Providing Tunable Consistency for a Parallel File Store

Murali Vilayannur ! Partho Nath

Anand Sivasubramaniam

Department of Computer Science and Engineering
Pennsylvania State University
{vilayann,nath,anand}@cse.psu.edu

Abstract

Consistency, throughput, and scalability form the back-
bone of a cluster-based parallel file system. With lit-
tle or no information about the workloads to be sup-
ported, a file system designer has to often make a one-
glove-fits-all decision regarding the consistency policies.
Taking a hard stance on consistency demotes throughput
and scalability to second-class status, having to make do
with whatever leeway is available. Leaving the choice
and granularity of consistency policies to the user at
open/mount time provides an attractive way of providing
the best of all worlds. We present the design and imple-
mentation of such a file-store, CAPFS (Content Address-
able Parallel File System), that allows the user to define
consistency semantic policies at runtime. A client-side
plug-in architecture based on user-written plug-ins leaves
the choice of consistency policies to the end-user. The
parallelism exploited by use of multiple data stores pro-
vides for bandwidth and scalability. We provide exten-
sive evaluations of our prototype file system on a concur-
rent read/write workload and a parallel tiled visualization
code.

1 Introduction

High-bandwidth I/O continues to play a critical role in
the performance of numerous scientific applications that
manipulate large data sets. Parallelism in disks and
servers provides cost-effective solutions at the hardware
level for enhancing I/O bandwidth. However, several
components in the system software stack, particularly in
the file system layer, fail to meet the demands of appli-
cations. This is primarily due to tradeoffs that parallel
file system designers need to make between performance
and scalability goals at one end, and transparency and
ease-of-use goals at the other.

Compared to network file systems (such as NFS [26],
AFS [14], and Coda [16]), which despite allowing mul-
tiple file servers still allocate all portions of a file
to a server, parallel file systems (such as PVFS [7],

GPFS [27], and Lustre [6]) distribute portions of a file
across different servers. With the files typically being
quite large and different processes of the same applica-
tion sharing a file, such striping can amplify the overall
bandwidth. With multiple clients reading and writing a
file, coordination between the activities becomes essen-
tial to enforce a consistent view of the file system state.

The level of sharing when viewed at a file granular-
ity in parallel computing environments is much higher
than that observed in network file systems [4, 21], mak-
ing consistency more important. Enforcement of such
consistency can, however, conflict with performance and
scalability goals. Contemporary parallel file system de-
sign lacks a consensus on which path to take. For in-
stance, PVFS provides high-bandwidth access to I/O
servers without enforcing overlapping-write atomicity,
leaving it entirely to the applications or runtime libraries
(such as MPI-I/O [9]) to handle such consistency require-
ments. On the other hand, GPFS and Lustre enforce
byte-range POSIX [28] consistency. Locking is used to
enforce serialization, which in turn may reduce perfor-
mance and scalability (more scalable strategies are used
in GPFS for fine-grained sharing, but the architecture is
fundamentally based on distributed locking).

Serialization is not an evil but a necessity for certain
applications. Instead of avoiding consistency issues and
using an external mechanism (e.g., DLM [15]) to deal
with serialization when required, incorporating consis-
tency enforcement in the design might reduce the over-
heads. Hence the skill lies in being able to make an in-
formed decision regarding the consistency needs of an
application. A key insight here is that applications, not
the system, know best to deal with their concurrency
needs. In fact, partial attempts at such optimizations al-
ready exist — many parallel applications partition the
data space to minimize read-write and write-write shar-
ing. Since different applications can have different shar-
ing behavior, designing for performance and consistency
would force the design to cater to all their needs — si-
multaneously! Provisioning a single (and strict) consis-
tency mechanism may not only make such fine-grained
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customization hard but may also constrain the suitabil-
ity of running diverse sets of applications on the same
parallel file system.

Addressing some of these deficiencies, this paper
presents the design and implementation of a novel paral-
lel file system called CAPFS that provides the following
notable features:

e To the best of our knowledge, CAPES is the first file
system to provide a tunable consistency framework that
can be customized for an application. A set of plug-in
libraries is provided with clearly defined entry points,
to implement different consistency models, including
POSIX, Session, and Immutable-files. Though a user
could build a model for each application, we envision a
set of predefined libraries that an application can pick
before execution for each file and/or file system.

e The data store in CAPFS is content-addressable. Con-
sequently, blocks are not modified in place, allow-
ing more concurrency in certain situations. In addi-
tion, content addressability can make write propaga-
tion (which is needed to enforce coherence) more ef-
ficient. For instance, update-based coherence mecha-
nisms are usually avoided because of the large volume
of data that needs to be sent. In our system however, we
allow update messages that are just a sequence of (cryp-
tographic) hashes of the new content being generated.
Further, content addressability can exploit commonal-
ity of content within and across files, thereby lowering
caching and network bandwidth requirements.

e Rather than locking when enforcing serialization for
read-write sharing or write-write sharing (write atomic-
ity), CAPFS uses optimistic concurrency control mech-
anisms [17, 19] with the presumption that these are rare
events. Avoidance of distributed locking enhances the
scalability and fault-tolerance of the system.

The rest of this paper is organized as follows. The next
section outlines the design issues guiding our system ar-
chitecture, following which the system architecture and
the operational details of our system are presented in
Section 3. An experimental evaluation of our system is
presented in Section 4 on a concurrent read/write work-
load and on a parallel tiled visualization code. Section 5
summarizes related work and Section 6 concludes with
the contributions of this paper and discusses directions
for further improvements.

2 Design Issues

The guiding rails of the CAPFS design is based on the
following goals: 1) user should be able to define the con-
sistency policy at a chosen granularity, and 2) implemen-
tation of consistency policies should be as lightweight
and concurrent as possible. The CAPFS design explores
these directions simultaneously — providing easily ex-
pressible, tunable, robust, lightweight and scalable con-

sistency without losing focus of the primary goal of pro-
viding high bandwidth.

2.1 Tunable Consistency

If performance is a criterion, consistency requirements
for applications might be best decided by applications
themselves. Forcing an application that has little or no
sharing to use a strong or strict consistency model may
lead to unnecessarily reduced I/O performance. Tradi-
tional techniques to provide strong file system consis-
tency guarantees for both meta-data and data use vari-
ants of locking techniques. In this paper, we are inter-
ested in providing tunable semantic guarantees for file
data alone.

The choice of a system wide consistency policy may
not be easy. NFS [26] offers poorly defined consis-
tency guarantees that are not suitable for parallel work-
loads. On the other hand, Sprite [20] requires the central
server to keep track of all concurrent sessions and disable
caching at clients when write-sharing is detected. Such
an approach forces all write-traffic to be network bound
from thereon until one or more processes close the shared
file. Although such a policy enforces correctness, it pe-
nalizes performance of applications when writers update
spatially disjoint portions of the same file which is quite
common in parallel workloads. For example, an appli-
cation may choose to have a few temporary files (store
locally, no consistency), a few files that it knows no one
else will be using (no consistency), a few files that will be
extensively shared (strong consistency), and a few files
that might have sharing in the rare case (weaker user-
defined consistency). A single consistency policy for a
cluster-based file system cannot cater to the performance
of different workloads such as those described above.

As shown in Figure 1, CAPFS provides a client-side
plug-in architecture to enable users to define their own
consistency policies. The users write plug-ins that de-
fine what actions should be taken before and after the
client-side daemon services the corresponding system
call. (The details of the above mechanism are deferred
to Section 3.6).

The choice of a plug-in architecture to implement
this functionality has several benefits. Using this archi-
tecture, a user can define not just standard consistency
policies like POSIX, session and NFS, but also custom
policies, at a chosen granularity (sub-file, file, partition-
wide). First and foremost, the client keeps track of its
files; servers do not need to manage copy-sets unless ex-
plicitly requested by client. Furthermore, a client can be
using several different consistency policies for different
files or even changing the consistency policy for a given
file at runtime, without having to recompile or restart the
file system or even the client-side daemon (Figure 1). All
that is needed is that a desired policy be compiled as a
plug-in and be installed in a special directory, after which
the daemon is sent a signal to indicate the availability of
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a new policy. Leaving the choice of the consistency pol-
icy and allowing the user to change it at runtime enable
tuning performance at a very fine granularity. However,
one major underlying assumption in our system design is
that we anticipate that the file system administrator sets
the same policy on all the nodes of the cluster that ac-
cesses the file system. Handling conflicting consistency
policies for the same file system or files could lead to
incorrect execution of applications.

2.2 Lightweight Synchronization

Any distributed file system needs to provide a consis-
tency protocol to arbitrate accesses to data and meta-data
blocks. The consistency protocol needs to expose prim-
itives both for atomic read/modify/write operations and
for notification of updates to regions that are being man-
aged. The former primitive is necessary to ensure that
the state of the system is consistent in the presence of
multiple updates, while the latter is necessary to incor-
porate client caching and prevent stale data from being
read. Traditional approaches use locking to address both
these issues.

2.2.1 To Lock or Not to Lock?

Some parallel cluster file systems (such as Lustre [6]
and GPFS [27]) enforce data consistency by using file
locks to prevent simultaneous file access from multiple
clients. In a networked file system, this strategy usually
involves acquiring a lock from a central lock manager
on a file before proceeding with the write/read opera-
tion. Such a coarse-grained file locks-based approach
ensures that only one process at a time can write data
to a file. As the number of processes writing to the
same file increases, performance (from lock contention)
degrades rapidly. On the other hand, fine-grained file-
locking schemes, such as byte-range locking, allow mul-
tiple processes to simultaneously write to different re-
gions of a shared file. However, they also restrict scala-
bility because of the overhead associated with maintain-
ing state for a large number of locks, eventually lead-

ing to performance degradation. Furthermore, any net-
worked locking system introduces a bottleneck for data
access: the lock server.

The recent explosion in the scale of clusters, coupled
with the emphasis on fault tolerance, has made tradi-
tional locking less suitable. GPFS [27], for instance, uses
a variant of a distributed lock manager algorithm that es-
sentially runs at two levels: one at a central server and
the other on every client node. For efficiency reasons,
clients can cache lock tokens on their files until they are
explicitly revoked.

Such optimizations usually have hidden costs. For ex-
ample, in order to handle situations where clients termi-
nate while holding locks, complex lock recovery/release
mechanisms are used. Typically, these involve some
combination of a distributed crash recovery algorithm or
a lease system [11]. Timeouts guarantee that lost locks
can be reclaimed within a bounded time. Any lease-
based system that wishes to guarantee a sequentially con-
sistent execution must handle a race condition, where
clients must finish their operation after acquiring the lock
before the lease terminates. Additionally, the choice of
the lease timeout is a tradeoff between performance and
reliability concerns and further exacerbates the problem
of reliably implementing such a system.

The pitfalls of using locks to solve the consistency
problems in parallel file systems motivated us to investi-
gate different approaches to providing the same function-
ality. We use a lockless approach for providing atomic
file system data accesses. The approach to providing
lockless, sequentially consistent data in the presence of
concurrent conflicting accesses presented here has roots
in three other transactional systems: store conditional
operations in modern microprocessors [18], optimistic
concurrency algorithms in databases [17], and optimistic
concurrency approach in the Amoeba distributed file ser-
vice [19].

Herlihy [13] proposed a methodology for construct-
ing lock-free and wait-free implementations for highly
concurrent objects using the load-linked and store-
conditional instructions. Our lockless approach, similar
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in spirit, does not imply the absence of any synchroniza-
tion primitives (such as barriers) but, rather, implies the
absence of a distributed byte-range file locking service.
By taking an optimistic approach to consistency, we hope
to gain on concurrency and scalability, while pinning our
bets on the fact that conflicting updates (write-sharing)
will be rare [4, 8, 21]. In general, it is well understood
that optimistic concurrency control works best when up-
dates are small or when the probability of simultaneous
updates to the same item is small [19]. Consequently, we
expect our approach to be ideal for parallel scientific ap-
plications. Parallel applications are likely to have each
process write to distinct regions in a single shared file.
For these types of applications, there is no need for lock-
ing, and we would like for all writes to proceed in parallel
without the delay introduced by such an approach.

2.2.2 Invalidates or Updates?

Given that client-side caching is a proven technique with
apparent benefits for a distributed file system, a natural
question that arises in the context of parallel file sys-
tems is whether the cost of keeping the caches coher-
ent outweighs the benefits of caching. However, as out-
lined earlier, we believe that deciding to use caches and
whether to keep them coherent should be the prerogative
of the consistency policy and should not be imposed by
the system. Thus, only those applications that require
strict policies and cache coherence are penalized, instead
of the whole file system. A natural consequence of opt-
ing to cache is the mechanism used to synchronize stale
caches; that is, should consistency mechanisms for keep-
ing caches coherent be based on expensive update-based
protocols or on cheaper invalidation-based protocols or
hybrid protocols?

Although update-based protocols reduce lookup laten-
cies, they are not considered a suitable choice for work-
loads that exhibit a high degree of read-write sharing [3].
Furthermore, an update-based protocol is inefficient in
its use of network bandwidth for keeping file system
caches coherent, thus leading to a common adoption of
invalidation-based protocols.

As stated before, parallel workloads do not exhibit
much block-level sharing [8] . Even when sharing does
occur, the number of consumers that actually read the
modified data blocks is typically low. In Figure 2 we
compute the number of consumers that read a block be-
tween two successive writes to the same block (we as-
sume a block size of 4 KB). Upon normalizing against
the number of times sharing occurs, we get the values
plotted in Figure 2. This figure was computed from the
traces of four parallel applications that were obtained
from [31]. In other words, Figure 2 attempts to con-
vey the amount of read-write sharing exhibited by typical
parallel applications. It indicates that the number of con-
sumers of a newly written block is very small (with the
exception of LU, where a newly written block is read by
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all the remaining processes before the next write to the
same block). Thus, an update-based protocol may be vi-
able as long as the update mechanism does not consume
too much network bandwidth. This result motivated us to
consider content-addressable cryptographic hashes (such
as SHA-1 [12]) for maintaining consistency because they
allow for a bandwidth-efficient update-based protocol by
transferring just the hash in place of the actual data. We
defer the description of the actual mechanism to Sec-
tion 3.5.

2.2.3 Content Addressability

Content addressability provides an elegant way to sum-
marize the contents of a file. It provides the following
advantages:

- The contents of a file can be listed as a concatenation
of the hashes of its blocks. Such a representation was
referred to as recipes in a previous study [30]. This ap-
proach provides a lightweight method of updating or in-
validating sections of a file and so forth.

- It increases system concurrency, by not requiring syn-
chronization at the content-addressable data servers
(Figure 1). In comparison to versioning file systems
that require a central version/time-stamp servers [19]
or a distributed protocol for obtaining unique times-
tamps [10], a content-addressable system provides an
independent, autonomous technique for clients to gener-
ate new version numbers for a block. Since newly writ-
ten blocks will have new cryptographic checksums (as-
suming no hash collisions), a content-addressable data
server also achieves the “no-overwrite” property that is
essential for guaranteeing any sort of consistency.

- Using cryptographic hashes also allows for a
bandwidth-efficient update-based protocol for maintain-
ing cache coherence. This forms the basis for adopting
a content-addressable storage server design in place of
a traditional versioning mechanism. Additionally, it is
foreseeable that the content-addressable nature of data
may lead to easy replication schemes.

- Depending on the workload, content addressability
might be able to reduce network traffic and storage de-
mands. Blocks with the same content, if in the cache
(because of commonality of data across files or within
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a file) do not need to be fetched or written. Only a sin-
gle instance of the common block needs to be stored,
leading to space savings.

As shown in Figure 1, the client employs two caches
for performance. The H-Cache, or hash cache, stores all
or a portion of a file’s recipe [30]. A file in the CAPFS
file system is composed of content-addressable chunks.
Thus, a chunk is the unit of computation of cryptographic
hashes and is also the smallest unit of accessibility from
the CAS servers. The chunk size is crucial because it
can impact the performance of the applications. Choos-
ing a very small value of chunk size increases the CPU
computation costs on the clients and the overheads asso-
ciated with maintaining a large recipe file, while a very
large value of chunk size may increase the chances of
false sharing and hence coherence traffic. Thus, we leave
this as a tunable knob that can be set by the plug-ins at
the time of creation of a file and is a part of the file’s
meta-data. For our experiments, unless otherwise men-
tioned, we chose a default chunk size of 16 KB. The
recipe holds the mapping between the chunk number and
the hash value of the chunk holding that data. Using the
H-Cache provides a lightweight method of providing up-
dates when sharing occurs. An update to the hashes of a
file ensures that the next request for that chunk will fetch
the new content.

The D-Cache, or the data cache, is a content address-
able cache. The basic object stored in the D-Cache is
a chunk of data addressed by its SHA1-hash value. One
can think of a D-cache as being a local replica of the CAS
server’s data store. When a section of a file is requested
by the client, the corresponding data chunks are brought
into the D-Cache. Alternatively, when the client creates
new content, it is also cached locally in the D-Cache.
The D-Cache serves as a simple cache with no consis-
tency requirements. Since the H-caches are kept coherent
(whenever the policy dictates), there is no need to keep
the D-caches coherent. Additionally, given a suitable
workload, it could also exploit commonality across data
chunks and possibly across temporal runs of the same
benchmark/application, thus potentially reducing latency
and network traffic.

3 System Architecture

The goal of our system is to provide a robust parallel
file system with good concurrency, high throughput and
tunable consistency. The design of CAPFS resembles
that of PVES [7] in many aspects — central meta-data
server, multiple data servers, RAID-0-style striping of
data across the I/0 servers, and so forth . The RAID-
0 striping scheme also enables a client to easily calculate
which data server has which data blocks of a file. In this
section, we first take a quick look at the PVFS archi-
tecture and its limitations from the perspective of con-
sistency semantics and then detail our system’s design.
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Figure 3: System architectures: CAPFS design incorporates
two client-side caches that are absent in PVFS.

Figure 3 depicts a simplified diagram of the PVFS and
CAPES system architectures.

3.1 PVFS Architecture

The primary goal of PVES as a parallel file system is to
provide high-speed access to file data for parallel appli-
cations. PVFS is designed as a client-server system, as
shown in Figure 3 (a).

PVES uses two server components, both of which run
as user-level daemons on one or more nodes of the clus-
ter. One of these is a meta-data server (called MGR) to
which requests for meta-data management (access rights,
directories, file attributes, and physical distribution of file
data) are sent. In addition, there are several instances of
a data server daemon (called IOD), one on each node
of the cluster whose disk is being used to store data as
part of the PVFS name space. There are well-defined
protocol structures for exchanging information between
the clients and the servers. For instance, when a client
wishes to open a file, it communicates with the MGR
daemon, which provides it the necessary meta-data in-
formation (such as the location of IOD servers for this
file, or stripe information) to do subsequent operations
on the file. Subsequent reads and writes to this file do
not interact with the MGR daemon and are handled di-
rectly by the IOD servers.

This strategy is key to achieving scalable performance
under concurrent read and write requests from many
clients and has been adopted by more recent parallel file
system efforts. However, a flip-side to this strategy is
that the file system does not guarantee any data con-
sistency semantics in the face of conflicting operations
or sessions. Fundamental problems that need to be ad-
dressed to offer sequential/ POSIX [28] style semantics
are the write atomicity and write propagation require-
ments. Since file data is striped across different nodes
and since the data is always overwritten, the I/O servers
cannot guarantee write atomicity, and hence reads is-
sued by clients could contain mixed data that is disal-
lowed by POSIX semantics. Therefore, any application
that requires sequential semantics must rely on exter-
nal tools or higher-level locking solutions to enforce ac-
cess restrictions. For instance, any application that relies
on UNIX/POSIX semantics needs to use a distributed
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cluster-wide lock manager such as the DLM [15] infras-
tructure, so that all read/write accesses acquire the
appropriate file/byte-range locks before proceeding.

3.2 CAPFS: Servers

The underlying foundation for our system is the content-
addressable storage model, wherein file blocks are ad-
dressed and located based on the cryptographic hashes
of their contents. A file is logically split into fixed-size
data chunks, and the hashes for these chunks are stored
in the hash server daemon. The hash server daemon,
analogous to the meta-data server (MGR) daemon of the
PVES system design, is responsible for mapping and
storing the hashes of file blocks (termed recipes [30]) for
all files. In essence, this daemon translates the logical
block-based addressing mode to the content addressable
scheme, that is, given a logical block i of a particular
file F, the daemon returns the hashes for that particu-
lar block. Even though in the current implementation
there is a central server, work is under way to use mul-
tiple meta-data servers to serve a file’s hashes for load-
balancing purposes. Throughout the rest of the paper, we
will use the term MGR server synonymously with hash
server or meta-data server to refer to this daemon.

Analogous to the PVFS I/O server daemon is a
content-addressable server (CAS) daemon, which sup-
ports a simple get/put interface to retrieve/store data
blocks based on their cryptographic hashes. However,
this differs significantly both in terms of functionality
and exposed interfaces from the I/O servers of PVFES.
Throughout the rest of this paper, we will use the term
CAS server synonymously with data server to refer to
this daemon.

3.3 CAPFS: Clients

The design of the VES glue in CAPFS is akin to the
upcall/downcall mechanism that was initially prototyped
in the Coda [16] file system (and later adapted in many
other file systems including PVES). In this design, file
system requests obtained from the VFS are queued in a
device file and serviced by a user-level daemon. If an
error is generated or if the operation completes success-
fully, the response is queued back into the device file,
and the kernel signals the process that was waiting for
completion of the operation. The client-side code inter-
cepts these upcalls and funnels meta-data operations to
the meta-data server. The data operations are striped to
the appropriate CAS servers. Prototype implementations
of the VFS glue are available at [1] for both Linux 2.4
and 2.6 kernels.

3.4 System Calls

The CAPFES system uses optimistic concurrency mech-
anisms to handle write atomicity on a central meta-

data server, while striping writes in parallel over mul-
tiple content-addressable servers (CAS servers). The
system has a lockless design: the only form of lock-
ing used is mutual-exclusion locks on the meta-data
server to serialize the multiple threads (whenever nec-
essary), as opposed to distributed locking schemes (such
as DLM [15]).

3.4.1 Steps for the open and close System Call

When a client wishes to open a file, a request is sent to
the hash-server to query the hashes for the file if any.
The server returns the list of hashes for the file (if the file
is small). Hashes can also be obtained on demand from
the server subsequently. The server also adds H-cache
callbacks to this node for this file if requested.

After the hashes are obtained, the client caches them lo-
cally (if specified by the policy) in the H-cache to mini-
mize server load. H-cache coherence is achieved by hav-
ing the server keep track of when commits are success-
ful, and issuing callbacks to clients that may have cached
the hashes. This step is described in greater detail in the
subsequent discussions.

On the last close of the file, all the entries in the H-cache
for this file are invalidated for subsequent opens to reac-
quire, and if necessary the server is notified to terminate
any callbacks for this node.

3.4.2 Steps for the read System Call

The client tries to obtain the appropriate hashes for the
relevant blocks either from the H-cache or from the hash
server. An implicit agreement here is that the server
promises to keep the client’s H-cache coherent. This goal
may be achieved by using either an update-based mech-
anism or an invalidation-based mechanism depending on
the number of sharers. Note that the update callbacks
contain merely the hashes and not the actual data.

Using these hashes, it tries to locate the blocks in the D-
cache. Note that keeping the H-cache coherent is enough
to guarantee sequential consistency; nothing needs to be
done for the D-cache because it is content addressable.
If the D-cache has the requested blocks, the read returns
and the process continues. On a miss, the client issues
a get request to the appropriate CAS servers, which is
cached subsequently. Consequently, reads in our system
do not suffer any slowdowns and should be able to ex-
ploit the available bandwidth to the CAS servers by ac-
cessing data in parallel.

3.4.3 Steps for the write System Call

Writes from clients need to be handled a little differently
because consistency guarantees may have to be met (de-
pending on the policy). Since writes change the con-
tents of the block, the cryptographic hashes for the block
changes, and hence this is a new block in the system
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altogether. We emphasize that we need mechanisms to
ensure write atomicity not only across blocks but also
across copies that may be cached on the different nodes.
On a write to a block, the client does the following se-
quence of steps,

Hashes for all the relevant blocks are obtained either
from the H-cache or from the hash server.

If the write spans an entire block, then the new hash can
be computed locally by the client. Otherwise, it must
read the block and compute the new hash based on the
block’s locally modified contents.

After the old and new hashes for all relevant blocks are
fetched or computed, the client does an optimistic put of
the new blocks to the CAS servers, which store the new
blocks. Note that by virtue of using content-addressable
storage, the servers do not overwrite older blocks. This is
an example of an optimistic update, because we assume
that the majority of writes will be race-free and uncon-
tested.

If the policy requires that the writer’s updates be made
immediately visible, the next step is the commit oper-
ation. Depending on the policy, the client informs the
server whether the commit should be forced or whether
it can fail. Upon a successful commit, the return values
are propagated back.

A failed commit raises the possibility of orphaned blocks
that have been stored in the I/O servers but are not part
of any file. Consequently, we need a distributed cleaner
process that is invoked when necessary to remove blocks
that do not belong to any file. We refer readers to [1] for
a detailed description of the cleaner protocol.

3.4.4 Commit Step

In the commit step, the client contacts the hash server
with the list of blocks that have been updated, the set of
old hashes, and the set of new hashes. In the next section,
we illustrate the need for sending the old hashes, but in
short they are used for detecting concurrent write-sharing
scenarios similar to store-conditional operations [18].
The meta-data server atomically compares the set of old
hashes that it maintains with the set of old hashes pro-
vided by the client. In the uncontested case, all these
hashes would match, and hence the commit is deemed
race free and successful. The hash server can now up-
date its recipe list with the new hashes. In the rare case
of a concurrent conflicting updates, the server detects a
mismatch in the old hashes reported for one or more of
the client’s commits and asks them to retry the entire op-
eration. However, clients can override this by requesting
the server to force the commit despite conflicts.
Although such a mechanism has guaranteed write-
atomicity across blocks, we still need to provide mech-
anisms to ensure that client’s caches are also updated
or invalidated to guarantee write atomicity across all
copies of blocks that may be required by the consistency

policy (sequential consistency/UNIX semantics require
this). Since the server keeps track of clients that may
have cached file hashes, a successful commit also entails
updating or invalidating any client’s H-cache with the lat-
est hashes.

Our system guarantees that updates to all locations are
made visible in the same order to all clients (this mech-
anism is not exposed to the policies yet). Therefore,
care must be exercised in the previous step to ensure
that updates to all clients’ H-caches are atomic. In other
words, if multiple clients may have cached the hashes
for a particular chunk and if the hash-server decides to
update the hashes for the same chunk, the update-based
protocol must use a two-phase commit protocol (such
as those used in relational databases), so that all clients
see the updates in the same order. This is not needed in
an invalidation-based protocol however. Hence, we use
an invalidation-based protocol in the cases of multiple
readers/writers and an update-based protocol for single
reader/writer scenarios.

3.5 Conflict Resolution

Figure 4 depicts a possible sequence of actions and mes-
sages that are exchanged in the case of multiple-readers
and a single-writer client to the same file. We do not
show the steps involved in opening the file and caching
the hashes. In step 1, the writer optimistically writes to
the CAS servers after computing the hashes locally. Step
2 is the request for committing the write sent to the hash
server. Step 3 is an example of the invalidation-based
protocol that is used in the multiple reader scenario from
the point of view of correctness as well as performance.
Our system resorts to an update-based protocol in the sin-
gle sharer case. Sequential consistency requires that any
update-based protocol has to be two-phased for ensur-
ing the write-ordering requirements, and hence we opted
to dynamically switch to using invalidation-based pro-
tocol in this scenario to alleviate performance concerns.
Steps 5 and 6 depict the case where the readers look up
the hashes and the local cache. Since the hashes could
be invalidated by the writer, this step may also incur an
additional network transaction to fetch the latest hashes
for the appropriate blocks. After the hashes are fetched,
the reader looks up its local data cache or sends requests
to the appropriate data servers to fetch the data blocks.
Steps 5 and 6 are shown in dotted lines to indicate the
possibility that a network transaction may not be nec-
essary if the requested hash and data are cached locally
(which happens if both the read’s occurred before the
write in the total ordering).

Figure 5 depicts a possible sequence of actions and
messages that are exchanged in the case of multiple-
readers and multiple-writers to the same file. As before,
we do not show the steps involved in opening the file
and caching the hashes. In step 1, writer client II op-
timistically writes to the CAS servers after computing
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Figure 4: Action sequence: multiple-readers single-writer

hashes locally. In step 2, writer client I does the same
after computing hashes locally. Both these writers have
atleast one overlapping byte in the file to which they are
writing (true-sharing) or are updating different portions
of the same chunk (false-sharing). In other words this
is an instance of concurrent-write sharing. Since nei-
ther writer is aware of the other’s updates, one of them is
asked to retry. The hash server acts as a serializing agent.
Since it processes requests from client II before client I,
the write from client II is successfully committed, and
step 3 shows the invalidation messages sent to the reader
and the writer client. Step 4 is the acknowledgment for
the successful write commit. Step 5 is shown dashed to
indicate that the hash server requests writer client I to
retry its operation. The write done by this client in step
2 is shown dotted to indicate that this created orphaned
blocks on the data server and needs to be cleaned. After
receiving a reply from the hash server that the write needs
to be retried, the writer client I obtains the latest hashes
or data blocks to recompute its hashes and reissues the
write as shown in step 6.

In summary, our system provides mechanisms to
achieve serializability that can be used by the consistency
policies if they desire. In our system, read-write serial-
izability and write atomicity across copies are achieved
by having the server update or invalidate the client’s H-
cache when a write successfully commits. Write-write
serializability across blocks is achieved by having the
clients send in the older hash values at the time of the
commit to detect concurrent write-sharing and having
one or more of the writers to restart or redo the entire
operation.

We emphasize here that, since client state is mostly
eliminated, there is no need for a complicated recovery
process or lease-based timeouts that are an inherent part
of distributed locking-based approaches. Thus, our pro-
posed scheme is inherently more robust and fault tolerant
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Figure 5: Action sequence: multiple-readers multiple-writers

fd = open(F1,
O_RDWR);

write(fd..);

from this perspective when H-caches are disabled. If H-
caches are enabled however, temporary failures such as
network disconnects can cause clients to read/write stale
data. Further, the centralized meta-data server with no
built-in support for replication is still a deterrent from
the point of view of fault-tolerance and availability. We
hope to address both these issues as future extensions.

3.6 Client-side Plug-in Architecture

The CAPFES design incorporates a client-side plug-in ar-
chitecture that allows users to specify their own consis-
tency policy to fine tune their application’s performance.
Figure 6 shows the hooks exported by the client-side and
what callbacks a plug-in can register with the client-side
daemon. Each plug-in is also associated with a unique”
name and identifier. The plug-in policy’s name is used
as a command-line option to the mount utility to indicate
the desired consistency policy. The CAPFS client-side
daemon loads default values based on the command-line
specified policy name at mount time. The user is free
to define any of the callbacks in the plug-ins (setting
the remainder to NULL), and hence choosing the best
trade-off between throughput and consistency for the ap-
plication. The plug-in API/callbacks to be defined by
the user provide a flexible and extensible way of defin-
ing a large range of (possibly non-standard) consistency
policies. Additionally, other optimizations such as pre-
fetching of data or hashes, delayed commits, periodic
commits(e.g., commit after “t” units of time, or commit
after every “n” requests), and others can be accommo-
dated by the set of callbacks shown in Figure 6). For
standard cases, we envision that the callbacks be used as
follows.

Setting Parameters at Open: On mounting the
CAPES file system, the client-side daemon loads
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struct plugin_policy_ops {
handle (*pre_open) (force_commit, use_hcache,
hcache_coherence, delay_commit, num_hashes);

int (*post_open) (void *handle);

int (*pre_close) (void *handle);

int (*post_close) (void *handle) ;

int (*pre_read) (void *handle, size, offset);
int (*post_read) (void *handle, size, offset);
int (*pre_write) (void *handle, size, offset,

int *delay_wc);
int (*post_write) (void *handle, shal_hashes *old,
sha_hashes *new);
(*pre_sync) (const char *);
(*post_sync) (void *handle);

Client-Side Plug-in API

int
int

i

int hcache_get (void *handle,
void *buf);

int hcache_put (void *handle,
const void *buf);

int hcache_clear (void *handle);

int hcache_clear_range (void *handle,
nchunks) ;

void hcache_invalidate (void) ;

begin_chunk, nchunks,

begin_chunk, nchunks,

begin_chunk,

int dcache_get (char *hash, void *buf, size);
int dcache_put (char *hash, const void *buf, size);
int commit (void *handle, shal_hashes *old_hashes,
shal_hashes *new_hashes,
shal_hashes *current_hashes);

CAPEFS Client-Daemon: Core API

Figure 6: The client-side plug-in API and the CAPFS client-daemon core API. On receiving a system call, the CAPFS
client-daemon calls the corresponding user-defined pre- and post- functions, respectively, before servicing the system

call.

default values for force_commit, use_hcache,
hcache_coherence, delay-commit, and
num_hashes parameters. However, these values
can be overridden on a per-file basis as well by provid-
ing a non-NULL pre_open callback. Section 3.4.4
indicates that in a commit operation, a client tells the
server what it thinks the old hashes for the data are and
then asks the server to replace them with new, locally
calculated hashes. Hence a commit operation fails if the
old hashes supplied by the client do not match the ones
currently on the server (because of intervening commits
by other clients). On setting the force_commit
parameter, the client forces the server into accepting
the locally computed hashes, overwriting whatever
hashes the server currently has. The use_hcache
parameter indicates whether the policy desires to use the
H-Cache. The hcache_coherence parameter is a
flag that indicates to the server the need for maintaining
a coherent H-cache on all the clients that may have stale
entries. The delay_commit indicates whether the
commits due to writes should be delayed (buffered) at
the client. The num_hashes parameter specifies how
many hashes to fetch from the meta-data server at a
time. These parameters can be changed by the user by
defining a pre_open callback in the plug-in (Figure 6).
This function returns a handle, which is cached by the
client and is used as an identifier for the file. This handle
is passed back to the user plug-in in post_open and
other subsequent callbacks until the last reference to the
file is closed. For instance, a plug-in implementing an
AFS session like semantics [14] would fetch all hashes
at the time of open, delay the commits till the time of
a close, set the force_commit flag and commit all
the hashes of a file at the end of the session.

Prefetching and Caching: Prior to a read, the client
daemon invokes the pre_read callback (if registered).
We envision that the user might desire to check H-
Cache and D-Cache and fill them using the appropriate
hcache_get/dcache_get API (Figure 6) exported by the
client daemon. This callback might also be used to im-

plement prefetching data, hashes, and the like.

Delayed commits: A user might overload the
prewrite callback routine to implement delayed
commits over specific byte ranges. One possible way
of doing this is to have the pre_write callback routine
set a timer (in case a policy wishes to commit every “t”
units of time) that would invoke the post_write on
expiration. But for the moment, pre_write returns a
value for delay_wc (Figure 6) to indicate to the core
daemon that the write commits need to be delayed or
committed immediately. Hence, on getting triggered, the
post_write checks for pending commits and then ini-
tiates them by calling the appropriate core daemon API
(commit). The post_write could also handle opera-
tions such as flushing or clearing the caches.

Summary: The callbacks provide enough flexibil-
ity to let the user choose when and how to implement
most known optimizations (delayed writes, prefetching,
caching, etc.) in addition to specifying any customized
consistency policies. By passing in the offsets and
sizes of the operations to the callback functions such
as pre_.read, pre_write, plug-in writers can also
use more specialized policies at a very fine granularity
(such as optimizations making use of MPI derived data-
types [9]). This description details just one possible way
of doing things. Users can use the API in a way that suits
their workload, or fall back on standard predefined poli-
cies. Note that guaranteeing correctness of execution is
the prerogative of the plug-in writer. Implementation of a
few standard policies (Sequential, SESSION-like, NFS-
like) and others (Table 1 in Section 4) indicate that this
step does not place an undue burden on the user. The
above plug-ins were implemented in less than 150 lines
of C code.

4 Experimental Results

Our experimental evaluation of CAPFS was carried out
on an IBM pSeries cluster. with the following configura-
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tion. There are 20 compute nodes each of which is a dual
hyper-threaded Xeon clocked at 2.8 GHz, equipped with
1.5 GB of RAM, a 36 GB SCSI disk and a 32-bit Myrinet
card (LANai9.0 clocked at 134 MHz). The nodes run
Redhat 9.0 with Linux 2.4.20-8 kernel compiled for SMP
use and GM 1.6.5 used to drive the Myrinet cards. Our
I/O configuration includes 16 CAS servers with one
server doubling as both a meta-data server and a CAS
server. All newly created files are striped with a stripe
size of 16 KB and use the entire set of servers to store the
file data. A modified version of MPICH 1.2.6 distributed
by Myricom for GM was used in our experimental eval-
uations.

4.1 Aggregate Bandwidth Tests

Since the primary focus of parallel file systems is aggre-
gate throughput, our first workload is a parallel MPI pro-
gram(pvfs_test.c from the PVFES distribution), that deter-
mines the aggregate read/write bandwidths and verifies
correctness of the run. The block sizes, iteration counts,
and number of clients are varied in different runs. Con-
sequently, this workload demonstrates concurrent-write
sharing and sequential-write sharing patterns, albeit not
simultaneously. Times for the read/write operations on
each node are recorded over ten iterations and the max-
imum averaged time over all the tasks is used to com-
pute the bandwidth achieved. The graphs for the above
workload plot the aggregate bandwidth (in MB/s) on the
y-axis against the total data transferred to or from the file
system (measured in MB). The total data transferred is
the product of the number of clients, block size and the
number of iterations.

We compare the performance of CAPFS against a rep-
resentative parallel file system — PVES (Version 1.6.4).
To evaluate the flexibility and fine-grained performance
tuning made possible by CAPFS’ plug-in infrastructure,
we divide our experimental evaluation of into categories
summarized in Table 1. Five simple plug-ins have been
implemented to demonstrate the performance spectrum.

The values of the parameters in Table 1 —
(force_commit, hcache_coherence and use_hcache) dic-
tate the consistency policies of the file system. The
force_commit parameter indicates to the meta-data server
that the commit operation needs to be carried out with-
out checking for conflicts and being asked to retry. Con-
sequently, this parameter influences write performance.
Likewise, the hcache_coherence parameter indicates to
the meta-data server that a commit operation needs to
be carried out in strict accordance with the H-cache co-
herence protocol. Since the commit operation is not
deemed complete until the H-cache coherence protocol
finishes, any consistency policy that relaxes this require-
ment is also going to show performance improvements
for writes. Note that neither of these two parameters is
expected to have any significant effect on the read per-
formance of this workload. On the other hand, using the

‘ Policy Use Force Hcache

Name Hcache | Commit | Coherence

[SEQ1 [ 0 [ 0 ] X |
[ SEQ-2 | 1 | 0 | 1 |
[FOR1 [ 0 ] 1 [ X |
[ FOR-2 | 1 | 1 | 1 |
[REL-1 [ 1T ] 1 [ 0 |

Table 1: Design space constituting a sample set of consis-
tency policies: SEQ-1, SEQ-2 implement sequential consis-
tency; FOR-1, FOR-2 implement a slightly relaxed mechanism
where commits are forced; REL-1 implements an even more
relaxed mechanism. The X in rows 1 and 3 denotes a don’t
care for the variable’s value.

H-cache on the client-side (use_hcache parameter) has
the potential to improving the read performance because
the number of RPC calls required to reach the data is ef-
fectively halved.

The first two rows of Table 1 illustrate two possible
ways of implementing a sequentially consistent file sys-
tem. The first approach denoted as SEQ-1, does not use
the H-cache (and therefore H-caches need not be kept
coherent) and does not force commits. The second ap-
proach denoted as SEQ-2, uses the H-cache, does not
force commits, and requires that H-caches be kept co-
herent. Both approaches implement a sequentially con-
sistent file system image and are expected to have differ-
ent performance ramifications depending on the work-
load and the degree of sharing.

The third and fourth rows of Table 1 illustrate a
slightly relaxed consistency policy where the commits
are forced by clients instead of retrying on conflicts. The
approach denoted as FOR-1, does not use the H-cache
(no coherence required). The approach denoted as FOR-
2, uses the H-cache and requires that they be kept coher-
ent. One can envisage that such policies could be used in
mixed-mode-environments where files are possibly ac-
cessed or modified by nonoverlapping MPI jobs as well
as unrelated processes.

The fifth row of Table 1 illustrates an even more re-
laxed consistency policy denoted as REL-1, that forces
commits, uses the H-cache, and does not require that the
H-caches be kept coherent. Such a policy is expected
to be used in environments where files are assumed to be
non-shared among unrelated process or MPI-based appli-
cations or in scenarios where consistency is not desired.
Note that it is the prerogative of the application-writer or
plug-in developers to determine whether the usage of a
consistency policy would violate the correctness of the
application’s execution.

Read Bandwidth: In the case of the aggregate read
bandwidth results (Figures 7(a) and 7(b)), the policies us-
ing the H-cache (SEQ-2, FOR-2, REL-1) start to perform
better in comparison to both PVES and policies not using
the H-cache (SEQ-1, FOR-1). This tipping point occurs
when the amount of data being transferred is fairly large
(around 3 GB). This is intuitively correct, because the
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larger the file, the greater the number of hashes that need
to be obtained from the meta-data server. This require-
ment imposes a higher load on the server and leads to
degraded performance for the uncached case. The sharp
drop in the read bandwidth for the H-cache based poli-
cies (beyond 4 GB) is an implementation artifact caused
by capping the maximum number of hashes that can be
stored for a particular file in the H-cache.

On the other hand, reading a small file requires propor-
tionately fewer hashes to be retrieved from the server, as
well as fewer RPC call invocations to retrieve the entire
set of hashes. In this scenario, the overhead of indexing
and retrieving hashes from the H-cache is greater than
the time it takes to fetch all the hashes from the server in
one shot. This is responsible for the poor performance of
the H-cache based policies for smaller file sizes. In fact,
a consistency policy that utilizes the H-cache allows us
to achieve a peak aggregate read bandwidth of about 450
MB/s with 16 clients. This is almost a 55% increase in
peak aggregate read bandwidth in comparison to PVFS
which achieves a peak aggregate read bandwidth of about
290 MB/s. For smaller numbers of clients, even the poli-
cies that do not make use of the H-cache perform better
than PVFS.

In summary, for medium to large file transfers, from an
aggregate read bandwidth perspective, consistency poli-
cies using the H-cache (SEQ-2, FOR-2, REL-1) outper-
form both PVFS and consistency policies that do not use
the H-cache (SEQ-1, FOR-1).

Write Bandwidth: As explained in Section 3.3, write
bandwidths on our system are expected to be lower than
read bandwidths and these can be readily corroborated
from Figures 7(c) and 7(d). We also see that PVFS
performs better than all of our consistency policies for
smaller data transfers (upto around 2 GB). At around the
1.5-2 GB size range, PVFS experiences a sharp drop in
the write bandwidth because the data starts to be written
out to disk on the I/O servers that are equipped with 1.5
GB physical memory. On the other hand no such drop
is seen for CAPFS. The benchmark writes data initial-
ized to a repeated sequence of known patterns. We sur-
mise that CAPFS exploits this commonality in the data
blocks, causing the content-addressable CAS servers to
utilize the available physical memory more efficiently
with fewer writes to the disk itself.

At larger values of data transfers (greater than 2 GB),
the relaxed consistency policies that use the H-cache
(REL-1, FOR-2) outperform both PVFS and the other
consistency policies (SEQ-1, SEQ-2, FOR-1). This re-
sult is to be expected, because the relaxed consistency
semantics avoid the expenses associated with having to
retry commits on a conflict and the H-cache coherence
protocol. Note that the REL-1 scheme outperforms the
FOR-2 scheme as well, since it does not perform even the
H-cache coherence protocol. Using the REL-1 scheme,
we obtain a peak write bandwidth of about 320 MB/s
with 16 clients, which is about a 12% increase in peak ag-

gregate write bandwidth in comparison to that of PVES,
which achieves a peak aggregate write bandwidth of
about 280 MB/s.

These experiments confirm that performance is di-
rectly influenced by the choice of consistency policies.
Choosing an overly strict consistency policy such as
SEQ-1 for a workload that does not require sequential
consistency impairs the possible performance benefits.
For example, the write bandwidth obtained with SEQ-
1 decreased by as much as 50% in comparison to REL-1.
We also notice that read bandwidth can be improved by
incorporating a client-side H-cache. For example, the
read bandwidth obtained with SEQ-2 (FOR-2) increased
by as much as 80% in comparison to SEQ-1 (FOR-1).
However, this does not come for free, because the policy
may require that the H-caches be kept coherent. There-
fore, using a client-side H-cache may have a detrimental
effect on the write bandwidth. All of these performance
ramifications have to be carefully addressed by the ap-
plication designers and plug-in writers before selecting a
consistency policy.

4.2 Tiled I/0 Benchmark

Tiled visualization codes are used to study the effective-
ness of today’s commodity-based graphics systems in
creating parallel and distributed visualization tools. In
this experiment, we use a version of the tiled visualiza-
tion code [24] that uses multiple compute nodes, where
each compute node takes high-resolution display frames
and reads only the visualization data necessary for its
own display.

We use nine compute nodes for our testing, which
mimics the display size of the visualization application.
The nine compute nodes are arranged in the 3 x 3 display
as shown in Figure 8, each with a resolution of 1024 x
768 pixels with 24-bit color. In order to hide the merging
of display edges, there is a 270-pixel horizontal overlap
and a 128-pixel vertical overlap. Each frame has a file
size of about 118 MB, and our experiment is set up to
manipulate a set of 5 frames, for a total of about 600
MB.

This application can be set up to run both in collec-
tive I/O mode [9], wherein all the tasks of the application
perform I/O collectively, and in noncollective I/O mode.
Collective 1/O refers to an MPI I/O optimization tech-
nique that enables each processor to do I/O on behalf of
other processors if doing so improves the overall perfor-
mance. The premise upon which collective I/O is based
is that it is better to make large requests to the file system
and cheaper to exchange data over the network than to
transfer it over the I/O buses. Once again, we compare
CAPEFS against PVFS for the policies described earlier
in Table 1. All of our results are the average of five runs.

Read Bandwidth: The aggregate read bandwidth
plots (Figures 9(a) and 9(c)), indicate that CAPFS out-
performs PVES for both the noncollective and the col-
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lective I/O scenarios, across all the consistency policies.
Note that the read phase of this application can benefit
only if the policies use the H-caches (if available). As
we saw in our previous bandwidth experiments, benefits
of using the H-cache start to show up only for larger file
sizes. Therefore, read bandwidths for policies that use
the H-cache are not significantly different from those that
don’t in this application. Using our system, we achieve
a maximum aggregate read bandwidth of about 90 MB/s
without collective I/O and about 120 MB/s with collec-
tive I/O. These results translate to a performance im-
provement of 28% over PVFS read bandwidth for the
noncollective scenario and 20% over PVFS read band-
width for the collective scenario.

Write Bandwidth: The aggregate write bandwidths
paint a different picture. For noncollective I/O, Figure 9
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(b), the write bandwidth is very low for two of our poli-
cies (SEQ-2, FOR-2). The reason is that both these poli-
cies use an H-cache and also require that the H-caches be
kept coherent. Also, the noncollective I/O version of this
program makes a number of small write requests. Con-
sequently, the number of H-cache coherence messages
(invalidates) also increases, which in turn increases the
time it takes for the writes to commit at the server. One
must also bear in mind that commits to a file are serial-
ized by the meta-data server and could end up penalizing
other writers that are trying to write simultaneously to the
same file. Note that the REL-1 policy does not lose out
on write performance despite using the H-cache, since
commits to the file do not execute the expensive H-cache
coherence protocol. In summary, this result indicates that
if a parallel workload performs a lot of small updates to
a shared file, then any consistency policy that requires
H-caches to be kept coherent is not appropriate from a
performance perspective.

Figure 9(d) plots the write bandwidth for the collec-
tive I/O scenario. As stated earlier, since the collective
/O optimization makes large, well-structured requests to
the file system, all the consistency policies (including the
ones that require coherent H-caches) show a marked im-
provement in write bandwidth. Using our system, we
achieve a maximum aggregate write bandwidth of about
35 MB/s without collective I/O and about 120 MB/s with
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collective I/0O. These results translate to a performance
improvement of about 6% over PVFS write bandwidth
for the noncollective scenario and about 13% improve-
ment over PVES write bandwidth for the collective sce-
nario.

5 Related Work

Providing a plug-in architecture for allowing the user to
define their own consistency policies for a parallel file
system is a contribution unique to CAPFS file system.
Tunable consistency models and tradeoffs with availabil-
ity have been studied in the context of replicated services
by Yu et al. [32].

Distributed file systems such as AFS [14], NFS [26]
and Sprite [4, 20] have only a single server that doubles
in functionality as a meta-data and data server. Because
of the centralized nature of the servers, write atomicity
is fairly easy to implement. Client-side caches still need
to be kept consistent however, and it is with respect to
this issue (write propagation) that these approaches dif-
fer from the CAPFS architecture. Coda [16] allows for
server replication and it solves the write atomicity prob-
lem by having modifications propagated in parallel to all
available replica servers (volume storages), and eventu-
ally to those that missed the updates.

Parallel file systems such as GPFS [27] and Lustre [6]
employ distributed locking to synchronize parallel read-
write disk accesses from multiple client nodes to its
shared disks. The locking protocols are designed to al-
low maximum throughput, parallelism, and scalability,
while simultaneously guaranteeing that file system con-
sistency is maintained. Likewise, the Global File Sys-
tem (GFS) [22, 23] (a shared-disk, cluster file system)
uses fine-grained SCSI locking commands, lock-caching
and callbacks for performance and synchronization of
accesses to shared disk blocks, and leases, journalling
for handling node failures and replays. Although such
algorithms can be highly tuned and efficient, failures of
clients can significantly complicate the recovery process.
Hence any locking-based consistency protocol needs ad-
ditional distributed crash recovery algorithms or lease-
based timeout mechanisms to guarantee correctness. The
CAPEFS file system eliminates much of the client state
from the entire process, and hence client failures do not
need any special handling.

Sprite-LFS [25] proposed a new technique for disk
management, where all modifications to a file system are
recorded sequentially in a log, which speeds crash re-
covery and writes. An important property in such a file
system is that no disk block is ever overwritten (except
after a disk block is reclaimed by the cleaner). Content-
addressability helps the CAPFS file system gain this
property, wherein updates from a process do not over-
write any existing disk or file system blocks. Recently,
content-addressable storage paradigms have started to
evolve that are based on distributed hash tables like

Chord [29]. A key property of such a storage system
is that blocks are addressed by the cryptographic hashes
of their contents, like SHA-1 [12]. Tolia et al. [30]
propose a distributed file system CASPER that utilizes
such a storage layer to opportunistically fetch blocks in
low-bandwidth scenarios. Usage of cryptographic con-
tent hashes to represent files in file systems has been ex-
plored previously in the context of Single Instance Stor-
age [5], Farsite [2], and many others. Similar to log-
structured file systems, these storage systems share a
similar no-overwrite property because every write of a
file/disk block has a different cryptographic hash (assum-
ing no collisions). CAPFS uses content-addressability
in the hope of minimizing network traffic by exploiting
commonality between data block, and to reduce synchro-
nization overheads, by using hashes for cheap update
based synchronization. The no-overwrite property that
comes for free with content addressability has been ex-
ploited to provide extra concurrency at the data servers.

6 Concluding Remarks

In this paper, we have presented the design and imple-
mentation of a robust, high-performance parallel file sys-
tem that offers user-defined consistency at a user-defined
granularity using a client-side plug-in architecture. To
the best of our knowledge CAPES is the only file system
that offers tunable consistency that is also user-defined
and user-selectable at runtime. Rather than resorting to
locking for enforcing serialization for read-write shar-
ing or write-write sharing, CAPFS uses an optimistic
concurrency control mechanism. Unlike previous net-
work/parallel file system designs that impose a consis-
tency policy on the users, our approach provides the
mechanisms and defers the policy to application devel-
opers and plug-in writers.
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