-negligible information about any voter’s
selection given the full transcript as opposed to just the
final tally is:

|Pr[RecoverSel(ViewV′(ρ, τ,C,L,E(:,2,:),Rz) = 1]−
Pr[RecoverSel(ViewV′(τ)) = 1]| ≤

εA4 + εA5.

Additional Claims In addition to the above proofs, we
also show that Eperio is complete and can be modified to
have everlasting privacy (i.e., V is unbounded and P is
PPT-bounded).

5 Practical Primitives

In this section, we revisit a few of the cryptographic
primitives needed in Eperio. In particular, we are inter-
ested in options that allow for useful deployment options.

Blackbox Computation The Eperio protocol requires
the generation of the Eperio table to be done using a
blackbox computation. While in theory, the task per-
formed by the blackbox could be made into a multiparty
computation (where only privacy is required as correct-
ness is provided by Eperio), we instead propose the use
of a semi-trusted computer. It is semi-trusted in the sense
of only providing private evaluation of functions; the
correctness can be determined through the audit. That
said, mechanisms are provided to encourage correct eval-
uation. To this end, we assume disclosed source code for
the functions to be evaluated is provided in advance and
some attestation mechanism is available to ensure it is
the same code running on the computer.

All tasks performed by the trustees can be accom-
plished by regenerating the Eperio table, and the regener-
ation of this table can be accomplished through a thresh-
old of secret shares from the trustees. Therefore the com-

puter should not have any persistent memory and its in-
ternal state should be purged after the outputs have been
published. While this assumption may seem strong, in
each of the recent occasions where end-to-end verifiable
voting systems were used in real-life binding elections,
semi-trusted computers were deployed: e.g., Punchscan
at the University of Ottawa [24], Helios at Université
Catholique de Louvain (for key generation from the de-
scription in their paper) [2], and Scantegrity at Takoma
Park, MD [16].

Cryptographic Commitment We are interested in us-
ing symmetric-key file encryption as a commitment func-
tion for its speed, simplicity and widespread availabil-
ity of software implementations. For Eperio, this means
putting the columns of the Eperio table into individuals
files, encrypting them under a randomly chosen key, and
posting the encryption as a commitment. To open the
commitment, the encryption key is revealed and the file
can be decrypted. While our implementation of Eperio
can be easily modified to work with any standard com-
mitment function, we use this approach to simplify the
experience for voters who want to verify the proof for
themselves. File encryption utilities are readily available,
easy to use, and the commitment has message recovery.

Let E be a pseudorandom permutation (PRP):
{0, 1}k×{0, 1}m → {0, 1}m. Let M be a message of L
m-bit blocks and let IV be a random m-bit initialization
vector. Define E to be the cipher block chaining (CBC)
mode of encryption that encrypts M = m1, . . . ,mL un-
der k-bit key K and m-bit IV . E is defined as: c0 = IV
and ci = E(K, ci−1 ⊕ mi). Assume M is exactly
L · m bits long and k = m. Let D be its inverse de-
cryption function applied to C = c0, . . . , cL under K:
M = D(K,C).

Theorem 1: As defined, E is indistinguish-
able under a chosen plaintext attack (CPA).
[6]

Conjecture 2: As defined, D behaves like
a pseudorandom function with respect to
collisions when C is held constant (note
the difference from standard assumptions
on M and C with a fixed K). That is,
M ← DC(K) has random collisions for
a fixed C and a variable K.

Theorem 3: Define a commitment with mes-
sage recovery function as (c, IV) ←
Commit(M,K) = E(K, IV,M‖f(M)),
where E is, as defined, CBC mode with a
pseudorandom permutation, and f(M) =

9



M‖M is a redundancy function.4 Define
M ′ ← Reveal(C,K) = D(K,C). M ′

is only accepted when M ′ has the correct
formM‖f(M) for someM . We show that
such a commitment is computationally hid-
ing under Theorem 1 and statistically bind-
ing under Conjecture 2.

We omit a proof of Theorem 3 here but it is included
in the full version of the paper. Because the commit-
ment has message recovery, its Reveal function differs
slightly from the commitment used earlier. We have
demonstrated a very specific statistically hiding commit-
ment function that can be constructed from a block ci-
pher, assuming conjecture 1 holds. We model this ideal
functionality in the real-world with AES-128-CBC in the
next section.

Public Coin Toss Voting systems often require the use
of a public coin for the purposes of fairly implement-
ing the cut-and-choose aspect of the audits. In the case
of conventional voting, it is used to select precincts for
manual recounts. Cordero et al. suggest a protocol us-
ing dice [21]. Clark et al. note that dice outcomes
are only observable by those in the room, and suggest
a protocol for auditing E2E ballots using stock market
prices [18], which has recently been given a more formal
analysis [19]. This was suggested earlier by Waters et
al. outside of the voting context [42]. A further alter-
native is to use the Fiat-Shamir heuristic [26], which is
secure in the random oracle model. However, a require-
ment for Fiat-Shamir is that the challenge space is large.
In our case, the number of challenge bits is the same as
the number of proof instances—for 10 or 20 instances,
Fiat-Shamir is not secure. Thus, we use the stock market
protocol. The output from a statistically-sound PRNG is
seeded with a random extraction of a pre-selected port-
folio of closing stock prices. Evaluation of challenges
occurs at least a full business day after the audit data has
been committed to [19].

6 Implementation

Election Generation Tool The hardware/OS platform
design of the election generation software tool follows
directly from previous systems [2, 16, 24] whereby a
diskless, stand-alone computer is booted from a Linux
live-CD. The Eperio election generation software is then
loaded via a USB-key after being certified by external ex-
perts. Election data is generated and written back on to
the USB sticks, at which point the computer is shut down

4We thank and acknowledge Ronald L. Rivest for suggesting this
redundancy function for creating a binding commitment from a block
cipher. Any errors in the analysis are our own.

Figure 3: Election generation wizard. Trustees are
guided through the complete process of selecting elec-
tion parameters and setting up strong passwords prior to
generating ballots and cryptographic audit data.

(it and the live-CD are then optionally placed beyond
use). The election generation software itself is separated
in to graphical user-interface, and cryptographic/back-
end components. The primary cryptographic operations
(i.e., file-encryption based commitments) were realized
using function calls to OpenSSL. We implemented the
election generation tool in Python using the GTK+ GUI
library, which is a standard to most GNOME Linux live-
CD distributions. The graphical layout consists of a
multi-panel “wizard” work flow (shown in figure 3) to in-
crementally guide election trustees through parameter se-
lection and password input. Unlike the Punchscan/Scant-
egrity software implementation, which requires some
initial system configuration, the Eperio trustee interface
software is intended to be self-contained and runnable
directly following a live-CD boot.

Bulletin Board The implementation of secure public,
append-only bulletin boards is an open area of research.
In its simplest form, the bulletin board consists of signed
election audit data available on a public FTP server ad-
ministered by the election authority, and which is closely
monitored and archived/mirrored by any interested party.
Mirroring of audit data can be an important peer-service
provided between verifiers since the election authority
may maliciously attempt to modify commitment data
throughout the course of the election. It also ensures
long-term archiving of the audit data, which may oth-
erwise might be removed following the election.

Verification Script As a primary objective of Epe-
rio, the verification script was designed to be compact
and execute swiftly. A Python script externally calls
OpenSSL to decrypt relevant commitment files and then
performs the audits on them. We implemented proofs of

10



the Marked-as-Intended and Counted-as-Collected prop-
erties in a compact fifty (50) lines of Python code, and
have placed it online along with sample election audit
data. As will be discussed in the following section, this
represents the smallest implementation of a verification
interface relative to other major released implementa-
tions by an order of magnitude. We tested this imple-
mentation on Ubuntu 7.10 (Python 2.5) and 9.10 (Python
2.6) as well as on Mac OSX Leopard and found that it
could be executed without additional installation or con-
figuration. Verifiers using Windows would be required
to install Python and OpenSSL, or as an alternative, they
could be directed to burn and boot Linux live CD. With
the verification scripts on a USB key the entire audit can
be completed without actually installing or configuring
software on a verifier’s machine.

Verification using Spreadsheets An interesting alter-
native to writing a custom codebase is to use a spread-
sheet that can import a CSV file as a worksheet. We be-
lieve that spreadsheets can help broaden the appeal of
E2E verification, given many citizens who are not ac-
customed to reading/writing/running code do use spread-
sheets. Spreadsheets have grown to become one of
the most familiar computer applications, capturing a di-
verse cross-section of users in government, enterprise,
and consumer sectors. They are also widely available:
OpenOffice.org, a freely-downloadable open-source of-
fice productivity suite (which includes the Calc spread-
sheet application), reports over a hundred million down-
loads.5

We have developed a set of simple manual verifica-
tion steps using TrueCrypt and OpenOffice Calc. As
an overview of this implementation, the user manually
copies and pastes the revealed encryption keys into the
TrueCrypt volume password dialog to mount the en-
crypted volume. The unencrypted CSV file can now
be loaded directly in to the spreadsheet program as a
worksheet. The verifier can then complete the audit us-
ing only simple spreadsheet operations (COPY, PASTE,
SORT, etc). A full set of instructions is contained in the
full technical report. As an alternative to manual ver-
ification, most spreadsheet applications integrate power
macro/scripting languages that could automate the audit
checks.

Spreadsheets as an all-in-one election audit tool?
Although many spreadsheets support basic file-
encryption, cases of improper implementation (as
in [43]) have led to a general distrust of spreadsheets as
an encryption service. We observed that OpenOffice’s
file encryption leaks partial information about a file’s

5http://stats.openoffice.org

contents by storing an unencrypted/unsalted hash of the
first 1024 bytes of the compressed spreadsheet6, making
it unsuitable as an implementation of the commitment
scheme proposed in section 5. Indeed it is not clear
whether any of the major contemporary spreadsheet
applications would be suitable for implementing file-
encryption based commitments. Nevertheless, the
prospect of an “all-in-one” election verification tool al-
ready installed on most voters computers is an intriguing
one.

7 Performance Comparison

Let us examine the technical requirements of election au-
dits by comparing Eperio to several other major imple-
mentations. For space reasons we restrict our compar-
ison to recent systems that have been deployed in bind-
ing elections, specifically Punchscan, Prêt à Voter, Helios
and Scantegrity II. As outlined in section 3, Eperio uses
a cut-and-choose protocol to verify the correctness of the
ballot data structure. Through the use of the linkage-list
construct for print auditing, and the symmetric-key com-
mitment scheme outlined in section 5, the protocol al-
lows for the commitment of entire columns, causing the
number of required symmetric-key block operations to
grow with the number of voters/candidates divided by
the block size. The compactness of the verification pro-
cess follows from it: verification involves running a file-
decryption utility, followed by a sort and comparison of
columns with the asserted outcome.

Both Punchscan [38] and Scantegrity [16] rely on a
similar cut-and-choose protocol to audit their respective
data structures, but utilize a particular commitment and
print-audit scheme that requires each table element to
be committed to separately resulting in a much larger
dataset and number of symmetric-key operations. Un-
like Eperio and Scantegrity however, Punchscan encodes
ballot information in a way that is mostly invariant to the
number of candidates, resulting in some savings in terms
of data/number of overall block operations, although it
requires additional ballot commitments as a result of its
particular ballot style. Punchscan was first deployed
during University of Ottawa Graduate Students Associ-
ation’s (GSAÉD) annual general election in 2007 [24].
This election dataset (denoted GSAED07 in table 2) and
verification source code (written in C#) are available on-
line.7 Scantegrity was deployed during the 2009 Takoma
Park municipal election (supra. note 2). This election
dataset (denoted TAKOMA09 in table 2) and verification
source code (Python and JAVA) are also available online

6Open Document Format for Office Applications (OpenDocument)
v1.2

7http://punchscan.org/gsaed/

11

http://stats.openoffice.org
http://punchscan.org/gsaed/


System Mod Exp. Mod Mult. Symm. key ops Data (B) LOC (approx)

Eperio – – 3iv(log(2v) + 2)/16 6iv(log(2v) + 2) + 16i 50
Scantegrity – – 7.5civ 168civ 1000
Punchscan – – 7.5iv + 9v 168iv + 224v 2000

Prêt-á-voter 1.5itv – itv 288itv + 192v 1000
Helios v2. 9cv + ct 9cv 2.5cv 2064cv 1500

Table 1: Technical requirements for election verification: comparison of Eperio with other implementations for cryptographic
audits involving v voters, c candidates, t trustees and i proof instances.

(supra. note 3). We used the Python implementation to
produce timing results in table 2.
Prêt à Voter [17], also an E2E mechanism for

optical-scan elections, uses randomized-partial checking
of the correct behaviour of nodes in a decryption mixnet
[30]. Each election trustee separately maintains two mix
nodes in this network, and auditing the mixnet involves
verifying the public-key decryption of half of the cipher-
texts emanating from a given mix node. The number of
public-key operations a verifier must perform therefore is
the number of trustees times the number of voters. Au-
diting ballot printing also involves decryptions propor-
tional to the number of trustees. Prêt à Voter differs from
Eperio, Punchscan and Scantegrity in that it does not pre-
commit to cryptographic ballot forms—they can be gen-
erated (and audited) on-demand. This allows only voted
ballots to have to be decrypted by the mixnet, but the
print audit still requires more ballot forms be printed than
actually voted upon. Prêt à Voter was deployed in 2007
for the University of Surrey Students’ Union (USSU)
Sabbatical Elections. The audit dataset (USSU07) is not
currently available online. The verification interface was
written in JAVA.8

Helios v2. [2] is an E2E mechanism for remote vot-
ing that uses homomorphic tallying (i.e., tallying under
encryption) to protect voter privacy. To ensure the tally
is correct, a zero-knowledge proof of correctness accom-
panies the encryption of each candidate on each ballot in
the election. Likewise, a proof of decryption accompa-
nies the final tally. The primary computational require-
ment of Helios election verification comes from auditing
the inputs—each ballot requires 4 modular exponentia-
tions per candidate. The Helios verification interface was
written in Python.9 Helios v2. was deployed in 2009 in
an election at Universite Catholique de Louvain. The the
election dataset (UCL09) is not currently available on-
line. Timing analysis of a reference election of the origi-
nal implementation, Helios v1., is presented in [1] and is
denoted in table 2 as HELv1REF.

Audit dataset size For an election involving v vot-
ers, c candidates, t trustees and i proof instances, Ta-

8http://www.pretavoter.com
9http://www.heliosvoting.org/

ble 1 expresses each system in terms of the number of
modular exponentiations, modular multiplications, and
symmetric-key block operations required during the ver-
ification process, along with the size of the audit dataset
(bytes) and contributed software lines of code (LOC)
of the respective implementation. In the case of paper-
ballot systems, we include an additional 0.5v ballots
for the print audit. In the case of systems with pre-
committed ballots, an additional 0.5v ballots are included
to account for spoilage. Although the execution and data
complexities of the systems are all linear in the election
parameters, Eperio’s performance advantage stems from
its smaller constant factor.

Timing Basic timing analysis of election verification
on available data is presented in Table 2. Our test plat-
form was a 1.8GHz dual-core HP laptop running Ubuntu
Linux 9.10. Eperio timings were performed on data sim-
ulating equivalently sized elections.

Comparing execution times of the Eperio verification
script relative to three other systems (Punchscan, Scant-
egrity, Helios) on three election datasets shows Eperio
significantly faster in time-to-verify. As a concrete ex-
ample, using the Punchscan verification tool to audit the
2007 Punchscan election in [24], it took us 75 seconds to
complete, while an equivalently sized election run with
Eperio took us 9 seconds.

The timing result for the Scantegrity audit on the
TAKOMA09 dataset includes several audits relating to the
Scantegrity II ballot and voting method of the specific
election that we did not replicate, suggesting that a more
precise timing analysis would produce a smaller margin.

Code size: is less really more? Table 1 lists the ap-
proximate code size of published verification software
showing Eperio having a significantly smaller code base
than related systems. As a performance metric however,
software lines of code (LOC) is limited. There is debate
as to how code lines should be counted, as well as which
components to even include. It also does not take into
account whether more efficient implementations could
be created. Setting these questions aside, are small code
bases important for E2E audit software?

While ultimately smaller code bases are not a proof

12

http://www.pretavoter.com
http://www.heliosvoting.org/


Election Scantegrity Punchscan Helios Eperio

TAKOMA09 1127s – – 162s
GSAED07 – 75s – 9s

HELv1REF – – 14400s 1s

Table 2: Time to verify election audit dataset. Eperio times are for simulated datasets of equivalently sized election.

of relative simplicity or ease of implementation, we be-
lieve it is a signal of simplicity as well as a gesture for
engaging a wider audience.

8 Related Work

Throughout the 1980s and 1990s, many protocols for
cryptographic voting were proposed, the majority based
on either mix networks, originating with Chaum [14], or
additive homomorphic encryption, originating with Be-
naloh and Tuinstra [9]. The first generation of mixnet
protocols appeared before techniques for provably cor-
rect mixing were known, including a well-studied pro-
tocol by Fujioka et. al [27], while second generation
protocols, originating with Sako and Killian [40], use a
correctness proof.

Recently, implementation issues are given more con-
sideration. VoteHere [36] and Votegrity [15] are early
electronic systems where voters do not need to per-
form traditional cryptography, while VoteBox [41] al-
lows voters to obtain an encrypted ballot from an un-
trusted machine using a cut-and-choose protocol due
to Beneloh [8]. Prêt à Voter [17], Punchscan [38],
Scratch & Vote [3], ThreeBallot [39], and Scant-
egrity [16] are examples of systems that use paper bal-
lots, require no cryptography for vote capture, and offer
a privacy preserving receipt to each voter. Civitas [20] is
an internet system based on a protocol by Juels et al. [31]
for high coercion elections, while Helios is designed for
low coercion internet elections [1].

The cryptographic proofs in these systems use a va-
riety of approaches, including zero-knowledge proofs,
cut-and-choose protocols, and randomized partial check-
ing [30]. Eperio is perhaps closest to Scantegrity, which
also breaks election data into markable regions and uses
a blackbox computation. However Eperio uses a more
compact data structure, no pointers, and commits to data
at a lower level of granularity than Scantegrity.

9 Future Work

This paper presented an E2E protocol in with single-
party privacy assurance. Future work will be aimed
at providing similar ease of verification but with multi-
party construction of the Eperio table. We also focused

on an E2E ballot style with randomized candidate or-
dering. Integration of Eperio with code-based ballots,
specifically those with the subtle non-repudiation prop-
erties of the Scantegrity II ballot are of interest. Also,
this paper considered plurality elections, however vot-
ing methods, such as single transferable vote (STV) and
instant run-off voting (IRV) provide unique privacy chal-
lenges not addressed by the basic Eperio data table. Fi-
nally, and in many ways most pertinent, a formal usabil-
ity study of election verification relative to other systems
would be provide valuable feedback regarding the direc-
tion of this work.

10 Conclusion

The contemporary verification process for electronic
voting is deficient. Independent security reviews are
generally rare, time-constrained affairs subject to non-
disclosure. While we advocate greater transparency for
existing election technology, we also contend that end-
to-end verification offers a distinct advantage: verifica-
tion becomes a task of checking election data not soft-
ware and equipment. This may appear to simply shift
the problem: the prevailing methods for verifying E2E
election data is with software. However it is not a simple
shift. In nearly all E2E systems, the verification code is
smaller than the hundreds of thousands of lines of code
in a modern DRE.

With Eperio, the software is much smaller—four or-
ders of magnitude smaller—and verification can even be
performed manually without any custom software. By
making verification more accessible to voters, we con-
tend that Eperio is an important democracy enhancing
technology.

11 Website

The technical report, source code and test data are avail-
able from: http://www.eperio.org

Acknowledgment

The authors would like to thank Ron Rivest, David
Chaum, and Richard Carback, Douglas W. Jones and the
anonymous reviewers for helpful feedback. The authors
acknowledge the partial support of this research by the

13

http://www.eperio.org


Natural Sciences and Engineering Research Council of
Canada (NSERC).

References
[1] B. Adida. Helios: web-based open-audit voting. USENIX Secu-

rity Symposium 2008.

[2] B. Adida, O. de Marneffe, O. Pereira, and J.-J. Quisquater. Elect-
ing a university president using open-audit voting: analysis of
real-world use of Helios. EVT 2009.

[3] B. Adida and R. L. Rivest. Scratch & Vote: self-contained paper-
based cryptographic voting. WPES 2006.

[4] A. W. Appel, M. Ginsburg, H. Hursti, B. W. Kernighan, C. D.
Richards, G. Tan, and P. Venetis. The New Jersey voting-machine
lawsuit and the AVC Advantage DRE voting machine. EVT 2009.

[5] A. Aviv, P. Cerny, S. Clark, E. Cronin, G. Shah, M. Sherr, and
M. Blaze. Security evaluation of ES&S voting machines and elec-
tion management system. EVT 2008.

[6] M. Bellare, A. Desai, E. Jokiph, and P. Rogaway. A concrete se-
curity treatment of symmetric encryption: an analysis of the DES
mode of operation. FOCS 1997.

[7] J. Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale
University, 1987.

[8] J. Benaloh. Simple verifiable elections. EVT 2006.

[9] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections.
STOC 1994.

[10] M. Blaze, A. Cordero, S. Engle, C. Karlof, N. Sastry, M. Sherr,
T. Stegers, and K.-P. Yee. Source code review of the Sequoia
voting system. State of California’s Top to Bottom Review, 2007.

[11] K. Butler, W. Enck, H. Hursti, S. McLaughlin, P. Traynor, and
P. McDaniel. Systemic issues in the Hart InterCivic and Premier
voting systems: reflections on project everest. EVT 2008.

[12] J. A. Calandrino, A. J. Feldman, J. A. Halderman, D. Wagner,
H. Yu, and W. P. Zeller. Source code review of the Diebold voting
system. State of California’s Top to Bottom Review, 2007.

[13] R. Carback, J. Clark, A. Essex. et al. Scantegrity II Municipal
Election at Takoma Park: The First E2E Binding Governmental
Election with Ballot Privacy. USENIX Security, 2010.

[14] D. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2), 1981.

[15] D. Chaum. Secret-ballot receipts: true voter-verifiable elections.
IEEE Security and Privacy, 2(1), 2004.

[16] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L.
Rivest, P. Y. A. Ryan, E. Shen, and A. T. Sherman. Scantegrity
II: end-to-end verifiability for optical scan election systems using
invisible ink confirmation codes. EVT 2008.

[17] D. Chaum, P. Y. Ryan, and S. A. Schneider. A practical, voter-
verifiable, election scheme. ESORICS 2005.

[18] J. Clark, A. Essex, and C. Adams. Secure and observable auditing
of electronic voting systems using stock indices. IEEE CCECE
2007.

[19] J. Clark and U. Hengartner. On the use of financial data as a
random beacon. EVT/WOTE 2010.

[20] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: toward a
secure voting system. IEEE Symposium on Security and Privacy
2008.

[21] A. Cordero, D. Wagner, and D. Dill. The role of dice in election
audits. WOTE 2006.

[22] Election Data Services Inc. Voting equipment summary by type
as of 11/07/2006. 2006.

[23] A. Essex, J. Clark, and C. Adams. Aperio: High Integrity Elec-
tions for Developing Countries Towards Trustworthy Elections.
Lecture Notes in Computer Science, vol. 6000, 2010.

[24] A. Essex, J. Clark, R. T. Carback, and S. Popoveniuc. Punchscan
in practice: an E2E election case study. WOTE 2007.

[25] Federal Constitutional Court of Germany. Judgement 2 BvC
3/07, 2 BvC 4/07, Verfahren über die Wahlprüfungsbeschwerden,
2009.

[26] A. Fiat and A. Shamir. How to prove yourself: practical solutions
to identification and signature problems. CRYPTO ’86.

[27] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting
scheme for large scale elections. In ASIACRYPT ’92.

[28] E. Hubbers, B. Jacobs, and W. Pieters. RIES: Internet voting in
action. COMPSAC 2005.

[29] S. Inguva, E. Rescorla, H. Shacham, , and D. S. Wallach. Source
code review of the Hart InterCivic voting system. State of Cali-
fornia’s Top to Bottom Review, 2007.

[30] M. Jacobsson, A. Juels, and R. L. Rivest. Making mix nets robust
for electronic voting by randomized partial checking. USENIX
Security Symposium 2002.

[31] A. Juels, D. Catalano, and M. Jacobsson. Coercion-resistant elec-
tronic elections. WPES 2005.

[32] J. Katz. Universally composable multi-party computation using
tamper-proof hardware. EUROCRYPT ’07

[33] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach. Anal-
ysis of an electronic voting system. IEEE Symposium on Security
and Privacy 2004.

[34] T. Moran and M. Naor. Split-ballot voting: Everlasting privacy
with distributed trust. CCS 2007.

[35] T. Moran and G. Segev. David and Goliath commitments: UC
computation for asymmetric parties using tamper-proof hard-
ware. EUROCRYPT ’08.

[36] C. A. Neff. Practical high certainty intent verification for en-
crypted votes. Technical report, VoteHere, 2004.

[37] T. P. Pedersen. A threshold cryptosystem without a trusted party.
EUROCRYPT ’91.

[38] S. Popoveniuc and B. Hosp. An introduction to Punchscan.
WOTE 2006.

[39] R. L. Rivest and W. D. Smith. Three voting protocols: Threebal-
lot, VAV, and Twin. EVT 2007.

[40] K. Sako and J. Kilian. Receipt-free mix-type voting scheme: a
practical solution to the implementation of a voting booth. EU-
ROCRYPT ’95.

[41] D. R. Sandler, K. Derr, and D. S. Wallach. VoteBox: a tamper-
evident, verifiable electronic voting system. USENIX Security
Symposium 2008.

[42] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New
client puzzle outsourcing techniques for DOS resistance. CCS
2004.

[43] H. Wu. The misuse of RC4 in Microsoft Word and Excel. Cryp-
tography ePrint Archive, 2005/007, 2005.

[44] United States Election Assistance Commission (EAC). The 2008
voluntary voting system guidelines (v1.1), 2009.

14


	Introduction
	Challenges and Approaches to Voting with Electronics
	End-to-End Election Verification
	Election Auditors (A Who's Who)

	The Eperio Protocol
	Protocol Sketch
	Entities
	Functions
	Distributed Key Generation/Reconstruction
	Pseudorandom Number Generation
	Permutation
	Commitment
	Public Coin Toss

	Lists and Tables
	Protocol
	Initial Setup
	Generate Eperio table
	Generate Commitments
	Voting
	Compute Tally
	Generate the Linkage List
	Audit Challenge and Response

	Verification

	Security
	Practical Primitives
	Implementation
	Performance Comparison
	Related Work
	Future Work
	Conclusion
	Website

