
Focus Replay Debugging Effort on the Control Plane

Gautam Altekar

UC Berkeley

Ion Stoica

UC Berkeley

Abstract

Replay debugging systems enable the reproduction and

debugging of non-deterministic failures in production

application runs. However, no existing replay sys-

tem is suitable for datacenter applications like Cassan-

dra, Hadoop, and Hypertable. On these large scale,

distributed, and data intensive programs, existing re-

play methods either incur excessive production recording

overheads or are unable to provide high fidelity replay.

In this position paper, we hypothesize and empirically

verify that control plane determinism is the key to record-

efficient and high-fidelity replay of datacenter applica-

tions. The key idea behind control plane determinism is

that debugging does not always require a precise replica

of the original application run. Instead, it often suffices

to produce some run that exhibits the original behavior

of the control-plane–the application code responsible for

controlling and managing data flow through a datacenter

system.

1 Introduction

The past decade has seen the rise of large scale,

distributed, data-intensive applications such as HDF-

S/GFS [16], HBase/Bigtable [10], and Hadoop/MapRe-

duce [11]. These applications run on thousands of nodes,

spread across multiple datacenters, and process terabytes

of data per day. Companies like Facebook, Google, and

Yahoo! already use these systems to process their mas-

sive data-sets. But an ever-growing user population and

the ensuing need for new and more scalable services

means that novel applications will continue to be built.

Unfortunately, debugging is hard, and we believe that

this difficulty has impeded the development of exist-

ing and new large scale distributed applications. A key

obstacle is non-deterministic failures–hard-to-reproduce

program misbehaviors that are immune to traditional

cyclic-debugging techniques. These failures often man-

ifest only in production runs and may take weeks to

fully diagnose, hence draining the resources that could

otherwise be devoted to developing novel features and

services [23]. Thus effective tools for debugging non-

deterministic failures in production datacenter systems

are sorely needed.

Replay-debugging technology (a.k.a, deterministic

replay) is a promising method for debugging non-

deterministic failures in production datacenters. Briefly,

a replay-debugger works by first capturing data from

non-deterministic data sources such as the keyboard and

network, and then substituting the captured data into sub-

sequent re-executions of the same program. These replay

runs may then be analyzed using conventional tracing

tools (e.g., GDB and DTrace [9]) or more sophisticated

automated analyses (e.g., race and memory-leak detec-

tion, global predicates [14], and causality tracing [13]).

1.1 Requirements

Many replay systems have been built over the

years and experience indicates that they are in-

valuable in reasoning about non-deterministic fail-

ures [5, 8, 12, 14, 15, 18, 19, 21, 25]. However, no

existing system meets the demands of the datacenter

environment.

Low Overhead Recording. A datacenter replay

system must be on at all times during production so

that arbitrary segments of production runs may be

replay-debugged at a later time.

Unfortunately, replay systems such as liblog [15],

VMWare [5], PRES [21] and ReSpec [18] require all

program inputs from across all nodes to be logged,

hence incurring high throughput losses and storage costs

on multicore, terabyte-quantity processing.

High Fidelity Replay. A datacenter replay system

should also be able to reproduce the execution of all

nodes in the distributed system, if needed, with precision

sufficient to isolate the root cause of the execution

failure.

Replay systems such as ODR [6] (our prior work),

ESD [25], and SherLog [24] support efficient datacen-

ter recording, but may take exponential time to generate

a replay run, sometimes precluding replay altogether, let

alone high-fidelity replay. Annotation-based replay sys-

tems such as R2 [17] enable the developer to selectively

trade recording overhead and replay fidelity, but provide

little guidance in making the right trade-off.

1.2 Hypothesis: The Control Plane is Key

The contribution of this work is a hypothesis and its

experimental verification.

The Hypothesis. We put forth the hypothesis that

control plane determinism is sufficient for debugging

1



datacenter applications. The key observation behind

control-plane determinism is that, for debugging, we do

not need a precise replica of the original production run.

Rather, it generally suffices to produce some run that

exhibits the original run’s control-plane behavior.

The control-plane of a datacenter application is the

code that manages or controls data-flow. Examples

of control-plane operations include locating a particu-

lar block in a distributed filesystem, maintaining replica

consistency in a meta-data server, or updating routing

table entries in a software router. The control plane is

widely thought to be the most bug-prone component of

datacenter systems. But at the same time, it is thought to

consume only a tiny fraction of total application I/O.

A corollary hypothesis is that datacenter debugging

rarely requires reproducing the same data-plane behav-

ior. The data-plane of a datacenter application is the

code that processes the data. Examples include code that

computes the checksum of an HDFS filesystem block or

code that searches for a string as part of a MapReduce

job. The data plane is widely thought to be the least

bug-prone component of a datacenter system. At the

same time, experience indicates that it is responsible for

a majority of datacenter traffic.

Supporting Evidence. We support the above hy-

pothesis with experimental evidence. In particular, we

show that, for datacenter applications, (1) the control

plane rather than the data plane is responsible for 99% of

all bugs in a datacenter application and (2) the data plane

rather than the control plane is responsible for 99% of all

I/O consumed and generated by a datacenter application.

Taken together, these results suggest that, by relaxing

determinism guarantees to control-plane determinism, a

replay system will be able to provide both low-overhead

recording and high fidelity replay.

While our goal is to advocate control plane deter-

minism, we do not discuss the mechanism for achieving

it in a real replay system. We address these details in the

DCR datacenter replay system [7].

2 Testing the Hypothesis

We present the criteria for verifying our hypothesis and

then describe the central challenge in its verification.

2.1 Criteria and Implications

To show that our hypothesis holds, we must empirically

demonstrate two widely held but previously unproven

assumptions about the control and data planes.

Bug Rates. First, we must show that the control

plane rather than the data plane is by far the most bug

prone component of datacenter systems. If the control

plane is the most bug prone, then a control-plane deter-

ministic replay system will have high replay fidelity–it

will be able to reproduce most application bugs. If

not, then control plane determinism will have limited

use in the datacenter, and our hypothesis will be falsified.

Data Rates. Second, we must show that the con-

trol plane rather than the data plane is by far the least

data intensive component of datacenter systems. If so,

then a control plane deterministic replay system is likely

to incur negligible record mode overheads – after all,

such a system need not record data plane traffic [7]. If,

however, the control plane has high data rates, then it

is likely to be too expensive for the datacenter, and our

hypothesis will be falsified.

2.2 The Challenge: Classification

To verify our hypothesis, we must first classify program

instructions as control or data plane instructions. Achiev-

ing a perfect classification, however, is challenging be-

cause the notions of control and data planes are tied to

program semantics, and thus call for considerable de-

veloper effort and insight to distinguish between them.

Consequently, any attempt to manually classify every in-

struction in large and complex applications is likely to

provide unreliable results.

To obtain a reliable classification with minimal man-

ual effort, we employ a semi-automated classification

method. This method operates in two phases. In the first

phase, we manually identify user data flowing into the

distributed application of interest. By user data we mean

any data inputted to the distributed application with se-

mantics clear to the user but opaque to the system (e.g.,

a file to be uploaded into a distributed filesystem). We

identify user data by the files in which it resides.

In the second phase, we automatically identify the

static program instructions influenced by the previously

identified user data. For this purpose, we employ a whole

distributed system taint-flow analysis. This distributed

analysis tracks user data as it propagates through nodes

in the distributed system. Any instructions tainted by

user data are classified as data plane instructions; the re-

maining untainted but executed instructions are classified

as control plane instructions.

Details of our distributed taint-flow analysis are given

in Section 2.2.1, while potential flaws with the method

are discussed in Sections 2.2.2 and 2.2.3.

2.2.1 Tracking User Data Flow

To track user data through the distributed application,

we employ an instruction-level (x86), dynamic, and

distributed taint flow analysis. We choose an instruction

level analysis because datacenter applications are often

written in a mix of languages. We choose a dynamic

2



analysis because datacenter applications often dynami-

cally generate code, which is hard to analyze statically.

Finally, we seek a distributed analysis because we want

to avoid the error-prone task of manually identifying and

annotating user-data entry points for each component in

the distributed system.

Propagating Taint. Unlike single-process taint-

flow analyses such as TaintCheck [20], our analysis

must track taint both within a node (e.g., through loads

and stores) and across nodes (e.g, through network

messages).

Within a Node. We propagate taint at byte granu-

larity largely in accordance with the taint-flow rules

used by other single-node taint-flow analyses [22]. For

instance, we taint the destination of an n-ary operation if

and only if at least one operand is tainted. Our analysis

does, however, differ from others in two key details.

First, we create new taint only when bytes are read from

designated user data files (as opposed to all input files or

network inputs). And second, we do not taint the targets

of tainted-pointer dereferences unless the source itself is

tainted (this avoids misclassifying control plane code,

see Section 2.2.2).

Across Nodes. To propagate taint across nodes, we

piggyback taint meta-data on tainted outgoing messages.

We represent taint meta-data as a string of bits, where

each bit indicates whether or not the corresponding byte

in the outgoing message payload is influenced by user

data. The receiving process extracts the piggybacked

taint meta-data and applies taint to the corresponding

bytes in the target application’s memory buffer.

We piggyback meta-data on outgoing UDP and TCP

messages with the aid of a transparent message tagging

protocol we developed in prior work [15]. For UDP

messages, the protocol prefixes each outgoing UDP

message with meta-data and removes it upon reception.

For TCP messages, the protocol inserts meta-data into

the stream at sys send() message boundaries, along

with the size of the message. On the receiving end, the

protocol uses the previous message’s size to locate the

meta-data for the next message in the stream.

Reducing Perturbation. A key difficulty in per-

forming taint-analysis on a running system is that the

high overhead of analysis instrumentation (approxi-

mately 60x in our case) severely alters system execution.

For instance, in our experiments with OpenSSH [4],

taint-flow instrumentation extended computation time so

much that ssh consistently timed out before connecting

to a remote server. This precluded any analysis of the

server.

To reduce perturbation, we leverage (ironically) deter-

ministic replay technology. In particular, we perform our

taint-flow analysis offline on a deterministically replayed

execution rather than the original execution. The key ob-

servation behind this approach is that collecting an on-

line trace for deterministic replay is much cheaper than

performing an online taint-flow analysis (a slowdown of

1.8x vs. 60x). Hence, by shifting the taint-analysis to the

replay phase, we eliminate most unwanted instrumenta-

tion side-effects.

To obtain a replay execution suitable for offline taint-

flow analysis, we employ the Friday distributed replay

and analysis platform [14]. Friday records a distributed

system’s execution and replays it back in causal order

(i.e., respecting the original ordering of sends and re-

ceives). Friday was not designed for datacenter operation

– it records both control and data plane inputs and hence

is too expensive to deploy in production. Nevertheless, it

is sufficient for the purposes of collecting and analyzing

production-like runs.

2.2.2 Accuracy

Though we believe our method to be more reliable
than manual classification, it has limitations that may
reduce its precision. We first describe these limitations
and then discuss their impact on our classification results.

Sources of Imprecision. There are two key sources of
imprecision.

User Data Misidentification. It is possible that we
may fail to identify user data files. As a result, some
data plane code will be erroneously classified as control
plane code. We may also mistakenly designate non-
user data files as user-data files. In that case, control
plane code will be misclassified as data plane code.
Despite these dangers, we note that the possibility of
misidentification-identification is very low in practice:
our evaluation workloads are composed of only a few
user data files that we hand picked (see Section 3.1).

Tainted Pointers. Our policy of not tainting the
targets of tainted-pointer dereferences (unless the source
itself is tainted) may result in data plane code being
misclassified as control plane code. An example is the
following snippet from a C implementation of CRC32
used in OpenSSH [4]:

...

crc = crc32tab[(crc ˆ buf[i]) & 0xff];

...

Our pointer-insensitive analysis will not taint the value

of crc as it should, for the following reason. Rather

than compute the CRCmathematically, the code looks up

a pre-computed table of constants (crc32tab). Even

though the table index (buf[i]) is tainted, the value in

3



the corresponding table entry is a constant, and thus our

analysis will assume that crc is untainted as well.
Despite its drawback, we chose a pointer-insensitive

analysis because it avoids the large number of data plane
misclassifications produced by a pointer-sensitive analy-
sis. An example of such misclassification can be seen in
the following C code snippet:

int h = hash(user_data);

pthread_mutex_lock(&array[h].lock);

Both pointer sensitive and insensitive policies will cor-

rectly classify the hash computation as a data-plane oper-

ation. However, a pointer-sensitive policy will also clas-

sify the lock acquisition (a control plane operation) as a

data plane operation. Reads of the lock variable must be

dereferenced by the tainted hash code, after all. Unfortu-

nately, such code is common in some applications we’ve

worked with (e.g., Hypertable [2]).

To compensate for the under-tainting resulting from

our pointer-insensitive policy, we manually identify the

data plane code that is missed. We perform this manual

identification with the aid of a pointer-sensitive version

of our analysis. Specifically, we comb the results of the

pointer-sensitive analysis, to the best of our ability, for

data plane code that would have been missed with an

insensitive policy. We identified the CRC32 example

given above in this manner, for instance. In the future,

we hope to automate the weeding-out process in order to

reduce human error.

Impact on Results. Overall, the above imprecisions

in our method are more likely to induce under-tainting

rather than over-tainting. In other words, we are more

likely to misclassify data plane code as control plane

code. Such misclassification will produce unsound bug

rate results. In particular, if we observe a high control

plane bug rate, then all of those bugs may not stem from

control plane code–some, perhaps a sizeable portion,

may stem from data plane code. By contrast, the data

rate results will remain sound despite under-tainting.

Specifically, if we observe a high data plane rate (as

we indeed do, see Section 3.3), then those results are

accurate. After all, under-tainting can only decrease the

measured data plane rate.

2.2.3 Completeness

The results produced by our classifier do not general-

ize to arbitrary program executions. The reason is that

our taint-flow analysis is dynamic rather than static, and

therefore we have no way to classify instructions that do

not execute in a given run. Though we cannot completely

overcome this limitation, we compensate for it by per-

forming our taint-flow analysis on multiple executions

with a varied set of inputs (see Section 3.1)We ultimately

classify only those instructions executed in at least one of

those runs. In future work, we hope to increase the quan-

tity and quality of inputs to derive a more general result.

3 Evaluation

We evaluate our hypothesis on real datacenter applica-

tions per the criteria given in Section 2.1. In short, we

found that both clauses of our testing criteria held true.

That is, we found that control plane code is the most

complex and bug prone (with an average per-execution

code coverage and reported bug rate of 99%), and that

data plane code is the most data intensive (accounting

for an average 99% of all application I/O).

3.1 Setup

Applications. We test our hypothesis on three real-world

datacenter applications: CloudStore [1], Hyptertable [2],

and OpenSSH [4].

CloudStore is a distributed filesystem written in 40K

lines of multithreaded C/C++ code. It consists of three

sub-programs: the master server, slave server, and the

client. The master program maintains a mapping from

files to locations and responds to file lookup requests

from clients. The slaves and clients store and serve the

contents of the files to and from clients.

Hypertable is a distributed database written in 40K

lines of multithreaded C/C++ code. It consists of four

key sub-programs: the master server, meta-data server,

slave server, and client. The master and meta-data

servers coordinate the placement and distribution of

database tables. The slaves store and serve the contents

of tables placed there by clients.

OpenSSH is a secure communications package widely

used for securely logging in (via ssh) and transferring

files (via scp) to and from remote nodes. In addition

to these client side components, OpenSSH requires

the use of a server (sshd) on the target host, and

optionally, a local authentication agent (ssh-agent)

responsible for storing the client’s private keys. The

package consists of 50K lines of C code.

Workloads. We chose large user data files to ap-

proximate datacenter-scale workloads. Specifically, for

Hypertable, 2 clients performed concurrent lookups and

deletions to a 10 GB table of web data. Hypertable was

configured to use 1 master server, 1 meta-data server,

and 1 slave server. For CloudStore, we made one client

put a 10 GB gigabyte file into the filesystem. We used

1 master server and 1 slave server. For OpenSSH, we

used scp (which leverages ssh) to transfer a 10 GB file

from a client node to a server node running sshd. We

conducted 5 trials, each with a different input file and

varying degrees of CPU, disk, and network load.

4



Code Complexity (# of Insns.)

Application Control (%) Data (%) Total (K)

CloudStore

Master 100 0 85

Slave 99.7 0.3 92

Client 99.7 0.3 55

Hypertable

Master 100 0 95

Metadata 100 0 68

Slave 96.4 3.6 124

Client 99.7 0.3 143

OpenSSH

Server 97.8 2.2 103

AuthAgent 100 0 11

Client 98.9 1.1 69

Average 99.2 0.8 85

Figure 1: Plane code complexity as a percentage of the

number of static x86 instructions that were executed at

least once in our runs. As hypothesized, the control plane

accounts for almost all of the code in a datacenter appli-

cation.

3.2 Bug Rates

Metrics. We gauge bug rates with two metrics: plane

code size and plane bug count. Plane code size is the

number of static instructions in the control or data plane

of an application, as identified by our classifier (see Sec-

tion 2.2). Code size is a good approximation of code

bug rate since it indirectly measures the code’s complex-

ity and thus its potential for defects. Plane bug count is

the number of bug reports encountered in each compo-

nent over the system’s development lifetime, and serves

as direct evidence of a plane’s bug rate.

We measured plane code size by looking at the results

of our classification analysis (see Section 2.2) and

counting the number of static instructions executed by

each plane across all test inputs. We measured the plane

bug count by inspecting and understanding, at the high

level, all reported, non-trivial defects in the application’s

bug report database. For each defect, we isolated the

relevant code and then used our understanding of the

report and our code classification to determine if it was

a control or data plane issue.

Code Size Results. Figure 1 gives the measured size in

static instructions for the control and data planes. At the

high level, it shows that almost all of an application’s

code–99% on average–is in the control plane. Com-

ponents such as the Hypertable Master and Metadata

servers are entirely control plane. This is not surpris-

Code Complexity (# of Functions)

Application Control Data

CloudStore

Master 261 0

Slave 93 1

Client 66 1

Hypertable

Master 275 0

Metadata 208 0

Slave 464 74

Client 163 6

OpenSSH

Server 100 1

AuthAgent 13 0

Client 27 1

Average 167 8

Figure 2: Plane code complexity as measured by the

number of C/C++ functions hosting the top 90% of the

most executed instruction locations in a plane. The con-

trol plane is more complex in that draws upon a vast array

of distinct functions to carry out its core tasks, while the

data plane relies on just a handful.

ing because these components don’t access any user data;

their role, after all, is to direct the placement of user data

kept by the Range server. More interestingly, however,

components that do deal with user data (e.g., the Hyper-

table Range server) are still largely control plane.

To understand why the control plane dominates even

in the data intensive application components, we counted

the number of distinct functions invoked by each plane.

The results, shown in Figure 2, reveal that control plane

code invokes many functionally distinct operations. For

instance, we found that CloudStore’s control plane must

allocate and deallocate memory (calls for malloc()

and free()), perform lookups on the directory tree

(Key::compare()) to determine data placement, and

prepare outgoing messages (TcpSocket::Send()),

just to name a few. By contrast, Figure 2 shows that the

data plane has extremely low function complexity: one

function, in most cases, does almost all of the data plane

work. To give an example, we found that almost all of

the CloudStore Client’s data plane activity consists of

calls to adler32() – a data checksumming function.

Bug Count Results. Figure 3 gives the number of

bug reports for each plane. At the high level, it shows

that an average 99% of bug reports stem from control

plane errors. We were able to identify two reasons for

this result.

The first reason is that significant portions of control

plane code is new and written specifically for the unique

5



Reported Bugs

Application Control (%) Data (%) Total

CloudStore

Master N/A N/A N/A

Slave N/A N/A N/A

Client N/A N/A N/A

Hypertable

Master 100 0 5

Metadata 100 0 3

Slave 100 0 37

Client 93 7 14

OpenSSH

Server 100 0 215

AuthAgent 100 0 2

Client 99 1 153

Average 98.8 1.2 72

Figure 3: Plane bug count. The control plane accounts

for almost all reported bugs in an application. Cloud-

Store numbers are not given because it does not appear

to have a bug report database.

Instructions Executed (Billions)

Control Plane Data Plane

Application Lib (%) Total Lib (%) Total

CloudStore

Master 91.0 0.1 0 0

Slave 96.3 0.1 99.9 62

Client 94.4 0.1 99.9 55

Hypertable

Master 93.3 1 0 0

Metadata 92.8 1 0 0

Slave 90.3 1 88.3 2732

Client 89.8 1 98.2 3158

OpenSSH

Server 93.6 0.8 99.6 1280

AuthAgent 82.7 0.02 0 0

Client 96.2 0.9 100 1301

Figure 4: The percentage of dynamic x86 instruc-

tions issued from well-tested libraries (e.g., code found

in libc, libstdc++, libz, libcrypto, etc.)

and inlined template code (from C++ header files), bro-

ken down by control and data planes. The data plane

relies almost exclusively on well-tested code, while the

control plane contains sizable portions of custom code.

and novel needs of the application. By contrast, the data

plane code generally relies almost exclusively on pre-

viously developed and well-tested code bases (e.g., li-

braries). To substantiate this, we measured the percent-

age of instructions executed from within libraries and in-

lined C++/STL code by each plane. The results, given in

Figure 4, show that a median 99.8% of instructions ex-

ecuted by the data plane come from well-tested libraries

such as libc and libcrypto, while only a median

93% of instructions executed by the control plane come

from libraries.

A second reason for the high control plane bug count

is complexity. That is, the control plane tends to be more

complicated. This is evidenced not only by the func-

tion complexity results in Figure 2, but also by the nature

of the bugs themselves. In particular, our inspection of

the source code revealed that control plane bugs tend to

be more complex than data plane bugs–an artifact, per-

haps, of the need to efficiently control the flow of large

amounts of data. For instance, Hypertable migrates por-

tions of the database from range server to range server in

order to achieve an even data distribution. But the need to

do so introduced Hypertable issue 63 [3] — a data cor-

ruption bug that triggers when clients concurrently ac-

cess a migrating table.

3.3 Data Rates

Metric. We measure the number of input/output (I/O)

bytes transferred by each plane. Data is considered

input if the plane reads the data from a communication

channel, and output if the plane writes the data to a

communication channel. By communication channel,

we mean a file descriptor that connects to the tty, a file,

a socket, or a device. To measure the amount of I/O,

we interposed on common inter-node communication

channels via system call interception. If the data being

read/written was tainted by user data, then we consid-

ered it data plane I/O plane; otherwise it was treated as

control plane I/O.

Results. Figure 5 gives the data rates for the con-

trol and data planes. At the high level, the results show

that the control plane is by far the least data intensive

component. Specifically, the control plane code accounts

for an average 1% of total application I/O in components

that have a mix of control and data plane code (e.g.,

Hypertable Slave and Client). Moreover, in components

that are exclusively control plane (e.g., the Hypertable

Master), the overall I/O rate is orders of magnitude

smaller than those that have data plane code. These

results highlight a key benefit of a control plane deter-

ministic replay system: it provides a drastic reduction

in logging overhead that in turn enables low-overhead,

always-on recording.

6



I/O Traffic

Application Control (%) Data (%) Total (GB)

CloudStore

Master 100 0 0.2

Slave 1.7 98.3 20.4

Client 1.6 98.4 20.4

Hypertable

Master 100 0 0.2

Metadata 100 0 0.3

Slave 1.4 98.6 20.5

Client 1.5 98.5 20.6

OpenSSH

Server 0.8 99.2 20.2

AuthAgent 100 0 0.001

Client 0.6 99.4 20.2

Figure 5: Input/output (I/O) traffic size in gigabytes bro-

ken down by control and data planes. For application

components with high data rates, almost all I/O is gener-

ated and consumed by the data plane.

4 Conclusion

A replay debugger for datacenter applications must re-

produce distributed system bugs and provide lightweight

recording. In this paper, we’ve argued that a datacenter

replay system can do both by shooting for control plane

determinism–the idea that is suffices to produce some

run that exhibits the original run’s control plane behavior.

To support our argument, we provided experimental evi-

dence suggesting that the control plane is responsible for

most bugs and that it operates at low data rates. Taken

together, these results support our position that control

plane determinism enables practical datacenter replay.

5 Acknowledgements

We thank the anonymous reviewers and Cristian Zamfir

for their feedback. This research is supported in part by

gifts from Sun Microsystems, Google, Microsoft, Ama-

zon Web Services, Cisco Systems, Facebook, Hewlett-

Packard, Network Appliance, and VMWare, and by

matching funds from the State of California’s MICRO

program (grant 06-149) and the UC Discovery grant

COM07-10240.

References

[1] Cloudstore. http://kosmosfs.sourceforge.net/.

[2] Hypertable. http://www.hypertable.org/.

[3] Hypertable issue 63. http://code.google.com/p/hypertable/issues/.

[4] Openssh. http://www.openssh.com/.

[5] Vmware vsphere 4 fault tolerance: Architecture and perfor-

mance, 2009.

[6] ALTEKAR, G., AND STOICA, I. Odr: output-deterministic replay

for multicore debugging. In SOSP (2009).

[7] ALTEKAR, G., AND STOICA, I. Dcr: Replay debugging for the

data center. Tech. Rep. UCB/EECS-2010-74, EECS Department,

University of California, Berkeley, May 2010.

[8] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A.,

MURRAY, R., DRINIĆ, M., MIHOČKA, D., AND CHAU, J.

Framework for instruction-level tracing and analysis of program

executions. In VEE (2006).

[9] CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H.

Dynamic instrumentation of production systems. In USENIX

(2004).

[10] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-

LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. E. Bigtable: A distributed storage system for struc-

tured data. In OSDI (2006).

[11] DEAN, J., AND GHEMAWAT, S. Mapreduce: a flexible data pro-

cessing tool. CACM 53, 1 (2010).

[12] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A.,

AND CHEN, P. M. Execution replay of multiprocessor virtual

machines. In VEE (2008).

[13] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND

STOICA, I. X-trace: A pervasive network tracing framework. In

NSDI (2007).

[14] GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND

STOICA, I. Friday: Global comprehension for distributed replay.

In NSDI (2007).

[15] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Re-

play debugging for distributed applications. In USENIX (2006).

[16] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google

file system. In SOSP (2003).

[17] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M.,

KAASHOEK, M. F., AND ZHANG, Z. R2: An application-level

kernel for record and replay. In OSDI (2008).

[18] LEE, D., WESTER, B., VEERARAGHAVAN, K.,

NARAYANASAMY, S., CHEN, P. M., AND FLINN, J. Online

multiprocessor replay via speculation and external determinism.

In ASPLOS (2010).

[19] MONTESINOS, P., HICKS, M., KING, S. T., AND TORRELLAS,

J. Capo: a software-hardware interface for practical deterministic

multiprocessor replay. In ASPLOS (2009).

[20] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for

automatic detection, analysis, and signaturegeneration of exploits

on commodity software. In NDSS (2005).

[21] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE,

K. H., AND LU, S. Pres: probabilistic replay with execution

sketching on multiprocessors. In SOSP (2009).

[22] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All

you ever wanted to know about dynamic taint analysis and for-

ward symbolic execution (but might have been afraid to ask). In

Oakland (2010).

[23] VOGELS, W. Keynote address. CCA, 2008.

[24] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. Sherlog: Error diagnosis by connecting clues

from run-time logs. In ASPLOS (2010).

[25] ZAMFIR, C., AND CANDEA, G. Execution synthesis: A tech-

nique for automated software debugging. In EuroSys (2010).

7

http://kosmosfs.sourceforge.net/
http://www.hypertable.org/
http://www.openssh.com/

	Introduction
	Requirements
	Hypothesis: The Control Plane is Key

	Testing the Hypothesis
	Criteria and Implications
	The Challenge: Classification
	Tracking User Data Flow
	Accuracy
	Completeness


	Evaluation
	Setup
	Bug Rates
	Data Rates

	Conclusion
	Acknowledgements

