quFiles: The right file at the right time

Kaushik VeeraraghavanJason Flinri, Edmund B. Nightingafeand Brian Noblé
University of Michigan Microsoft Research (Redmorid)

Abstract Why are there so many systems that share the same
A quFile is a unifying abstraction that simplifies data premise, yet have completely separate implementations?
management by encapsulating different physical repreThe answer is that, as a community, we have failed to
sentations of the same logical data. Similar to a quBitrecognize that there is a fundamental abstraction that un-
(quantum bit), the particular representation of the logi- derlies all these systems. This simple abstraction is the
cal data displayed by a quFile is not determined until theability to view different representations of the same log-
moment it is needed. The representation returned by éal data in different contexts.
quFile is specified by a data-specific policy that can take In this paper, we argue that this new abstraction,
into account context such as the application requestingvhich we refer to as a quFile, should be implemented as
the data, the device on which data is accessed, screea first-class file system entity. A quFile encapsulates dif-
size, and battery status. We demonstrate the generaferent physical representations of the same logical data.
ity of the quFile abstraction by using it to implement Similar to a quBit (quantum bit), the particular represen-
six case studies: resource management, copy-on-writtation of the logical data displayed by a quFile is not de-
versioning, data redaction, resource-aware directories,termined until the moment it is needed. The representa-
application-aware adaptation, and platform-specific en-tion returned by a quFile is specified by a data-specific
coding. Most quFile policies were expressed using lesgpolicy that can take into account context such as the ap-
than one hundred lines of code. Our experimental resultglication requesting the data, the device on which data is
show that, with caching and other performance optimiza-accessed, screen size, and battery status.
tions, quFiles add less than 1% overhead to application- QquFiles provide amechanism/policy split In other

level file system benchmarks. words, they provide a common mechanism for dynam-
. ically resolving logical data items to specific represen-
1 Introduction tations in different contexts. A common mechanism re-

It has become increasingly common for new stor-duces the time to develop new context-sensitive systems;

age systems to implemeobntext-aware adaptatiorin developers only need to write code that expresses their
which different representations of the same object are ref€W policies because quFiles already provide the mecha-
turned based on the context in which the object is acNism. A common mechanism also makes deploying new
cessed. For instance, many systems transcode data %stems easier. Since the file system provides a unify-
meet the screen size constraints of mobile devices [5, 12J19 mechanism, a new policy can be inserted simply by
Others display reduced fidelity representations to mee€réating another quFile.

constraints on resources such as network bandwidth [8, quFiles provide transparency for quFile-unaware

27] and battery energy [11], display redacted representaUsers and applications. Each quFile policy defindgea
tions of data files when they are viewed at insecure locafault viewthat makes the observable behavior of the file

tions [22, 42], and create different formats of multimedia System indistinguishable from the behavior of a file sys-
data for diverse devices [29]. tem without quFiles that happens to contain the correct
These systems, and many others, have been successflata for the current context. This transparency has a pow-
at addressing specific needs for adapting the represent§!ful property: no application modification is required to
tion of data to fit a given context. However, they suffer benefit from quFiles. The default view also provides
from several problems that inhibit their wide-scale adop-capsulationby hiding the messy details of the physical
tion. First, building such systems is time-consuming.répresentation and exporting only a context-specific log-
Most required several person-years to build a prototypeical view of the data.
porting them to mainstream environments would be dif- For users and applications that are quFile-aware, a
ficult at best. Second, each system presents a differe/ingle logical representation of the data is often not
abstraction and interface, so each has a learning curv€nough. For instance, some users may wish to view the
Third, these systems typically present only a single |Ogi_data in the quFile as it is actually stored or see a differ-
cal view of data, making it difficult for users to pierce the €nt logical presentation of data than the one provided by
abstraction and explicitly choose different presentation default. quFiles support this functionality through their

viewsinterface. All quFiles export ew viewthat allows those systems that directly inspired our quFile case stud-
the physical representation of data within a quFile to beies. These include systems that transcode data to meet
directly viewed and manipulated. In addition, quFile screen size constraints [12], network bandwidth limi-
policies may define any number ofistom viewseach tations [8, 27], battery energy constraints [11], format
of which is an alternate logical representation of the datadecoding limitations [29], or storage restrictions [33].
contained within the quFile. Users and applications seThese previous systems either require application or op-
lect views using a special filename suffix, an interfaceerating system modification or the addition of an in-
that allows users to select views even when using untermediary proxy that performs data adaptation. With
modified commercial-off-the-shelf (COTS) applications. quFiles, we propose a unified mechanism within the file
How good is the quFile abstraction? We demonstratesystem that can dynamically invoke any adaptation pol-
its generality by implementing both ideas previouslyicy.
proposed by the research community (application-aware To simplify data managementacross multiple devices,
adaptation, copy-on-write file systems, location-awareCimbiosys [34], PRACTI [2], and Perspective [36] al-
document redaction, and platform-specific caching) andow clients to specify which files to replicate with query-
new ideas enabled by the abstraction (using spare stobased filters. quFiles could complement filters by adding
age to save battery energy and resource-aware direct@ontext-awareness to replication policies.
ries). Our experience suggests a “natural fitness” forim- Some file systems allow limited dynamic resolution
plementing context-aware policies using quFiles: com-of file content. Mac OS X Bundles [6] are file sys-
pared to the multiple developer-years required to impletem directories that resolve to a platform-specific binary
ment each of the existing systems described above, when accessed through the Mac OS X Finder. Simi-
single graduate student implemented each new policy imarly, AFS [18] has an “@sys” directory that resolves
less than two weeks using quFiles. Further, policies reto the binary appropriate for a particular client’s archi-
quired only 84 lines of code on average. Our results shovtecture. quFiles are a more general abstraction that cap-
that, with caching and other performance optimizationsture these specific instances that embed particular res-
guFiles add less than 1% overhead to application-leveblution policies into the file system. NTFS has Alter-
file system benchmarks. nate Data Streams [35] that support multiple represen-
tations of data within a file. However, unlike quFiles,
2 Related Work NTFS does not currently support safe execution of arbi-

A quFile is a new abstraction that encapsulates diftrary application policies to determine which representa-
ferent physical representations of the same logical datéion should be accessed.
and dynamically returns the correct representation of the We describe one metadata edit policy for low-fidelity
logical data for the context in which it is accessed. files. Other quFile policies could be implemented to sup-
quFiles are not an extensibility mechanism. Insteadport adaptation-aware editing [7]. One possible approach
they are an abstraction that uses safe extensibility mecHs to layer updates separately from the data they modify
anisms (Sprockets [30] in our implementation) to ex-and reconcile the high-fidelity original with the edit layer
ecute policies. Thus, quFiles could use previously-at a later time [32].
proposed operating system extensibility mechanisms Past approaches such as Xerox's Placeless Docu-
such as Spin [3], Exokernel [10], or Vino [39], as well ments [9] and Gifford’s Semantic File Systems [15] sug-
as file system extensibility mechanisms such as Watchgest semantic or property-based mechanisms to better or-
dogs [4] or FUSE [13]. Compared to Watchdogs andganize and manage data in a file system. quFiles share
FUSE, quFiles present a minimal interface that focuseghe same goals of improving organization and simpli-
on contextual awareness; this results in policies that cafying management, but we have chosen a backward-
be expressed in only a few lines of code. compatible design that works within existing file sys-
A quFile can be thought of as the file system equiva-teéms, rather than requiring a system re-write. The Se-
lent of a materialized view in a relational database [17].mantic File System provides virtualized directories of
Unlike materialized views, quFiles return different data files with similar attributes, whereas quFiles virtualize
depending on the context in which they are accessed, an@@me and content of data within a directory based on
they operate on file data, which has no fixed schemagontext.
Similarly, OdeFS [14] presents a transparent file system Schilitet al. advocate context-aware computing appli-
view of data stored in a relational database. Howevercations [38] and identify four major categories of appli-
unlike quFiles, OdeFS objects are always statically recations. Of these, quFiles support context-triggered ac-
solved to the same view. tions, as well as contextual information and command-
Multiple systems adapt the fidelity of data presenteddased applications. While Schilit et al. focus on us-
to clients. Since a full discussion of this body of work ability and the graphical user interface, quFiles focus on
is outside the scope of this paper, we only list heresupporting different views of the data in the file system.

Building on these ideas, context-aware middleware [21]3.2 Don’t hide power from the quFile-aware
allows applications to modify the presentation of data de- 5 quFile does not hide power from users and appli-

pending on access context. However, these Systems rgaiiong that wish to view and manipulate data directly.

quire application modification, €.9g., to subscribe 10 con-hgteaq; a quFile allows them to select among different
text events. quFiles provide similar functionality trans- views each of which is a different presentation of its

parently to unmodified applications by manipulating the yat3 * | addition to the default view described in the

file system interface. previous section, each quFile also presentawa view
3 Design goals that shows the data within the quFile as files within a di-
rectory. The raw view might include, for example, an

We next describe the goals that we aimed to achievgyiginal object, all materialized alternate representasi
with our design of quFiles. of that object, as well as the links to policies that govern
3.1 Be transparent to the quFile-unaware the quFile. quFile-aware utilities typically use the raw

)) view to manipulate quFile contents directly.
We designed quFiles to be transparent by default. The raw and default views represent the two end-

quFiles hide th_eir presence from users _and application oints on the spectrum of transparency. In between, a
unaware of their existence. We say quFiles are transpa juFile’s policy may define any number of additionak-
ent if the observable behavior of a file system containing. 1, views A custom view returns a different logical rep-

quFiles is indistinguishable from the behavior of a file \oqantation of the data than that provided by the default

system without quFiles that contains the correct data forview A quFile-aware user or application can specify the
the current contextConsider a quFile that contains mul- '

.) " name of a custom view when accessing a quFile to switch
tiple formats of a video and returns the one appropriat,, 5 aiternate representation. In effect, the name of the

for the ”?edi_a player that accesses the data. I_n this €asg,qom view becomes an additional source of context.
thg application r!eed not be aware of thg quElle. ltper- o example, consider a quFile that keeps old versions
ceves that the file system conta|r_15 a single instance °6f a file for archival purposes along with the file’s current
the video that happens to be one it can play. In generalq gion The quFile's default view returns a representa-
a quFile may dynamically resolve to zero, one, or manyio, equivalent to the file's current version. In the com-
files _Iocat_ed in the d|rect0_ry in which it r_eS|des; we refer mon case, the file system is as easy to use as one that does
to this logical rep_resentat_lon as the quFilé&fault VIEW hot support versioning because its outward appearance is
. The ‘?'efa“'t view provides the packwarq compat|b|!- equivalent to that of one without versioning. However,
IFy rngred to use-CO.TS applications. ,W'thOUt modi- when a backup version is needed, the user should be able
fication, such applications must be quFile-unaware, sq, seq 4| the previous versions of the file and select the
th_e context-spemfl_c prese_ntat_|on of da_ita must be acComMeyrect representation. The quFile policy therefore de-
pllshed by presenting the illusion o_faﬂle System without sinog 4y ersions custom view that shows all past ver-
quFiles that contains the appropriate data. The OIG’faugions in addition to the current one. Another custom view

view also reduces the cognitive Ioaq on the user b.y re yesterday view) might show the state of all files as
moving the need to reason about which representation g ey existed at midnight of the previous day, and so on.
data should be accessed in the current context. Instea inally, a utility that removes older versions to save disk

the _p(_)licy executed by the quFile mechanism makes thi%pace may need to see incremental change logs, not just
decision transparently. checkpoints, so that it can compact delta changes to re-

N(.)t.e thqt our dgfinition of transparency applies to any, ¢ storage use. This utility uses the quFile’s raw view.
specific point in time. When context changes, the ap- quFiles distinguish between application transparency

_prop_riate represent_ation to return may also qhange. Thiand user transparency. In the above example, a user may
implies that a quFile-unaware user or application mayiew previous versions of a file usings or a graph-

qbserve_that the_co_ntents of the file system change over| fije prowser. The user is quFile-aware, but the
time. This behavior is the same as that seen when anoth@[a prowser is quFile-unaware. This scenario is tricky

application or user modifies afile: .For instance, a quF”ebecause the user must pass quFile-specific information
may redact files to remove sensitive content when datg, ., ,gh the unmodified application to the quFile policy.
is accessed at insecure locations. A user will necessanlwe solve this dilemma by using the file name, which is
PO“C? that the cor#entshof the file chanr?e aft;_: m;:‘"nggenerally treated as a black box by applications to encode
rom home to a coffee shop. However, the qu €CN- view selection. Specifically, for a directopapers, the
anlsmltself remains transparent, so the same application, oo, may select the versions custom view by specifying
can display the file in both contexts. the namepapers.quFile.versions or the raw view

by specifyingpapers.quFile, which is shorthand for

papers.quFile.raw.

3.3 Support both static and dynamic content the behavior and resolution of the quFile nAme policy

quFiles support both static and dynamic COmem_dete_rmines thg name of a quFile in agive_n context. If_the
When data is read from a quFile, the file names andfluFile dynamically resolves_to ml_JIt|pIe files, the policy
content returned might either be that of files storedr®urns all resolved names in a list. For example, one
within the quFile or new values generated on the fly.2uthor owns a DVR that displays only TiVo files, which
Storing and returning static content within the quFile Must have afile name ending ifivo. Thename policy
amortizes the work of generating content across multi-thus retumnsoo. Tivo when a video is viewed using the
ple reads. Static content can also reduce the load oRVR @ndfoo.mp4 otherwise.
resource-impoverished mobile devices: e.g., rather than A content policy determines the content of the
transcode a video on demand on a mobile computer, wguFile in a given context. This policy is called once
pre-transcode the video on a desktop and store the resdf €8ch name returned by a quFileiame policy. In
in a quFile. On the other hand, dynamic content generalN€ Video example, theontent policy returns the alter-
tion is useful when all context-dependentversions canndfat€ representation in the TivVo format when the quFile
be enumerated easily. For instance, our versioning quFil& Viewed on the DVR, an alternate representation for
dynamically creates checkpoints of files at specific point& Smaller screen size when the quFile is viewed on a

in time from an undo log of delta changes. Nokia N800 Intern.et.tabllet, and the original representa-
))] tion when the quFile is viewed on a laptop. Note that the
3.4 Be flexible for policy writers example quFile resolves to the same name on the N800

quFiles support not just the resolution policies that weand the laptop, yet it resolves to different content on each
have implemented so far, but also resolution policies thaflevice. Thus, COTS video players see only the video in
we have yet to imagine. We provide this flexibility by the format they can play. Users who are quFile-unaware
allowing resolution policies to be specified as short codesee the same video when they list the directory, but a
modules in libraries that are dynamically loaded whenduFile-aware power user could use the raw view to see
a quFile is accessed. Each quFile links to the specifi@ll transcodings.
policies that govern it: aame policy that determinesits ~ An edit policy specifies whether specific changes are
name(s) in a given context,antent policy that deter- ~ allowed to the contents of a quFile. For instance, the user
mines its contents in a given context, andearit pol- May modify the metadata of a lower-fidelity representa-
icy that describes how its contents may be modified. Ation on the N80O. In this case, the video transcoder is
quFile may optionally link to twaache policies that di- notified of the edit, and it makes corresponding modifica-
rect how its contents are cached. These policies are eadigns to the metadata of the other representations. How-
to craft; the policies for our six case studies average onlyever, changes to the actual video are disallowed since
84 lines of code. there is no easy way to reflect changes made to a low-

Executing arbitrary code within the file system is dan- fidelity version to higher-fidelity representations.
gerous, so policies are executed in a user-level sandbox. Two optional cache policies specify context-aware
Our current implementation can use Sprocket [30] soft-prefetching and cache eviction policies for the quFile and
ware fault isolation to ensure that buggy policies do notits contents. These policies help manage the cache of dis-
damage the file system or consume unbounded resourcé#uted file systems [18, 20, 26] that persistently store
(e.g., by executing an infinite loop); other safe executiordata on the disk of a file system client. For the example
methods should work equally well. guFile, thecache policies ensure that only the format

needed for a specific device is cached on that device.

4.2 Background: BlueFS

The quFile design is sufficiently generic so that quFile
To illustrate how quFiles work, we briefly describe support can be added to most local and distributed file
one quFile we developed. This quFile returns videos forsystems. For our prototype implementation, we added
matted appropriately for the device on which the videoquFile support to the Blue File System [26] (BlueFS) be-
is viewed. When a new video is added to the file systemcause BlueFS targets mobile and consumer usage scenar-
a quFile-aware transcoder utility learns of the new fileios for which quFiles are particularly useful and because
through a file system change notification. The transcodewe were familiar with the code base. BlueFS is an open-
creates alternate representations of the video sized argburce, server-based distributed file system with support
formatted for display on the different clients of the file for both traditional computers and mobile devices such
system. It then creates a quFile and moves the origias cell phones. Additionally, BlueFS can cache data on
nal and alternate representations into the quFile using tha device's local storage and on removable storage media
quFile’s raw view. to improve performance and support disconnected oper-
The transcoder also sets specific policies that goveration [20]. BlueFS has a small kernel module that man-

4 Implementation

4.1 Overview

name_policy (IN list of quFile contents, IN view name (if specified),
OUT list of file names, OUT cache lifetime);

content_policy (IN filename, IN list of quFile contents, IN view name (if specified),

OUT fileid, OUT cache lifetime);
edit_policy (IN fileid, IN edit type, IN offset, IN size, OUT enum {ALLDW, DISALLOW, VERSIDN})
cache_insert_policy (IN list of quFile contents, OUT list of fileids to cache)

cache_eviction_policy (IN fileid, OUT enum {EVICT, RETAIN})

Figure 1. quFile API

ages file system data in the kernel's caches. The ked.4 quFile policies
nel module redirects most VFS operations to a user-level

: o Figure 1 shows the programming interface for all
daemon. To support quFiles, we made small modificay il policies. Policies are stored in shared libraries

tions to both the kernel module and daemon, while the, the file system. When a quFile is created, utilities

file server remained unchanged. For simplicity, we alsog,;cy a5 the video transcoder create links in the quFile

use BlueFS’ persistent query [29] mechanism to delivery, e jipraries for its specific policies. Links share poli-
file change notifications. cies across quFiles of the same type, simplifying man-
4.3 Physical representation of a quFile agement and reducing storage usage.

Logically, a quFile is a new type of file system object. 4-4-1 Name policies
A quFile is similar to a directory in that they both contain A name policy lets a quFile have different logical
other file system objects. The difference between quFile§ames in different contexts. To make the existence of
and directories is their resolution policies. Directorg+e @ quFile transparent to quFile-unaware applications and
olution policies arestatic given the same content, a di- uUsers, a VFSeaddir on the parent directory of a quFile
rectory returns the same results. quFile resolution poli-does not return the quFile’s name; instead, it returns the
cies aredynamic the same content may resolve differ- names of zero to many logical representations of the data
ently in different contexts. Further, users and applica-€ncapsulated within the quFile. quFiles interpose on the
tions must be aware of directories since they add anotheparent’sreaddir because that is when the filenames of
layer to the file system hierarchy, whereas quFiles carihe children of a directory are returned to an application.
hide their presence by simply adding resolved files to the If readdir encounters a directory entry with the re-
listing of their parent directories. served.quFile extension, it makes a downcall to the

Using this observation, we reduce the amount of newBlueFS daemon, which runs thexme policy for that
code required to add quFiles to a file system by havquFile. The kernel reads the quFile’s static contents from
ing the physical (on-disk and in-memory) representa-the page cache and passes the contents to the daemon.
tion of a quFile be the same as a directory, but we re- The user may optionally specify the name of a view
define a quFile’s VFS operations to provide differentfor the name policy. For example, instead of typirigs
functionality than that provided by a directory. We seg- foo, a user could typ&s foo.quFile.versions t0
ment the namespace to differentiate quFiles from regshow a directory listing that contains all versions retdine
ular directories. All quFiles have names of the form by the quFiles in the directory. The view name is passed
<name>.quFile. While we considered other methods to thename policy without interpretation by the file sys-
of differentiating the two, such as using a different file tem. This allows a quFile-aware user to use a COTS ap-
mode, a special filename extension allows quFile-awar@lication such ass to list file versions when desired. As
utilities to manipulate quFiles without changing the file mentioned previously, the synta foo.quFile re-
system interface. For example, the video transcodeturns the raw view of the quFile, which shows the quFile
simply issues the commanddir foo.quFile and and all its contents as a subdirectory wittfiso. This
mv /tmp/foo.mp4 foo.quFile to create a quFile and Syntax allows quFile-aware utilities and users to directly
populate it with the original video. The only disadvan- manipulate quFile contents and policies.
tage of namespace differentiation is the unlikely possibil ~ Thename policy returns a list of zero to many logical
ity that a quFile-unaware application might try to createnames. The kernel module then callsl1dir for each
a directory that ends withquFile. Note that the quFile- name on the list to return them to the application reading
aware transcoder uses the quFile’s raw view to maniputhe directory. If no names are returned by the policy, the
late its contents; this allows it to use COTS file systemkernel does not caltilldir. This hides the existence

utilities such asuv. Video players will see the default of the quFile from the application.

view since they will not use the speciajuFile exten- In addition to returning the name of existing repre-
sion. When they list the directory containing the quFile, sentations encapsulated in a quFileyame policy may
they will see an entry for eithefoo . mp4 or foo . TiVo. also dynamically instantiate new representations by re-

turning filenames that do not currently exist within the

guFile. To ensure that such names do not conflict withified VFS operations such @smmit_write andunlink
other directory entries or names returned by other quFileso make a downcall to the daemon when a quFile repre-
within the directory, each quFile reserves a portion of thesentation is modified. The daemon runs #de t policy,
directory namespace. For instance, the names returnguhssing in the unique identifier of the file being modified
by foo.quFile must all start with the stringoo; e.g., and the type of the modifying operation. For write oper-
foo.mp3, foo.bar.txt, etc. Directory manipulation ations, it also specifies the region of the file being mod-
functions such asreate and rename ensure that the ified. The policy returns an enum that specifies which
claimed namespace does not conflict with current direcaction to take.
tory entries. For example, creating a quHite . quFile If the edit is allowed, the modification proceeds as
is disallowed if there currently exists within the direc- normal. If it is disallowed, the kernel returns an error
tory a file namedfoo.txt or another quFile named code to the calling application specifying that the file is
foo.tex.quFile. read-only. If the edit should cause a new version, we
To improve performance, same policy may specify modify the representation in place but also save the pre-
a cache lifetime for the names it returns — the kernelvious version of the modified range in an undo log. We
will not re-invoke thename policy for this time period. chose to log changes rather than create a new copy of
By default, the kernel module does not cache entries ithe file for each version because many consumer files are
no lifetime is specified, so the policy is reinvoked on thelarge (e.g., multimedia files) and are only partially modi-
nextreaddir and may return different entries if context fied (e.g., by updating an ID3 header). Modifications that
has changed. Cache lifetimes are useful for policies thatlelete files such amlink andrename cause the current
depend on slowly-changing context such as battery life. version of the file to be saved as a log checkpoint.

4.4.2 Content policies 4.4.4 Cache policies

A content policy lets a quFile have different content Our final two policies control the caching of quFile
in different contexts. After reading a directory, an appli- data in the BlueFS on-disk cache. For a distributed file
cation that is unaware of quFiles will believe that theresystem, the decision of what files to cache locally signif-
are one or more files with the logical names returned hyicantly impacts user experience when disconnected.
the quFile’sname policy within that directory. Thus, it quFiles may optionally specify two cache policies. A
issues a VFS.ookup for each logical name. Since no cache insert policy is called when a quFile is read
such file exists, we modif¥ookup to return an inode of and may specify which of its contents to cache on disk.
a file containing the logical content associated with theFiles specified by the cache insert policy are kept on a
name in the given context. per-cache list by the BlueFS daemon and are fetched and

The modified BlueFSlookup operation checks stored when the daemon periodically prefetches data for
whether the name being looked up resides within the dithe cache. For instance, when a quFile containing the
rectory namespace reserved by a quFile. If this is theecent episode of a favorite TV show is prefetched to a
case, it makes a downcall to the BlueFS daemon, pasgortable video player, itgache insert policy might
ing the filename being looked up, a list of the quFile’s specify that the video formatted for the video player, a
contents, and a view name if one was specified. The dagepresentation that resides in that quFile, should also be
mon calls the quFile’'sontent policy, which returns the prefetched. In contrast, when the same policy runs on a
unigue identifier of a file containing the appropriate con-laptop, it would specify that the full-quality video should
tent. The kernel moduleookup operation instantiates a be fetched and cached instead. Thus, the policy ensures
Linux dentry with the inode specified by the fileid re- that only the data needed to play the video on each device
turned by the policy. is actually cached on the device’s disk.

This implementation allows quFiles to create content A cache eviction policy is called when the file
dynamically. Acontent policy can first create a new system needs to reclaim disk space. The policy speci-
file and populate it with content, then return the newly fies whether or not cached contents should be evicted.
created file to the kernel. Likeame policies,content Cache policies complement type-specific caching mech-
policies may also specify a cache lifetime for the con-anisms in mobile storage systems [29, 34, 36] by adding
tent they return. If a lifetime is not specified, the kernel the ability to make cache decisions based on dynamic
does not cache the resultidgntry, which forces anew context such as battery state or location.
lookup the next time the content is accessed. 4.5 Context library

4.4.3 Edit policies _ .
An edit policy specifies which modifications to a Through the Sprocket interface, quFiles have read-
UFile’s con?entsyarg allowed. Currently. auFiles su ~only access to all information available to the BlueFS
q ' Y, d P-4aemon. Thus, in principle, policies can extract arbi-

port three actions: the modification can be allowed, dis- . - .
: g trary user-level contextinformation in order to determine
allowed, or force the creation of a new version. We mod-

which representations to return. However, for conve-

[Function | Returns First, they execute policies in the file system — thus,
* . .
getUserName char* userame developers need not create new middleware or modify
getUserGroupld uid_t uid, gid.t gid Lo .
getProcessName | char* procname applications or the operating system. Second, develop-
getHostname char* hostname ers only need to write resource management policies;
getOSname char* osname , quFiles take care of the mechanism.
getOSversion char* release, char* version .
getMachine char* family Our case study allows a mobile computer to save bat-
getCPUvendor char* vendor, char* model tery energy by utilizing its spare storage capacity. Music
getCPUspeed double cpuSpeed lavb ; it
) =P playback is one of the most popular applications on mo-
getCPULutil double utilization L
getMemUtil double utilization bile devices. Most mobile devices store music in a lossy,
getPowerState enun{A/C, Battery} _ compressed format, such as the mp3 format, to conserve
getLocation | double latitude, double longitudg storage space and reduce network transfer times. How-
getServerBandwidthl double bandwidth . L . L
getServerLatency | double latency ever, decoding compressed music files requires signifi-
cantly more computational power than playing uncom-
Table 1. quFile context library pressed versions. For instance, the experimental results

_ _ _ _ ~in Section 6.6 show a battery lifetime cost of 4-11%
nience, we have implemented a library against whichacross several mobile devices. Further, we conducted a
policies may link. This library contains the functions small survey to determine the amount of unused storage
shown in Table 1 that query commonly-used context. on cell phones and mp3 players. 13 of 45 mp3 players
4.6 File system requirements for quFiles were over half empty, 18 were 50-90% full, and 14 were

)]) over 90% full. 15 of 29 cell phones were over half empty,
Since our current implementation leverages BlueFS, g \vere 50-90% full and 4 were over 90% full.
it is useful to consider what features of BlueFS would o, quFile uses the spare storage on a mobile com-

need to be supported by a file system before we couldyter to store uncompressed versions of music files and
port quFiles to that file system. First, quFiles requireihen transparently provides those uncompressed version
a method to notify applications when files are created, mysic players to save energy. We built a quFile-aware
or modified. While OS-specific notification mechanisms yanscoder that is notified when a new mp3 file is added
such as Linux’s inotify [23] would suffice for alocal file 4 the distributed file system. The transcoder generates
system, BlueFS persistent queries are useful in that they, ncompressed version of the music file with the same
allow notifications to be delivered to any client of the dis- 5, gio quality as the original, creates a quFile, links it to
tributed file system. Second, quFiles require a methoq,, holicies, and moves both the compressed and uncom-
t(_) isolate the execution of extensions. This could be a$ressed versions of the music file into the quFile using
simple as a user-level daemon process, orwe could levejgs ray view, Since persistent queries provide the abil-
age existing extensibility research [3, 10, 39]. Finally, ity to run the transcoder on any BlueFS client, we gen-

quFiles reuse existing file system directory support, agate alternate transcodings on a wall-powered desktop

defined by POSIX. computer. This shows one benefit of statically storing
5 Case Studies alternate representations in a quFile rather than generat-
ing them on-demand: we can avoid performing work on
The best way to evaluate the effectiveness and geng resource-constrained device. In contrast, dynamically

erality of a new abstraction is to implement several sysgenerating transcodings on a mobile device could sub-
tems that use that abstraction to perform different tasksstantially drain its battery.

Thus, in this section, we describe six case studies thatuse The quFilecache policies ensure that only otherwise

uniIes to extend the functionality of the file system. We unused Storage space is used to store uncompressed ver-
have used these QUFI|e case studies within our researqhons of music files. Using the normal BlueFS mecha-
group. The primary author of the paper has used quFilesisms, a music file is cached on a client either when it is
for the last 12 months, while others have used quFiles fofirst played or when it is prefetched by a user-specified
the past 6 months. policy (e.g., that all music files should be cached on a
5.1 Resource management cell phone [29]). Since the music file is contained within

. I . aqukFile, the file system’sookup function must always

One of the primary responsibilities of an operating o5 the quFile before reading the music file. At this

system is to manage system resources such as CPYpq the quFile'zache insert policy is run. The pol-
memory, network, storage and power. While several réyo,, o/eries the amount of storage space available on the

search projects have sh_own that context can be used i jce and adds the uncompressed representation to the
craft more effective policies, almost every new propose%refetch list if space is available.

policy has resulted in a new system being built [1, 8, 27].

: N) Later, when BlueFS does a regularly-scheduled
guFiles simplify resource management in two ways.

prefetch of files for the mobile client, it retrieves files on

the prefetch list from the server if the mobile computer isturn the current version of the file for the default view.
plugged in, has spare storage available, and has netwoikhe quFile’s edit policy specifies that a new version
connectivity to the server. It adds these prefetched files t@hould be created on any modification, i.e., whenever a
its on-disk cache. When BlueFS needs to evict files fronfile is closed, deleted, or renamed. Thus, when the user

the cache, it executes the quFilelsche evictionpol- opens a file and issues one or more writes, the old data
icy, which specifies that the uncompressed version is alneeded to undo his changes are saved to a new delta file
ways evicted before any other data in the cache. within the quFile. The modifications are written to the

Thename andcontent policies return the name and current version of the file stored within the quFile. Be-
data for the uncompressed version of the music file ifcause the default view exposes only the current version,
the mobile device is operating on battery power and thahese actions and the presence of past versions are com-
uncompressed version is cached on local storage, therelpletely transparent.
improving battery lifetime. If the uncompressed version Versioning the data overwritten by file writes often
is not cached on the device, the original file is returned. consumes less storage and takes less time than creating

This case study demonstrates how quFiles achieve aga full checkpoint. To further reduce the cost of version-
plication and user transparency. All actions describedng, quFiles create new versions at the granularity of file
above run automatically, without explicit user involve- open andclose operations, rather than at each individ-
ment and without application modification. ual write. Unlike write, operations such asename
U PR andunlink affect the entire file. For these operations,
5.2 Versioning: a copy-on-write file system the current version is moved to a checkpoint within the

Copy-on-write file systems such as Elephant [37] andguFile. Since there is no current version remaining, the
ext3cow [31] create and retain previous versions of filesquFile’s name policy does not return a filename for the
when they are modified. Users can examine previous vergefault view, giving the appearance that the file has been
sions and revert the current version to a past one whegeleted. However, the old data can still be accessed via
desired. However, these systems are monolithic implethe raw view or a custom view.

mentations, and the need to use new file SyStemS has hin- When the user wishes to view prior VersionS, she uses
dered their adoption. Thus, we were curious to see ifthe versions custom view (the.quFile.versions
quFiles could be used to add copy-on-write functionalityextension). This allows the use of COTS applications
to an existing file system. such asls and graphical file system browsers to view
We created a copy-on-write quFile that adds the abilyersions. Whereas the default view only shows a sin-
ity to retain past versions of files. A user may choose togje file, foo. tex, in a directory, the custom view may
version any individual file, all files of a certain type, or additionally show several past versions, efio. tex,
all files in a particular subtree of the file system. Forfoo.tex.ckpt.monday, foo.tex.ckpt.last week,
instance, a user might version all LaTeX source files.etc. When therame policy receives theersions key-
A quFile-aware utility uses BlueFS persistent queries toyord, it returns the names of any past versions found in
register for notifications when a file with the extension the quFile’s undo log. A user may use thersions

.tex is created. When it receives a nOtiﬁcation, e.g., thatkeyword to Specify all versions within a Subtree;
foo.tex is being created, it creates a new quFile with for example,grep bar -Rn src.quFile.versions

the namefoo.tex.quFile. It then uses the quFile’s searches for bar in all versions of all files in all subdi-
raw view to move the LaTeX file into the quFile and link rectories ofsrc.
the quFile to the copy-on-write policies. To conserve storage space, we dynamically generate
In addition to the current version of the f”e, each Checkpoints of past versions when they are viewed us-
copy-on-write quFile may contain possibly many oldering the versions view. The quFile’scontent policy
versions of the file. A past version may be representegeceives one of the names returned by thee policy.
as either aheckpointwhich is a complete past version |t dynamically creates a new checkpoint file within the
of the file, or areverse deltawhich captures only the quFile by applying the reverse deltas in succession to the
changes needed to reconstruct that version from the neXfext most recent checkpoint or the current version of the
most recent one. The reverse delta scheme is effectivelijle. |n addition to saving storage space, dynamic res-
an undo log that reduces the storage space needed gution also saves work in the common case where the
store past data; for instance, a change to the header ofger never inspects a past version. The performance hit
1 GB video file can be represented by a delta file only onef instantiating a previous checkpoint is taken only in the
block in size. While reverse deltas save storage, genefmncommon case when a user recovers a past version.
ating a complete copy of a past version incurs additional we have also implemented a quFile-aware garbage
latency when one or more deltas are applied to a checkeollection utility that runs as a cron job and removes
point or the current version. older versions to save disk space. One sample policy
The quFile’sname andcontent policies simply re- maintains all prior versions less than one day old, one

version from the previous day, one from the prior two tive information by glancing at the screen. To help such

days, and one additional version from each exponentiallysers, we created a quFile that shows only redacted ver-
increasing number of days. sions of files with sensitive data removed when data is

viewed at insecure locations. The original data is dis-

played at secure locations.

Distributed file systems typically make no visible dis- Thjs case study redacts only the presentation of data,
tinction between data cached locally and data that musfot the bytes stored on disk. Thus, it guards against in-
be fetched from a remote server. Unfortunately, the abadvertent d|sp|ay of data on a mobile Computer, but not
sence of this distinction is often frustrating. Forinstanc against the computer being lost or stolen.

a directory listing might reveal interesting multimedia we first created a quFile-aware utility that redacts
content that the user tries to view. However, the userxML files containing sensitive data. This utility is noti-
subsequently finds out that the content cannot be viewefled when files that may contain sensitive data are added
satisfactorily because it is not cached locally and the netiq the file system. While our utility can redact any XML
work bandwidth to the server is insufficient to sustain th8f||e using type-specific ru|eS, we Currenﬂy use it On|y for
bit rate required to play the content. GnuCash, a personal finance program that stores data in

To address this problem, we created a resource-awarg pinary XML format. GnuCash [16] runs on Linux and
directory listing policy that uses quFiles to tailor the eon s compatible with the Quicken Interchange Format.
tents of the directory to match the resources available to Qur utility parses each GnuCash file and generates a
the computer. Our policy currently tailors directory list- redacted version. The general-purpose redactor uses the
ingS to reflect cache state and network bandwidth. W@(erces [41] XML parser to app|y type-speciﬁc transfor-
can imagine similar policies that tailor listings to match mation rules that obfuscate sensitive data. Our current
the availability of CPU cycles or battery energy. rules obfuscate details such as account numbers, trans-

If a multimedia file is cached on a computer, ttime action details and dates, but leave the balances visible.
policy’s default view returns its name to the application. Finally, the utility creates a quFile and moves both the
Otherwise, the policy returns the name of the multimediaopriginal and redacted files into the quFile using its raw
file only if the network bandwidth to the server is greater yiew. The redactor generates these two static representa-
than the bit rate needed to play the file. tions each time the file is modified.

The effect of therame pOllcy is that a multimedia file When an app”cation reads this un“e, our context-
is not displayed by directory listings or media players if aware declassification policy determines the location of
there is insufficient network bandwidth to play it. ThUS, the mobile Computer using a modified version of Place
a media player that is shuffling randomly among songg ab [25, 40]. If the computer is at a trusted location,
will not experience a glitch when it tries to play an un- as specified by a configuration file, the original version
available song. A user will not have to experimentto findjs returned. Otherwise the redacted version is displayed.
out which songs can be played and which cannot. Since the file type of the original and redacted versions

However, our experience using this policy revealedare the same, theame policy returns the same name in
that sometimes we want to see files that are currentlyy]| |ocations; however the data returned by thetent
unavailable when we list a directory. For instance, apolicy may change as the user moves.
video player may support buffering, and we are will- = \we did not need to modify GnuCash since it uses the
ing to tolerate a delay before we watch a video. Wetransparent default view. GnuCash simply displays the
therefore altered theame policy to support a custom original or redacted values in its GUI, depending on the
view that simply changes the name of a file fréo |ocation of the mobile computer. A quFile-aware user
to foo_is_currently unavailable when the file is may override thecontent policy and view a different
unplayable. The custom view is selected using thesersion using the quFile’s raw view; e.g., by specifying
keyword all; e.g., 1s MyMusic.quFile.all Shows /pluefs/credit_card.quFile/credit_card.xml

foo_is_currently unplayable, while 1s MyMusic instead of/bluefs/credit_card.xml.
does not show an entry for that file.

5.3 Availability: resource-aware directories

5.5 Application-aware adaptation: Odyssey

Odyssey [27] introduced the notion of application-
Mobile computers may be used at any location, in-aware adaptation, in which the operating system moni-
cluding those that are insecure. For this reason, infortors resource availability and notifies applications of any
mation scrubbing [19] has been proposed to protect, isorelevant changes. When notified by Odyssey of a re-
late and constrain private data on mobile devices. Fokource level change, applications adjust the fidelity of the
instance, a user may not want to view her bank recordgjata they consume. A drawback of Odyssey is that both
or credit card information in a coffee shop or other pub-the operating system and applications must be modified.
lic venue because others may observe personal or sengifowever, we observe that almost all application modifi-

5.4 Security: context-aware data redaction

cation is due to implementing the adaptation policy andthe data in the file. With these changes, all edits we at-
mechanism inside the application. Thus, we decided tdempted to make to low-fidelity versions succeeded. Of
re-implement the functionality of Odyssey using quFiles.course, this is just one policy, and different applications
Unlike Odyssey, our quFile implementation requires nomay craft other policies such as allowing edits to low-

application modification. The adaptation policy can befidelity data or creating multiple versions.

removed frqm_the application and cleanly specified usg o Platform-specific video display
ing the quFile interface.

Our Odyssey impiementation repiicates Odyssey’s Section 4.1 gave a brief overview of our last case
Web (image viewing) application. A similar policy could Study, which transcodes videos to meet the resource con-
be used for other Odyssey data types such as speecsfraints of file system clients. The authors currently use
maps [11], and 3-D graphics [24]. TiVo DVRs, N800 Internet tablets, and laptop comput-

We created a utility that is notified when new JPEG €rs to display videos. When a nei Vo file is recorded
images such as photos are added to the file system. Trd stored in BlueFS, a quFile-aware utility generates a
utility creates four additional lower-fidelity representa full-resolution .mp4 for the laptop and a lower-fidelity
tions of the photo with Varying JPEG quaiity levels. .mp4 representation for the Nokia N800. Since the N800
It creates a quFile, links in our Odyssey policies, andhas a lower screen resolution, we can save storage space

moves the lower-fidelity representations and the originaon that device by producing a video formatted specifi-
image into the quFile using its raw view. cally for the N800’s smaller display. The utility creates a

WwWhen a photo viewer lists a directory Containing an unIIe and pOpUlates it with the Original and transcoded
image quFile, the Odysseyme policy returns the name Vvideos for each computer type described above. If we
of the original image file. However, when the contentWere to use additional types of clients, our transcoder
of the image is read, the quFileimntent policy re- could produce versions for those devices.
turns the best quality representation that can be displayed The name and content policies query the machine
within one second. type on which they are running using the context library

The content policy uses the context library to deter- described in Section 4.5. Theame policy returns a
mine the client’s current bandwidth to the server. It readshame ending with TiVo when the video is read by the
the size of each representation in the quFile starting wittPVR, as determined by seeing that the name of the re-
the highest-fidelity, original representation and proceed questing application is a TiVo-specific utility. Otherwjse
ing to the lowest. If a representation is cached locally ortheé name policy returns a name ending witmp4. The
can be fetched from the server in less than a second, theontent policy determines the type of client using the
content policy returns the inode for that representation. context library and returns the encoding appropriate for
If no representation can meet the service time requirethat type. Thecache_insert policy ensures that each
ment, the lowest fidelity representation is returned. device only caches the video encoding it will display. We

The edit policy returns a context-specific value. It use BlueFS’type-specific affinity to prefetch such encod-
allows all modifications to the original image since the ings to each device. quFiles hide this manipulation from
quFile-aware transcoder will be notified to regenerate alvideo display applications, which therefore do not need
ternate representations from the modified original. How-to be modified. In practice, we found that this cached
ever, the policy disallows modifications to multimedia Store of videos on the N800 made many a bus-ride more
data in low-fidelity representations because it is uncleanjoyable! We also implemented a simple eviction pol-
how such modifications can be reflected back to the origicy: when the device is running out of storage space, all
inal and other representations. This behavior is similaPrefetched recordings are deleted before content the user
to the one users see in other arenas (e.g., when they tijas explicitly cached.
to save an Office document in a reduced-fidelity format6 Evaluation
such as ASCII text).

After experimenting with this policy, we made two While the case studies in the previous section il-
further refinements. First, we realized that most edits tdustrate the generality of quFiles, we also verified that
multimedia files change only the metadata header, whiclguFiles do not add too much overhead to file system op-
is identical across formats and quality levels. Thus, weerations and that the amount of code required to imple-
modified our policy to allow editing of metadata for low- ment quFile policies is reasonable.
fidelity representations. The transcoder propagates meta- Unless otherwise stated, we evaluated quFiles on a
data changes to other representations. Dell GX620 desktop with a 3.4 GHz Pentium 4 proces-

We also realized that some image editors rewrite thesor and 3 GB of DRAM. The desktop runs Ubuntu Linux
entire image instead of just modifying its metadata. We8.04 (Linux kernel 2.6.24). The desktop runs both the
therefore modified ouedit policy to allow writes out- BlueFS server and client, and the BlueFS client does not
side the metadata region if the data written is identical touse a local disk cache.

= No replication = No replication

= quFile-Odyssey = quFile-Odyssey
mm Replication 30 X N
15 200 200] B 1.0 €,
: 2 20 e e %7
% 104 150 150 e fp),] ;y)/]
E 1 £ 104 o 0.57 o 14
o] 100 100 = S] S]
E 5]] =] Fo]
= 1 50 50 0 0.0 0
0- 0 0 (a) Warm client (b) Cold client (c) Cold server
(a) Warm client (b) Cold client (C) Cold server Each value is the mean of 10 trials; error bars are 90% confi-

dence intervals. Note that the scales of the three graphs differ.
Each value is the mean of 10 trials; error bars are 90% confi-
dence intervals. Note that the scales of the three graphs differ. Figure 3. Time to read 100 images

Figure 2. Time to list a directory with 100 images . . .
case for most file system operations), quFiles add less

We executed each experiment in three scenarios. [f{12n 3% overhead for this experiment (roughly fis@er
the warm clientscenario, the kernel's page cache Ccm_flle). If the cllent_cache is cold, quFiles add_5_9% over-
tains all BlueFS data read during the experiment (thé_‘ead- For each file, quFiles execute two policies. There
working sets of all experiments fit in memory). In the IS a measured overhead of mper policy, a_lr_nost en-
cold clientscenario, no client data is in the kernel's pagetIrely due to user-level sandboxing. An additionaljigd

cache, but all server data is initially in the page cachePer file is required to fetch quFile attributes and contents

Thus, the first time an application reads a file page or at]‘rom the server. If both the cllent and server gaches are
Id, the server performs two disk reads per file to read

tributes, an RPC is made to the server but no disk acce X X _ o
the quFile attributes and data. In this case, quFiles im-

is required. In thecold serverscenario, no data is ini- . .
tially in any cache. On the first read, an RPC and a disk©S€ slightly less than a 3x overhead because disk reads
access are required to retrieve the data are the dominant cost and three reads per file are per-

) o formed with quFiles while only one read is performed
6.1 Directory listing without quFiles. However, it should be noted that even
Our first experiment evaluates the performance overWhen both caches are cold, quFiles impose only 0.48 ms
head of quFiles for common file system operations byof overhead per file in this worst-case scenario. Note that
measuring the time to list the files in a directory and theirthe relative overhead of quFiles would decrease if file ac-
attributes with the commants -al. This is a worst- cesses were more random since, as directories, quFiles
case scenario for using quFiles since the listing incur$an be placed on disk near the files they contain (mini-
the overhead of retrieving a quFile and executing bothMizing seeks).
the name and content policies to determine which at- While the first bar in each scenario in the figure pro-
tributes to return for each file. Yet, there is minimal ad- vides a lower bound on performance, a fairer compar-
ditional work to amortize this overhead because the diison for Odyssey with quFiles is one in which all rep-
rectory listing requires that only the attributes of the file resentations are stored together in the same directory.
being listed be retrieved. Odyssey uses this storage method for video, map, and
In our experiment, a directory contains 100 JPEG im-speech data [27, 11]. Thus, there are 500 files in the
ages. Each image is placed in a quFile that contains 4lirectory. As the last bar in each scenario in Figure 2
additional low-fidelity representations and returns the ap Shows, listing the directory takes over twice as long with-
propriate one for the available server bandwidth using the?ut quFiles in the warm client and cold server scenarios,
Odyssey policy in Section 5.5. and over 5 times as long in the cold client scenario. Be-
The first bar for each scenario in Figure 2 shows acause each quFile encapsulates many representations but
lower performance bound generated by assuming thaieturns only one, quFiles fetch less data than a regular
Odyssey-like functionality is completely unsupported.file system when a naive storage layout policy is used.
Each value shows the time to list a directory without Overall, we conclude that quFiles add minimal over-
quFiles that contains only the original 100 JPEG imageshead to common file system operations, especially when
The second bar in each scenario shows the time téhe client cache is warm. Compared to naive file system
list the directory using quFiles. The Odysseyme and layouts, quFiles can sometimes improve performance
content policies return the name and content of the through their encapsulation properties.
original image since server bandwidth is abundant. If the
client cache is warm (which we expect to be the common

= without quFiles = BlueFS

) = with quFiles ; = quFile default view
- 500 500 500 mm quFile versions view
g 400 400 400 27 309 601
8 300- 300 300 g]]
-]] 1 S 204 40 —
o 200 200 200 8]
£ 100- 100 100 e 17]]
T] g @ 10 20
0- 0- 0- Z] . J

(a) Warm client (b) Cold client (c) Cold server 0- 0- 0-

Each value is the mean of 5 trials; error bars are 90% confidence (a) Warm client (b) Cold client (C) Cold server

intervals.

Each value is the mean of 5 trials; error bars are 90% confidence

Figure 4. Time to make the Linux kernel intervals. Note that the scales of the three graphs differ.

6.2 Reading data Figure 5. Time to search through the Linux kernel
Often, users and applications will read file data, notLinux source tree described in the previous section to
just file attributes. We therefore ran a second mi-find all 9 occurrences of “removeait_queuelocked”.
crobenchmark that measures the time taken byctite The first bar in each scenario of Figure 5 shows the
utility to read all images in our test directory and pipe thetime to search through the Linux source without quFiles.
output to/dev/null As Figure 3 shows, quFile overhead The second bar in each scenario shows the time to search
is negligible in the warm client scenario, 3% in the cold through the source with quFiles using the default view.
client scenario, and 5% in the cold server scenario. Al-In this case, each quFile returns only the current version
though the total overhead of quFile indirection remainsof each source file. Thus, the results returned by the two
the same as in the previous experiment, that overhead isrep commands are identical.
now amortized across more file system activity. Thus, In the warm client scenario, the performancegoép
relative overhead decreases substantially. with quFiles is within 1% of the performance without
6.3 Andrew-style make benchmark quFiles. As we Would_expect,.the overhead is !arger
when there is no data in the client cache: 21% in the

We next turned our attention to application-level co|q cache scenario and 6% in the cold server scenario.
benchmarks. We started with a benchmark that measures quFiles, however, allow greater functionality than

quFile overhead during a completiake of the Linux 5 regular file system. For instance, we can search

2.6.24-2 kernel. Such benchmarks, while perhaps nofyrough not only the current versions of source files but
representative of modern workloads, have long been useglsq g past versions by simply executiggep -Rn
to stress file system performance [18]. linux.quFile.versions wherelinux is the root of

We compare the time to build the Linux kemel on the kernel source tree. This command, which uses the
BlueFS with and without quFiles. For the quFile test, ;orsions view of the copy-on-write quFile, searches
we created a kernel source tree in which all source f”esthrough twice as much data and returns 18 matches.
(endingin .c, .h, or.S) are versioned using the copy-on- The |ast bar in each scenario shows the time to ex-
write quFile described in Section 5.2. The kernel SOUrC&cytegrep using theversions view. Since approx-
tree contains 23,062 files, of which 19,844 are versionedi,{mltmy twice as much data is read. the version-aware
Each ngiIe contains the qriginal file apd_ a checkpoint ofsegrch takes approximately twice as long as a search us-
approximately the same size as the original. ing the default view in the warm client scenario. How-
~ As Figure 4 shows, quFiles a<(j)d negligible overheadayer, in the cold server scenario, the search takes only
in the warm client scenario and 1% overhead in the coldz1 o4 |onger since quFile representations are located close
client and cold server scenarios. Even though kernely each other on disk reducing seek times.
source files are quite small (averaging 11,663 bytes per Thjs scenario shows that even when there is little data
file), many files such as headers are read multiple timesyy computation across which to amortize overhead, per-
meaning that the extra overhead of fetching quFile datgormance s still reasonable, especially when data resides
from the server can be amortized across multiple filej, the kernel’s page cache. Further, quFiles enable func-

reads. Further, computation is a significant portion oftjonajity that is unavailable using regular file systems.
this benchmark, reducing the performance impact of 1/0. i
64 K | 6.5 Codesize
. ernel gre
grep We measure the effort required to develop new poli-

We next ran a read-only benchmark that stresses filgjes py counting the lines of code for the quFiles used in
I/O performance. We useglrep to search through the

[Component [Name] Content| Edit | Cache][Total | Power to play | Power with | Battery life
Resource mgmt]| 32 18 3 36 o4 Device mp3 files (MW) | quFiles (mW) | extension
Security 20 33 8 n/a 61 Nokia N95-1 962 914 5%
Availability 64 26 8 n/a 98 Nokia N95-3 454 437 4%
Odyssey 23 27 32 n/a 82
Platform spec. 31 30 8 43 112 This table compares the power used to play mp3 files on 3 mo-

bile devices with the power required to play the uncompressed
Table 2. Lines of code for quFile policies versions returned by quFiles.

)] Table 3. Power savings enabled by quFiles

each of our six case studies. As Table 2 shows, almost
all policies required less than 100 lines of code. Com-Acknowledgments
pared to the code size of their _monollthl_c ancestqrs, these We thank Mona Attariyan, Dan Peek, Doug Terry, Benji Wester,
numbers represent a dramatlc red_uctlon. For 'ns_tanc%ur shepherd Karsten Schwan, and the anonymous revieweesife
the base Odyssey source is comprised of 32,329 lines afients that improved this paper. We used David A. Wheeler®GL

i i i ount to estimate the lines of code for our implementati@sod Flinn
C(.)de while ext3cow requires a 18’49.4 Il.ne patch to .thefs: supported by NSF CAREER award CNS-0346686. The views and
L|nux'2-6-20-3 source tree. Our quFile implementationconciusions contained in this document are those of theogaitand
added 1,515 lines of code to BlueFS (BlueFS has 28,788nould not be interpreted as representing the official feslieither ex-
lines of code without quFiles). Further, all policies were Pressed or implied, of NSF, the University of Michigan, Misoft, or
. . . . __the U.S. government.
implemented by a single graduate student. All policies

took less than two weeks to implement. Later policiesReferences
required only a few days as we gained experience. [1] ANAND, M., NIGHTINGALE, E. B.,AND FLINN, J. Self-tuning

; wireless network power management. Rroceedings of the 9th
6.6 Energy Saving results Annual Conference on Mobile Computing and Networki&gn
To evaluate the effectiveness of our case study in Sec- Diego, CA, September 2003), pp. 176-189.
tion 5.1 that plays uncompressed music files to save en{2] BELARAMANI, N., DAHLIN, M., GAo, L., NAYATE, A.,

VENKATARAMANI, A., YALAGANDULA , P., AND ZHENG, J.
ergy, we measured the power used to play the uncom- PRACT!I Replication. InProceedings of the 3rd Symposium on

pressed version of music files returned by quFiles and Networked System Design and Implementa(Ban Jose, CA,
the power used to play the equivalent mp3 files. Table 3 May 2006), pp. 59-72.
shows results for three mobile devices: an HP4700 iPAQ [3] BERSHAD, B., SAVAGE, S., RRDYAK, P., SRER, E., A-
handheld and Nokia N95-1 and N95-3 smart phones. UCZYNSKI, M., BECKER, D., CHAMBERS, C., AND EGGERS

. - . . . S. Extensibility, safety and performance in the SPIN opegat
The _'PAQ runs '_:am”'ar v8.4, with OpiePlayer as |t5_ system. InProceedings of the 15th ACM Symposium on Op-
media player while the the N95-1 and N95-3 ran their erating Systems Principle€€opper Mountain, CO, Dec. 1995),
factory-installed operating system and media players. Pp. 267-284.

; [4] BERSHAD, B. B.,AND PINKERTON, C. B. Watchdogs - extend-

ip, AV(\Q/ebS“IE(r:}:IZVi":S?tSS ul;z(:tet?;a%?jwfgn%%r;zl;rgig ggvjehf ing the UNIX file system Computer Systems 2 (Spring 1988).

.. . [5] BiLA, N., RONDA, T., MOHOMED, |., TRUONG, K. N., AND
supply C.able through a digital multimeter. L_Jnfortljmately' DE LARA, E. PageTailor: Reusable end-user customization for
the Nokia smart phones cannot operate with their battery the mobile web. InProceedings of the 5th International Con-
unplugged, so we instead used the Nokia Energy Pro- ference on Mobile gé’g%msy Applications and Sen(@en Juan,
filer [28] to measure playback power. Our tests show 6] Bund! ' _ ’F_)c?' N ' Jaevel .

H H e undle programming guide. http: eveloper.apple.
that quFiles cagl increase the battery I!fetlme Qf thes_e de- com/documentation/CoreFoundation/Conceptual/
vices by 4-11% when they are playing music. Given CFBundles/CFBundles.html.
the importance of battery lifetime for these devices, this [7] pe Lara, E., KumAR, R., WALLACH, D. S., AND

is a nice gain, especially considering that only spare re- ZWQ'TNSPO'EL' WI.IPCoIIabgrationfa?‘d rlnultlimedia .authIO(r:ingfon

H H monDniie devices. roceedings o the 1st International Confer-
sources are used to achieve it. ence on Mobile Systems, Applications and Servias Fran-
cisco, CA, May 2003), pp. 287-301.

[8] DELARA, E., WALLACH, D. S.,AND ZWAENEPOEL, W. Pup-

The un”e abstraction simplifies data management by peteer: Component-based adaptation fpr mobile computing.
idi hani : lecti f Proceedings of the 3rd USENIX Symposium on Internet Technol
providing a common mechanismtror Selecting one or sev- gies and Systen{San Francisco, CA, March 2001), pp. 159-170.

eral p_ossmle representa.\tlons.of t_h(_e same logical data_de—g] DOURISH, P., EDWARDS, W. K., LAMARCA, A.. LAMPING, J..

pending on the context in which it is accessed. A quFile ~ PeTersen K., SALISBURY, M., TERRY, D. B., AND THORN-

also encapsulates the messy details of generating and TON,,f_J- Extending dpt;;lg\inTt management IsyfstemS_witg user-
H H H e _ specific active propertie ransactions on Information Sys-

istor_mg multiple r:epres\?vntahtlons a;lnd thehp0I|C|es f(l)_r se]c tems 182 (2000), 140-170.

ectmg am(_)ng them. . € . ave s own_ the generality O[10] ENGLER, D., KAASHOEK, M., AND J. O'TOOLE, J. Exokernel:

quFiles by implementing six case studies that use them. ~ an operating system architecture for application-levedotrce

management. IfProceedings of the 15th ACM Symposium on
Operating Systems Principlé€opper Mountain, CO, December
1995), pp. 251-266.

7 Conclusion

(11]

[12]

(23]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

FLINN, J., AND SATYANARAYANAN , M. Energy-aware adap-
tation for mobile applications. IRroceedings of the 17th ACM
Symposium on Operating Systems Princiigawah Island, SC,

December 1999), pp. 48—63.

Fox, A., GRIBBLE, S. D., BREWER E. A., AND AMIR,

E. Adapting to network and client variability via on-demand
dynamic distillation. InProceedings of the 7th International
ACM Conference on Architectural Support for Programming
Languages and Operating Systeff@ambridge, MA, October
1996), pp. 160-170.

Filesystem in Userspacattp://fuse.sourceforge.net/.

GEHANI, N. H., AGADISH, H. V., AND ROOME, W. D. OdeFS:
A file system interface to an object-oriented databasePrb+
ceedings of the 20th International Conference on Very Large
DatabasegSantiago de Chile, Chile, September 1994), pp. 249-

260. [33]
GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND

O’'TooLE, J. W. Semantic file systems. Rroceedings of the
13th ACM Symposium on Operating Systems Princi(fesific
Grove, CA, October 1991), pp. 16-25.

GnuCash: Free Accounting Softwarettp://www.gnucash.
org.

GUPTA, A., AND MumIcK, |. S. Maintenance of material-
ized views: Problems, techniques and applicatidEEE Quar-
terly Bulletin on Data Engineering; Special Issue on Maéried
Views and Data Warehousing 18(1995), 3-18.

HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NCHOLS,
D. A., SATYANARAYANAN , M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Transactions on Computer System& @-ebruary 1988).

IOANNIDIS, S., SDIROGLOU, S.,AND KEROMYTIS, A. D. Pri-
vacy as an operating system service. Pioceedings of the 1st
conference on USENIX Workshop on Hot Topics in Sec(\/#g-
couver, B.C., Canada, 2006), pp. 45-50.

KISTLER, J. J., AND SATYANARAYANAN , M. Disconnected op-
eration in the Coda file systedCM Transactions on Computer
Systems 10 (February 1992).

KJ&ER K. A survey of context-aware middleware. Pmoceedings
of the IASTED International Conference on Software Enginge
(Innsbruck, Austria, February 2007), pp. 148-155.

LoPREST| D. P.,AND LAWRENCE, S. A. Information leakage
through document redaction: attacks and countermeasures.
Proceedings of Document Recognition and Retrieval Xllerint
national Symposium on Electronic Imagif@an Jose, CA, Jan-
uary 2005), pp. 183-190.

Love, R. Kernel Korner: Intro to inotify. Linux Journa) 139
(2005), 8.

NARAYANAN , D., FLINN, J.,AND SATYANARAYANAN , M. Us-

ing history to improve mobile application adaptation Froceed-

ings of the 2nd IEEE Workshop on Mobile Computing Systems[4l]
and ApplicationgMonterey, CA, August 2000), pp. 30-41.

NICHOLSON, A. J.,AND NOBLE, B. D. BreadCrumbs: Fore-
casting mobile connectivity. IRroceedings of the 14th Inter-
national Conference on Mobile Computing and Networki@gn
Francisco, CA, September 2008), pp. 46-57.

NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the Blue File System. Froceedings of the

6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 363-378.

NoOBLE, B. D., SATYANARAYANAN , M., NARAYANAN, D.,
TiLTON, J. E., RINN, J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. Rroceedings of the
16th ACM Symposium on Operating Systems Princi(fesnt-
Malo, France, October 1997), pp. 276-287.

NOKIA. Nokia Energy Profiler. http://www.forum.
nokia.com/main/resources/development_process/
power_management/nokia_energy_profiler/.

[29]

(30]

(31]

(32]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[42]

PEek, D., AND FLINN, J. EnsemBlue: Integrating distributed
storage and consumer electronics Pimceedings of the 7th Sym-
posium on Operating Systems Design and Implementéfeat-
tle, WA, November 2006), pp. 219-232.

PEEK, D., NIGHTINGALE, E. B., HIGGINS, B. D., KUMAR,

P., AND FLINN, J. Sprockets: Safe extensions for distributed
file systems. InProceedings of the USENIX Annual Technical
ConferencgSanta Clara, CA, June 2007), pp. 115-128.

PETERSON Z. N. J.,AND BURNS, R. Ext3cow: A time-shifting
file system for regulatory complianceACM Transacations on
Storage 12 (2005), 190-212.

PHAN, T., ZORPAS G., AND BAGRODIA, R. Middleware sup-
port for reconciling client updates and data transcodingPrb-
ceedings of the 2nd International Conference on MobileeByst
Applications and Servicg8oston, MA, 2004), pp. 139-152.

PiLLAl, P., Kg, Y., AND CAMPBELL, J. Multi-fidelity stor-
age. InProceedings of the ACM 2nd International Workshop on
Video Surveillance and Sensor Netwotkiew York, NY, 2004),
pp. 72—79.

RAMASUBRAMANIAN, V., RODEHEFFER T. L., TERRY, D. B.,
WALRAED-SULLIVAN , M., WOBBER, T., MARSHALL, C. C.,
AND VAHDAT, A. Cimbiosys: A platform for content-based par-
tial replication. InProceedings of the 6th Symposium on Net-
worked System Design and ImplementatiBoston, MA, April
2009), pp. 261-276.

RuUssINOVICH, M. E., AND SoLOMON, D. A. Advanced fea-
tures of NTFS Microsoft Windows Internal€005), 719-721.

SALMON, B., SCHLOSSER S. W., (QRANOR, L. F., AND
GANGER, G. R. Perspective: Semantic data management for
the home. IrProceedings of the 7th USENIX Conference on File
and Storage TechnologigS$an Francisco, CA, February 2009),
pp. 167-182.

SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,

A. C., CARTON, R. W.,AND OFIR, J. Deciding when to forget
in the Elephant file systemSIGOPS Operating Systems Review
33,5(1999), 110-123.

SCHILIT, B., ADAMS, N., AND WANT, R. Context-aware com-
puting applications. IHEEE Workshop on Mobile Computing
Systems and ApplicatiorfSanta Cruz, CA, 1994), pp. 85-90.

SELTZER, M. |., ENDO, Y., SMALL, C., AND SMITH, K. A.
Dealing with disaster: Surviving misbehaved kernel extars

In Proceedings of the 2nd Symposium on Operating Systems De-
sign and ImplementatioSeattle, Washington, October 1996),
pp. 213-227.

SOHN, T., GRIswoLD, W. G., SOTT, J., LAMARCA, A.,
CHAWATHE, Y., SMITH, |., AND CHEN, M. Experiences with
Place Lab: an open source toolkit for location-aware comput
In Proceedings of the 28th International Conference on Seéwa
Engineering(Shanghai, China, May 2006), pp. 462—471.

Xerces-C++ XML Parser.
xerces-c/.

Y UMEREFENDI, A. R., MICKLE, B., AND COX, L. P. TightLip:
Keeping applications from spilling the beans. Rroceedings of

the 4th Symposium on Networked Systems Design and Implemen-
tation (Cambridge, MA, April 2007), pp. 159-172.

http://xerces.apache.org/

