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ABSTRACT
Context switching imposes a performance penalty on threadsin a
multitasking environment. The source of this penalty is both direct
overhead due to running the context switch code and indirectover-
head due to perturbation of caches. We calculate indirect overhead
by measuring the running time of tasks that use context switching
and subtracting the direct overhead. We also measure the indirect
overhead impact on the running time of tasks due to processorin-
terrupt servicing. Experiment results are presented for the Linux
kernel running on an ARM processor based mobile device plat-
form.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measurements

General Terms
Experimentation,Measurement,Performance

Keywords
operating system, context switch overhead

1. INTRODUCTION
Context switching is the fundamental mechanism that is usedto
share a processor across multiple threads of execution. Each thread
is associated with a processor state such as the program counter,
general purpose registers, status registers and so on. A context
switch is the act of saving the processor state of a thread andload-
ing the saved state of another thread. If the threads are associated
with different virtual address spaces, a context switch also involves
switching the address translation maps used by the processor. In
Linux, this happens when the threads belong to different user pro-
cesses. Switching address spaces requires that relevant entries in
the processor’s address translation cache (TLB) are invalidated. If
the instruction or data caches are tagged using virtual addresses,
they would have to be emptied as well.

Context switching imposes a small performance penalty on threads
in a multitasking environment. In addition to the direct overhead
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associated with the actual context switching code, there are several
other factors that contribute to this penalty. The perturbation of
processor caches like the instruction, data, address translation and
branch-target buffers results in an additional indirect overhead. Yet
another possible source of indirect overhead is operating system
memory paging. A context switch can result in an in-use memory
page being moved to disk if there is no free memory, thus hurting
performance. In this paper, we do not consider overheads dueto
paging and assume that sufficient main memory is present to avoid
thrashing.

We have described a context switch as a mechanism used to switch
between two threads of execution. We do not consider a system
call a context switch. This is like a simple function call andonly
involves switching the processor from unprivileged user mode to
a privileged kernel mode. Memory maps are not switched. The
transition back to userspace from the kernel during the return of
the system call is similar to a function call return.

A processor interrupt causes the state of the currently executing
task to be saved while an interrupt service routine is executed.
When the interrupt service routine completes, the saved state is re-
stored. While memory maps are not switched during interruptser-
vicing, it does perturb cache state and might also contribute some
indirect overhead.

In this paper, we measure the indirect overhead of context switches
inside the Linux kernel using pairs of tasks that perform coopera-
tive multitasking. In a separate set of experiments, we alsomeasure
the indirect overhead introduced due to processor interrupt servic-
ing.

We do not explore userspace implementations of threads and userspace
context switching. The latest versions of the Linux kernel support
the Native Posix Threading Library (NPTL) which implementsuser
threads as kernel threads and context switching happens inside the
kernel.

This study targets mobile device architectures and the hardware
platform we use in our experiments is the OMAP1610 H2 Soft-
ware Development Platform [8] cellular phone reference design
from Texas Instruments. The OMAP1610 is powered by an ARM
processor core.

The rest of this paper is organized as follows. Section 2 presents a
quick introduction to the hardware platform that we use in our ex-
periments. We discuss the experiment setup and results for context
switch overhead measurements in section 3. The experiment setup
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Figure 1: Context Switch Overhead Experiment Measurements

and results for interrupt servicing overhead measurementsare pre-
sented in section 4. After exploring some related work in section 5,
we conclude in section 6.

2. EXPERIMENTATION PLATFORM
ARM is a 32-bit RISC architecture. ARM processors are widely
used in mobile devices because of their low power consumption.
In this section, we briefly describe some features of the ARM ar-
chitecture that are relevant to this research. Our implementations
and experiments have been carried out on a processor core which
belongs to the ARMv5 architecture generation. The ARM926EJ-
S processor core that we use is part of the OMAP1610 chip from
Texas Instruments.

Context switches require the saving of 16 general purpose regis-
ters (including the program counter) and one status register. A
memory management unit (MMU) translates virtual addressesfrom
the processor into physical addresses. A split (Harvard) memory
cache is available in the processor, providing a 16 kilobyte, four-
way set-associative instruction cache and a 8 kilobyte, four-way
set-associative data cache. These caches are virtually tagged and
therefore, have to be emptied when switching contexts. There are
two TLBs - one for data and one for instructions. Each TLB holds
64 entries. TLB entries can be locked down in software, but wedo
not use any lockdowns for the experiments in this paper.

The clock fed to the processor can be configured during boot time.
A 120 MHz processor clock is used for our experiments. Direct
read access to a 32-bit on-chip timer running at 6 MHz (166.67
nanosecond measurement granularity) is used to measure time. The
data cache is configured for write-back caching. 32MB of SDRAM
with a 32-bit data path to the CPU is present on the OMAP1610 H2
board. We clock the SDRAM at the same frequency as the proces-
sor. The ARM processor also has a write buffer that queues pending
writes to memory. We ensure that the write buffer is drained before
running any experiments.

Processor performance monitoring counters are not available on the
ARM processor we use. Therefore, we are unable to report statis-
tics on the number of instructions executed. Our tests were run
on the 2.6.20-rc5-omap1 version of the Linux kernel with some
custom modifications for our experiments. Our modificationsare
described in section 3 and in section 4.

3. CONTEXT SWITCHING OVERHEAD
3.1 Experiment Setup
We added code into the Linux kernel to measure the running time of
tasks performing deterministic computation with a controlled num-
ber of context switches and without external interference such as
interrupts. In order to measure running time and the effectsof a
context switch accurately, the task code is built into the kernel and
system calls are not used. We, however, configure the task with a
uniquemmu struct to ensure that the page table mappings are re-
set during a context switch. This setup allows us to explore the im-
pact of cache flushes and TLB invalidation during a context switch.

All measurements are performed starting with cold data and in-
struction caches, an empty address translation cache (TLB), and a
fully drained write buffer. All data points in the graphs we present
are an average over five measurements. The maximum (over all
data points) coefficient of variation (standard deviation/average) of
the running time measurement is marked in each graph as “Max
CV”.

In our experiments, we use two such tasks. The code for the tasks
is modified to context switch between one another similar to coop-
erative multithreading. The scheduler is not used and we directly
switch between the tasks by invoking the Linuxcontext switch
function. The minimum possible combined running time of both
tasks (Rtotal) is obtained when the first task is started and runs to
completion, followed by a context switch to the second task which
also runs to completion. This is illustrated in figure 1. The direct
overhead for a single context switch (C) is constant for all exper-
iments. This is obtained by measuring the time taken to execute
thecontext switch function with empty caches and a drained
write buffer. TheRtotal measurement includes the overhead for
one context switch.Rtotal − C is the running time of both tasks
without this overhead. The total running time of both tasks with
n context switches is measured asR

′

total. R
′

total − (Rtotal − C)
is the total overhead due to the context switching. This consists of
two parts. The first part is direct overhead due to the actual run-
ning time of the context switch code (register set save and restore,
MMU switch etc). The second part is indirect overhead because of
memory and translation cache pollution. The total direct overhead
for an experiment withn context switches isn ∗ C. The indirect
overhead experienced by both tasks together due to then context
switches is then obtained asI = R

′

total − (Rtotal − C) − n ∗ C.
Whenn = 1, R

′

total = Rtotal and therefore,I = 0.
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(a) bubble-sort and deflate
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(b) bubble-sort and CRC
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(c) AES and CRC
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(d) CRC and deflate
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(e) AES and deflate
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(f) AES and bubble-sort

Figure 2: Context Switch Overheads - Direct and Indirect
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(b) bubble-sort and CRC
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(d) CRC and deflate
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(e) AES and deflate
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Figure 3: Indirect Context Switch Overhead Breakdown
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Figure 4: Interrupt Overhead Experiment Measurements

The tasks we pick for our experiments are processor and mem-
ory bound algorithms: bubble sort, deflate compression, AESen-
cryption and CRC computation. These are designed to be non-
interactive and use no device I/O. The data set used by the bubble
sort algorithm is chosen to be the same size as the data cache and
is aligned to fit completely within the cache. This maximizesdata
cache locality for the sort task and allows us to explore the impact
of data cache pollution. All of the other tasks operate on large data
streams and therefore, exhibit little data cache locality.The data set
size for each task is chosen such that the task takes between 3and
4 seconds to complete. The deflate, AES and CRC tasks are based
on code libraries already inside the Linux kernel; the bubble sort
algorithm was implemented by one of the authors.

3.2 Results
The direct overhead for a single context switch was measuredto be
48 microseconds. Figure 2 compares the growth of the indirect and
direct overheads for several pairs of tasks with varying values ofn.

The indirect overhead for 99 context switches between bubble-sort
and deflate adds about 10.3 milliseconds to their combined running
time of 7.159 seconds (0.14% increase) For AES and CRC, the in-
direct overhead adds 6.9 milliseconds to their combined running
time of 6.6 seconds (0.10% increase). The maximum increase we
observed was with AES and deflate (0.18%). An interesting obser-
vation is that the indirect overhead at 99 context switches for all
pairs of tasks is larger than the direct overhead (4.75 milliseconds).

Altogether (direct and indirect overheads), the context switching
(99 times) adds between 0.17% and 0.25% to the running time for
the various pairs of tasks.

Figure 3 shows additional details for the indirect overheadmeasure-
ments. The total indirect overhead measurement is broken down
into three components: the indirect overhead experienced by the in-
dividual tasks and the inflation in the context switch time because of
the need to flush dirty cache lines to memory. The “sort” task mea-
surements have very low variation and show a perfectly constant
rate of overhead increase. The variation in the time measurements
for the other tasks is higher and the plots are not smooth. However,
the general trend for all tasks is an increase in the indirectoverhead
as the number of context switches increases. CRC experiences the
least impact from context switching and overheads stay below 2
milliseconds for up to 99 context switches. This is followedby sort
with 2.5 milliseconds. AES and deflate experience much higher
overheads which vary between 6 and 8 milliseconds.

4. INTERRUPT SERVICING OVERHEAD

4.1 Experiment Setup
In order to measure overheads due to interrupt servicing, wemod-
ify the Linux kernel to run a task with context switching disabled
and only one interrupt enabled. The interrupt we choose for this set
of experiments is a timer interrupt. The actual hardware timer is
disabled. We control the interrupts in this experiment by forcing an
interrupt to be raised. This is done by writing two 32-bit words to a
memory-mapped register on the interrupt controller. The interrupt
is processed by the standard Linux kernel interrupt handling mech-
anisms. Our handler for the interrupt just increments a counter and
returns.

We first measure the direct overhead involved in servicing the con-
trolled timer interrupt asD. The value ofD is computed as an
average of 100 interrupt invocations in a loop. The write buffer
is drained and the caches are warmed by raising an interrupt just
before the start of the experiment.

The task is configured to periodically request interrupts while run-
ning. If the time taken to complete the task without interrupts is
Rtask and the time taken to complete the task withn interrupts is
R

′

task, the indirect overhead due to the interrupts is obtained by the
equationI = R

′

task −Rtask − n ∗D. The measurement ofR′

task

is illustrated in figure 4.

The tasks we use for the interrupt overhead experiments are the
same as the ones we use for the context switching experiments:
bubble sort, deflate compression, AES encryption and CRC com-
putation.

4.2 Results
Figure 5 shows the indirect overhead measurements for different
rates of interrupts. The indirect overhead measurements are low
and in the order of hundreds of microseconds. Unfortunately, even
though the coefficient of variation of the actual measurements is
low, the coefficient of variation for these calculated values of indi-
rect overhead is high and only a general trend should be interpreted
from all the graphs. A few data points in the graphs have been re-
moved because the variation was extremely high. The “sort” task
has the lowest variation and is a more accurate representation of in-
terrupt indirect overhead behavior. For all tasks, the indirect over-
head increases as the interrupt frequency is increased. Overheads
are generally lower than for context switching because the caches
and the TLB are not flushed.
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(b) deflate
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(c) AES
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Figure 5: Indirect Interrupt Service Routine Overhead

The indirect overhead due to servicing 49 interrupts duringthe ex-
ecution of “sort” adds 0.01% to its running time of 3.64 seconds.
The values for deflate, AES and CRC are 0.02%, 0.09% and 0.05%
respectively. For the interrupt experiments, the direct overhead
measurements are larger than the indirect overhead measurements.
We suspect that this is because our timer interrupt experiment does
not significantly perturb the memory caches or the TLB.

Altogether (direct and indirect overheads), interrupt servicing adds
between 0.28% and 0.38% to the total running time of the tasksfor
49 interrupts.

5. RELATED WORK
Ousterhout attempted to measure the overhead associated with con-
text switching by measuring the round trip time for passing atoken
between two processes using a pipe [6].lmbench [4] improved
upon this technique by eliminating system call overhead associated
with Ousterhout’s measurements. Additionally, the cache footprint
of processes were varied to determine how processor cache uti-
lization affects context switching. Other researchers have also ex-
amined the relationship between caches and context switching [5,
7]. Our experiment framework can be used for a similar investiga-

tion of cache footprint effects. However, this is not investigated in
this paper. Unlike our experiments, these studies do not attempt to
differentiate between the direct and the indirect costs of acontext
switch.

Researchers have also examined the impact of context switching on
branch prediction accuracy and found the effect to be minimal [2].
This implies that branch prediction failure is not a significant source
of indirect context switching overhead.

Context switching overhead can be significantly reduced by ex-
ploiting hardware features on some architectures. Researchers have
shown that the use of Fast Address-Space Switching (FASS) sup-
port on the StrongARM processor reduces context switching over-
heads by an order of magnitude [9]. The developers of the L4 mi-
crokernel usedlmbench to show that because of the L4 support
for FASS hardware extensions, the paravirtualized implementation
of Linux on L4 has significantly lower context switching overheads
than native Linux without FASS support [3]. Physically tagged
caches supported by the ARMv6 architecture eliminate the need to
perform cache flushes during context switching [1]. This hasthe
potential to significantly reduce context switch overheads.
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6. CONCLUDING REMARKS
The context switching results reported in this work are low level
measurements of context switch overhead between two threads in-
side the operating system kernel. While we use in-kernel tasks for
our experiments in order to ensure a controlled environment, we
expect our results to closely reflect the behavior of userspace tasks
during context switching. A context switch between two userspace
processes involves both a timer interrupt (for an involuntary switch)
and a scheduling decision in addition to the low level switchmea-
sured in this paper. The additional code executed when switching
between userspace tasks may result in a small increase in theover-
heads due to additional cache pollution.

The interrupt overhead measurements for in-kernel tasks should be
identical to the interrupt overheads experienced by a userspace task.
These overheads will, however, vary for different types of interrupts
which invoke different handlers. The results reported in this work
are for a simple timer interrupt handler which just increments a
counter after being signaled by standard Linux interrupt dispatch
code.

The Linux kernel code used in our experiments is available onour
website athttp://choices.cs.uiuc.edu/
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