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ABSTRACT

Context switching imposes a performance penalty on threads
multitasking environment. The source of this penalty ishtditect
overhead due to running the context switch code and indirest-
head due to perturbation of caches. We calculate indireathead

by measuring the running time of tasks that use context binitc
and subtracting the direct overhead. We also measure tlired¢hd
overhead impact on the running time of tasks due to processor
terrupt servicing. Experiment results are presented ferltimux
kernel running on an ARM processor based mobile device plat-
form.

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance-Measurements

General Terms
Experimentation,Measurement,Performance

Keywords

operating system, context switch overhead

1. INTRODUCTION

Context switching is the fundamental mechanism that is used
share a processor across multiple threads of executiorn thezad
is associated with a processor state such as the prograntecoun
general purpose registers, status registers and so on. #&xton
switch is the act of saving the processor state of a threadoaad
ing the saved state of another thread. If the threads areiatst
with different virtual address spaces, a context switch aigolves
switching the address translation maps used by the pracebso
Linux, this happens when the threads belong to different pise
cesses. Switching address spaces requires that relevaiesen
the processor’s address translation cache (TLB) are tetdd. If
the instruction or data caches are tagged using virtualesdds,
they would have to be emptied as well.

Context switching imposes a small performance penalty mratts
in a multitasking environment. In addition to the direct thead
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associated with the actual context switching code, thexseveral
other factors that contribute to this penalty. The perttidmaof
processor caches like the instruction, data, addresdatamsand
branch-target buffers results in an additional indirecrbread. Yet
another possible source of indirect overhead is operatystem
memory paging. A context switch can result in an in-use mgmor
page being moved to disk if there is no free memory, thus hgrti
performance. In this paper, we do not consider overheadgalue
paging and assume that sufficient main memory is presentid av
thrashing.

We have described a context switch as a mechanism used thswit
between two threads of execution. We do not consider a system
call a context switch. This is like a simple function call aoaly
involves switching the processor from unprivileged usedmoo

a privileged kernel mode. Memory maps are not switched. The
transition back to userspace from the kernel during thermetdi

the system call is similar to a function call return.

A processor interrupt causes the state of the currently wier
task to be saved while an interrupt service routine is extut
When the interrupt service routine completes, the saved stae-
stored. While memory maps are not switched during intersept
vicing, it does perturb cache state and might also congilsome
indirect overhead.

In this paper, we measure the indirect overhead of conteixtlses
inside the Linux kernel using pairs of tasks that performp=oa-
tive multitasking. In a separate set of experiments, we misasure
the indirect overhead introduced due to processor intesegvic-

ing.

We do not explore userspace implementations of threadsssardpace
context switching. The latest versions of the Linux kernedsort
the Native Posix Threading Library (NPTL) which implemeuaser
threads as kernel threads and context switching happeide ithe
kernel.

This study targets mobile device architectures and theweel
platform we use in our experiments is the OMAP1610 H2 Soft-
ware Development Platfornil[8] cellular phone referenceigies
from Texas Instruments. The OMAP1610 is powered by an ARM
processor core.

The rest of this paper is organized as follows. Sedflon 2gmissa
quick introduction to the hardware platform that we use inex+
periments. We discuss the experiment setup and resultefibext
switch overhead measurements in sedfion 3. The experiretuy s
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Figure 1: Context Switch Overhead Experiment M easurements

and results for interrupt servicing overhead measurensmetpre-
sented in sectidd 4. After exploring some related work irtise,
we conclude in sectidd 6.

2. EXPERIMENTATION PLATFORM

3. CONTEXT SWITCHING OVERHEAD
3.1 Experiment Setup

We added code into the Linux kernel to measure the running &im
tasks performing deterministic computation with a colé@inum-
ber of context switches and without external interfereneehsas
interrupts. In order to measure running time and the effetta

ARM is a 32-bit RISC architecture. ARM processors are widely context switch accurately, the task code is built into thenkband

used in mobile devices because of their low power consumptio
In this section, we briefly describe some features of the ARM a
chitecture that are relevant to this research. Our impleaiEms

and experiments have been carried out on a processor cooh whi
belongs to the ARMV5 architecture generation. The ARM926EJ

system calls are not used. We, however, configure the taskawit
uniguemu_st r uct to ensure that the page table mappings are re-
set during a context switch. This setup allows us to exploedm-
pact of cache flushes and TLB invalidation during a contextcw

S processor core that we use is part of the OMAP1610 chip from All measurements are performed starting with cold data and i

Texas Instruments.

Context switches require the saving of 16 general purpogis-re
ters (including the program counter) and one status ragiste
memory management unit (MMU) translates virtual addreBses
the processor into physical addresses. A split (Harvardhang
cache is available in the processor, providing a 16 kilobfdar-
way set-associative instruction cache and a 8 kilobyter-fay
set-associative data cache. These caches are virtuatigdaand
therefore, have to be emptied when switching contexts. & hes
two TLBs - one for data and one for instructions. Each TLB kold
64 entries. TLB entries can be locked down in software, butiwe
not use any lockdowns for the experiments in this paper.

The clock fed to the processor can be configured during bow. ti

struction caches, an empty address translation cache (Hrig)a
fully drained write buffer. All data points in the graphs weepent

are an average over five measurements. The maximum (over all
data points) coefficient of variation (standard deviatmetage) of

the running time measurement is marked in each graph as “Max
Cv”.

In our experiments, we use two such tasks. The code for ths tas
is modified to context switch between one another similaotape
erative multithreading. The scheduler is not used and wecthr
switch between the tasks by invoking the Lireont ext _swi t ch
function. The minimum possible combined running time oftbot
tasks R:otq:) IS Obtained when the first task is started and runs to
completion, followed by a context switch to the second taklctv
also runs to completion. This is illustrated in figlile 1. Thect

A 120 MHz processor clock is used for our experiments. Direct overhead for a single context switc@') is constant for all exper-
read access to a 32-bit on-chip timer running at 6 MHz (166.67 iments. This is obtained by measuring the time taken to dgecu

nanosecond measurement granularity) is used to measweTime
data cache is configured for write-back caching. 32MB of SDHRA

thecont ext _swi t ch function with empty caches and a drained
write buffer. TheR:.:; measurement includes the overhead for

with a 32-bit data path to the CPU is present on the OMAP1610 H2 one context switch.R;.:.; — C' is the running time of both tasks
board. We clock the SDRAM at the same frequency as the proces-without this overhead. The total running time of both taskghw

sor. The ARM processor also has a write buffer that queuedipgn
writes to memory. We ensure that the write buffer is drainefibie
running any experiments.

Processor performance monitoring counters are not avaitabthe
ARM processor we use. Therefore, we are unable to repoisstat
tics on the number of instructions executed. Our tests wemne r
on the 2.6.20-rc5-omapl version of the Linux kernel with som
custom modifications for our experiments. Our modificatians
described in sectidd 3 and in sect[dn 4.

n context switches is measured B%,,,;- Riotq; — (Riotar — C)
is the total overhead due to the context switching. This ist&1sf
two parts. The first part is direct overhead due to the actud r
ning time of the context switch code (register set save astbre,
MMU switch etc). The second part is indirect overhead beeaiis
memory and translation cache pollution. The total diregrbead
for an experiment withn context switches is *« C. The indirect
overhead experienced by both tasks together due ta thentext
switches is then obtained ds= R;},,,; — (Rtotat — C) —n * C.
Whenn = 1, R}, = Rtota: and therefore] = 0.
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Figure 4: Interrupt Overhead Experiment M easurements

The tasks we pick for our experiments are processor and mem-

ory bound algorithms: bubble sort, deflate compression, ARS

cryption and CRC computation. These are designed to be non-

interactive and use no device 1/0. The data set used by thgdub
sort algorithm is chosen to be the same size as the data cadhe a
is aligned to fit completely within the cache. This maximizesa
cache locality for the sort task and allows us to explore thisact

of data cache pollution. All of the other tasks operate ogdatata
streams and therefore, exhibit little data cache localihe data set
size for each task is chosen such that the task takes betwassh 3

4. INTERRUPT SERVICING OVERHEAD
4.1 Experiment Setup

In order to measure overheads due to interrupt servicingnoe-
ify the Linux kernel to run a task with context switching died
and only one interrupt enabled. The interrupt we choosehierdet
of experiments is a timer interrupt. The actual hardwareetiins
disabled. We control the interrupts in this experiment bgiftg an
interrupt to be raised. This is done by writing two 32-bit @eto a
memory-mapped register on the interrupt controller. Theript

4 seconds to complete. The deflate, AES and CRC tasks are basetf processed by the standard Linux kernel interrupt hagdtech-

on code libraries already inside the Linux kernel; the baldrt
algorithm was implemented by one of the authors.

3.2 Reaults

The direct overhead for a single context switch was meadorbd
48 microseconds. Figuké 2 compares the growth of the incied
direct overheads for several pairs of tasks with varyingigalofn.

The indirect overhead for 99 context switches between faibbit
and deflate adds about 10.3 milliseconds to their combineimg
time of 7.159 seconds (0.14% increase) For AES and CRC, the in
direct overhead adds 6.9 milliseconds to their combineching
time of 6.6 seconds (0.10% increase). The maximum increase w
observed was with AES and deflate (0.18%). An interestingebs
vation is that the indirect overhead at 99 context switcluesafi
pairs of tasks is larger than the direct overhead (4.75 saitionds).

Altogether (direct and indirect overheads), the contextching
(99 times) adds between 0.17% and 0.25% to the running time fo
the various pairs of tasks.

Figurel3 shows additional details for the indirect overheadisure-
ments. The total indirect overhead measurement is brokem do
into three components: the indirect overhead experiengdilein-
dividual tasks and the inflation in the context switch timedese of
the need to flush dirty cache lines to memory. The “sort” tagkam
surements have very low variation and show a perfectly eomnst
rate of overhead increase. The variation in the time measemés
for the other tasks is higher and the plots are not smooth.edery
the general trend for all tasks is an increase in the indoeethead
as the number of context switches increases. CRC expesi¢hee
least impact from context switching and overheads stayvb@o
milliseconds for up to 99 context switches. This is follovisdsort
with 2.5 milliseconds. AES and deflate experience much highe
overheads which vary between 6 and 8 milliseconds.

anisms. Our handler for the interrupt just increments a teusnd
returns.

We first measure the direct overhead involved in servicimgcibn-
trolled timer interrupt asD. The value ofD is computed as an
average of 100 interrupt invocations in a loop. The writefdauf
is drained and the caches are warmed by raising an interugpt j
before the start of the experiment.

The task is configured to periodically request interruptdeviun-
ning. If the time taken to complete the task without intetsuis
R:qsk @nd the time taken to complete the task witinterrupts is
R, %, the indirect overhead due to the interrupts is obtainedby t
equation] = R, — Riask —n * D. The measurement @t; .,

is illustrated in figurg}.

The tasks we use for the interrupt overhead experimentshare t
same as the ones we use for the context switching experiments
bubble sort, deflate compression, AES encryption and CRG com
putation.

4.2 Results

Figure[® shows the indirect overhead measurements forrelifte
rates of interrupts. The indirect overhead measuremetsoar
and in the order of hundreds of microseconds. Unfortunaésign
though the coefficient of variation of the actual measuresén
low, the coefficient of variation for these calculated valoé indi-
rect overhead is high and only a general trend should bepireted
from all the graphs. A few data points in the graphs have been r
moved because the variation was extremely high. The “sadk t
has the lowest variation and is a more accurate represemiatin-
terrupt indirect overhead behavior. For all tasks, therecti over-
head increases as the interrupt frequency is increasedrh&ads
are generally lower than for context switching because duhes
and the TLB are not flushed.
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Figure5: Indirect Interrupt Service Routine Overhead

The indirect overhead due to servicing 49 interrupts dutireggex-
ecution of “sort” adds 0.01% to its running time of 3.64 setain

tion of cache footprint effects. However, this is not invgated in
this paper. Unlike our experiments, these studies do netrgit to

The values for deflate, AES and CRC are 0.02%, 0.09% and 0.05%differentiate between the direct and the indirect costs obrtext

respectively. For the interrupt experiments, the directrbead
measurements are larger than the indirect overhead measots
We suspect that this is because our timer interrupt expettichees
not significantly perturb the memory caches or the TLB.

Altogether (direct and indirect overheads), interrupt/eeng adds
between 0.28% and 0.38% to the total running time of the tisks
49 interrupts.

5. RELATED WORK

Ousterhout attempted to measure the overhead associdtecont

text switching by measuring the round trip time for passiriglken
between two processes using a pipe [Birbench [4] improved
upon this technique by eliminating system call overheada@ated
with Ousterhout’s measurements. Additionally, the cadwrint

of processes were varied to determine how processor ca¢he ut
lization affects context switching. Other researchersehago ex-
amined the relationship between caches and context switdBi

7). Our experiment framework can be used for a similar ingeast

switch.

Researchers have also examined the impact of context smgtoh

branch prediction accuracy and found the effect to be mihj&ja

This implies that branch prediction failure is not a sigrafitsource
of indirect context switching overhead.

Context switching overhead can be significantly reduced by e
ploiting hardware features on some architectures. Resegrtiave
shown that the use of Fast Address-Space Switching (FASS) su
port on the StrongARM processor reduces context switchirg-o
heads by an order of magnitudé [9]. The developers of the -4 mi
crokernel used mbench to show that because of the L4 support
for FASS hardware extensions, the paravirtualized implesateon

of Linux on L4 has significantly lower context switching okieads
than native Linux without FASS suppoiil[3]. Physically tadg
caches supported by the ARMv6 architecture eliminate tleel he
perform cache flushes during context switchily [1]. This ties
potential to significantly reduce context switch overheads



6. CONCLUDING REMARKS

The context switching results reported in this work are |lawel
measurements of context switch overhead between two thiaad
side the operating system kernel. While we use in-kernébtéar
our experiments in order to ensure a controlled environmeet
expect our results to closely reflect the behavior of useespasks
during context switching. A context switch between two spece
processes involves both a timer interrupt (for an involangavitch)
and a scheduling decision in addition to the low level switta-
sured in this paper. The additional code executed when Isigc
between userspace tasks may result in a small increase avéine
heads due to additional cache pollution.

The interrupt overhead measurements for in-kernel taséslidlbe
identical to the interrupt overheads experienced by a paeestask.
These overheads will, however, vary for different typeswéirupts
which invoke different handlers. The results reported is thork

are for a simple timer interrupt handler which just incrertsea
counter after being signaled by standard Linux interrugpdtch
code.

The Linux kernel code used in our experiments is availablewn
website ahtt p: // chol ces. cs. ui uc. edu/
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