Parallel Programming with Inductive Synthesis

Shaon Barman, Rastislav Bodik, Sagar Jain, Yewen Pu, Saurabh Srivastava, and Nicholas Tung
University of California, Berkeley

Abstract

We show that program synthesis can generate GPU algo-
rithms as well as their optimized implementations. Using
the scan kernel as a case study, we describe our evolving
synthesis techniques. Relying on our synthesizer, we can
parallelize a serial problem by transforming it into a scan
operation, synthesize a SIMD scan algorithm, and opti-
mize it to reduce memory conflicts.

1 The Problem

Parallel codes are almost exclusively hand-written. Their
coding is time-consuming in part for these reasons:

e Need for new algorithms. To map a problem to
hardware, we may need a new algorithm. For ex-
ample, by reformulating a serial problem as a prefix
sum, we can solve it on data-parallel architectures.

o Low-level coordination. High-level languages are
rarely used because programmers explicitly coordi-
nate low-level details, such as data placement.

e Trial and error. Parallel code is short but it is
produced by experimenting with many code vari-
ants. These are often written and debugged only to
discover that their optimization yielded no benefit.
Furthermore, the optimization is never reused be-
cause it cannot be abstracted into a library function.

A good programming system should thus help develop
new algorithms, allow productivity programming with
the option to orchestrate low-level details, and facilitate
reuse of code from code variants that would otherwise be
thrown away.

In this paper, we describe a step in this direction. We
designed an automatic program generator based on in-
ductive synthesis. Our synthesizer’s usage is similar to
a code generator in that the programmer gives the tem-
plate of the desired code. Unlike when programming

with a code generator, the programmer need not write
infrastructure that correctly parameterizes the template;
the synthesizer discovers the parameters automatically.

2 Inductive Synthesis

Example. We start with a simple example. Assume
that the programmer wants to transform the polynomial
x? —2x — 3 into its factored form (x —3)(x+1). To
formulate this task as a synthesis problem, she views
x% —2x— 3 as the specification and the factored form as
an implementation of the specification. The implemen-
tation is a program that computes the same value as the
specification. In the SKETCH synthesizer [1], her syn-
thesis problem is written roughly as follows:

def main(x) =
assert x*x-2+x-3 == factoredForm(x)

The function factoredForm gives the template of the im-
plementation, i.e., it defines the factored form:

def factoredForm(x) = (x-??)*(x-?7)

Throughout the paper, we underline names of template
functions. The template’s parameters are denoted with
??. The synthesizer replaces these with constants so
that program passes its assertions on all inputs; this en-
sures that factoredForm computes the same values as
the specification, x*x-2+x-3. The result of synthesis is
the template instantiated with the inferred values of ??:

def factoredForm(x) = (x-3)*(x+1)

Discussion. How much programmer effort went into
obtaining a system that can factor a polynomial? She
only had to write the template (x-??)*(x-??) which de-
fines how the factored form looks like. Contrast that with
a code generator: she would have to implement an algo-
rithm that computes the roots of the polynomial.



The Synthesis Algorithm. How does the synthesizer
resolve each ?? into an constant so that a template in-
stantiated with these values is a correct program, i.e., it
passes all assertions?

We start with a random set of inputs, and try to synthe-
size (find) values for ??s that make the instantiated tem-
plate, called P, correct on these inputs. We then verify
whether P is correct on all inputs. If it is not, we have a
failing input, and try to re-synthesize a new program that
works on this input (and all previous ones). Otherwise, P
is correct on all inputs [15]. The process is shown below.

Found ??s making P correct

start W|th a P works on
random set all inputs
of inputs

Found input on WhICh P fails

When a template cannot implement a specification, the
synthesizer tells the programmer that no values of the ??
parameters yield a correct program.

Our synthesizer is inefficient for well-understood tasks
such as factoring polynomials but it is more general and
hence applicable to domains where deductive synthesiz-
ers [16, 9] or optimizing compilers have not been devel-
oped. We describe such applications in Section 3.

3 Programming Workflow

This section uses implementations of parallel scans on a
GPU [10, 13, 14] as a case study. We propose the follow-
ing synthesis workflow, and elaborate in the following
subsections:

e Parallelize a serial problem by synthesizing an asso-
ciative operator that reformulates the original prob-
lem as a scan, which is naively executable in parallel

(§3.1).

e Synthesize a SIMD version of a parallel scan algo-
rithm from a programmer-produced example of the
parallel algorithm’s execution, i.e., from an instance
of the parallel scan network (§3.2).

e Optimize a SIMD scan algorithm, e.g., permute ar-
ray elements to reduce bank conflicts (§3.3).

e Synthesize a SIMD algorithm for a backward scan
from a forward scan. In the process, reuse optimiza-
tions developed for the forward problem (§3.4).

This workflow is not complete. Preceding these steps,
we want to discover an algorithm: we are working on
synthesis of high-level algorithms that may decompose
the scan problem differently. Proceeding these steps, we
want to autotune across multiple code variants; we need

to pass along multiple solutions from each step (in an au-
tomated fashion), and generate GPU code good enough
to merit autotuning.

3.1 Parallelization by Scan-Reduction

Background. Scan is a function that takes an array
[x0,..-,X%s—1], an associative operator @, and produces
the array [xp,xo ® x1,...,X0 D ... Bx,—1]. A scan can
be computed in parallel because & is associative: Given
an input [a,b,c,d], a serial algorithm might compute
((a® b) @ c) & d for the last output element of the scan,
while a parallel one might compute (a ©b) ® (¢ & d),
evaluating a @ b and ¢ @ d simultaneously.

The Problem. Some serial O (n)-time problems
can be reduced to scans and thus solved in parallel in
O (logn) time. The key to this reduction is devising an
associative operator that can be applied to the problem.

The Challenge. The steps taken by the serial algo-
rithm may not suggest what the associative operator is.
We describe below the segmented scan problem whose
segmented nature makes the problem serial. In this prob-
lem, the associative operator cannot be trivially derived
from the serial specification.

Furthermore, in order to devise an associative opera-
tor, we may need to compute suitable auxiliary values.
This enriches the domain of the operator: it may operate
on triples while the original one worked on single values.

Our Approach. The suitable associative operator
will be found by the synthesizer. We view the serial prob-
lem as a specification and we will write a template of an
implementation that must behave like the specification.
The synthesizer will determine the associative operator F
that is missing in the template. We also ask the synthe-
sizer to invent the auxiliary values that enrich the input
by adding extra slots into each input array element.

def templateOfImplementation(inputArray) =
// enrich the input array
def enrArray = enrich(inputArray)
// perform a scan with operator F
enrArray = parallelScan(enrArray, F)
return disEnrich(enrArray)

This template shows that communicating to the synthe-
sizer does not require much expertise. We are simply
asking it to synthesize an operator F that parameterizes
a parallel scan into a correct algorithm for the original
problem. Below, we show how to write the template for
segmented scans.

Example. (Segmented Prefix Sum) The seg-
mented prefix sum function takes a list of lists, e.g.,
[4],15,2,3],[1,4,5,1] and performs the prefix sum (scan)
on each list, outputting [4],[5,7,10],[L,5, 10, 11].



When the lists are small, computing a scan individ-
ually for each list is costly. Instead, we would like to
perform a single scan over all the lists at once, in par-
allel. We start by packing the lists into a single ar-
ray. We represent the list of lists as a contiguous array
[4,5,2,3,1,4,5,1] and we use an array of bits to mark
list boundaries, [1,1,0,0,1,0,0,0]. We then zip the two
arrays, obtaining [(4,1),(5,1),(2,0),...]. Now we have
a single array, which we can execute a scan on. The
problem is that we do not posses a suitable associative
operator. As we will see below, the problem has a serial
specification.

def SerialSegmentedScan(tupledArray) =
def output = [0,0,...,0]
output[0] = tupledArray[0][0]
for i in [1, n-1]:
(v, bit) = tupledArray[i]
if bit == 1: output[i] = v
else: output[i] = output[i-1] + v
return output

Note that this function does not define an associative
operator. Although + is associative, the bit-dependent
case splitting breaks associativity.

We now construct a template for the associative oper-
ator F. In our system, the user provides hints from which
the template is automatically constructed. First, the user
hints that, like the specification, F should behave differ-
ently depending on the value of bit. The synthesizer
translates this hint into a template for F, which takes in
two (value, bit) pairs and outputs a single such pair:

def F((vi, b1),(v2, b)) =
if (b;==0 and by==0) return (fi(vi,v2), ??)
if (b1==0 and bp==1) return (f>(vi,v2), ??)
if (b1==1 and bp==0) return (f3(vi,v2), ??)
if (b1==1 and by==1) return (f4(vi,v2), ??)

She also hints that f; can use addition. The synthesizer
thus generates this template for f;s:

def fi(x,y) =
switch ?7:
case 0: return 0 // default cases
case 1: return x
case 2: return y
case 3: return x+y // user’s hint

The synthesizer then resolves these templates, choosing
correct values for bits ??, and synthesizing functions f;.
The synthesized F is:

def F((vi, b1),(v2, b2)) =
if (by==0 and by==0) return (v +vz, 0)
if (b1==0 and by==1) return (v;, 1)
if (by==1 and by==0) return (vi{+vp, 1)
if (b;==1 and by==1) return (v, 1)

Given only the serial algorithm and hints, the synthesizer
was able to find the correct parallel algorithm.

Synthesizing the enriched domain. As it turned
out, no enrichment was nessesary for the segmented scan
problem. When needed, the programmer can give possi-
bilities for what the enriched domain might be. The en-
richment is a straightforward process. It takes in an input
array, and outputs an enriched array whose elements are
tuples of values:

def enrichment(input):
output = []
for i in [0,n]:
output[i] = g(input[i])
return output

The function g takes in an element, and returns a tuple
containing the auxiliary values. Function g is also written
in some template, similar to the templates for functions
fi» and the synthesizer will find the correct enrichment
function.

Discussion. Blelloch showed that a subclass of first-
order recurrences can be automatically reformulated into
scans [3]. However, to apply his automatic transfor-
mation, we need to first verify properties of the sub-
class, which is difficult and must be done manually.
Our synthesis is not restricted to first-order recurrences
but can currently handle any serial O (n)-time problems,
and if the problem is indeed scan-reducible, we obtain
a O (logn)-time parallel scan algorithm. An example
of such a O (n)-time scan-reducible problem is maximal
string subsequence (MSS). We are currently applying
this strategy to other dynamic programming algorithms.

3.2 From Examples to Algorithms

The problem. We need to encode one or more parallel
scan algorithms in SIMD form. Here is an example of the
Brent-Kung scan algorithm executed for input size N =
16. Each row corresponds to one SIMD step; each dot
with two incoming edges correspond to one ¢ operation.

NCN INCN NLN NLN

Y

S~
—
—
T
N N~

NDNTN NN NN

We need to obtain the following SIMD code, which ex-
ecutes the Brent-Kung algorithm for arbitrary input size
N. This is not code that anyone wishes to write by hand.




offset = 1
for step =1 .. log(N)
for i from 0 to N-1 in parallel
if((i+1)%2+offset) a[i] = a[i]+a[i-offset]
offset = offset * 2
offset = offset / 2
for step =1 .. log(N)
for i from 0 to N-1 in parallel
if((i+1)%2«offset && (i + offset) < N)
a[i + offset] = a[i] + a[i + offset]
offset = offset / 2

The challenge. Translating the algorithmic descrip-
tion into iterative SIMD form is typically non-trivial be-
cause the formal algorithm is described recursively. That
is, the description combines rectangular subnetworks in-
dicated in yellow in the figure; in contrast, the SIMD
formulation needs to combine SIMD steps.

Our approach. We ask the programmer for an ex-
ample such as the above figure, and the synthesizer both
generalizes the example from a particular value of N to
any N and produces the SIMD code. We achieve this by
providing the synthesizer with (i) a skeleton of the SIMD
code, (ii) a functional scan specification; and (iii) asser-
tions that insist that the completed skeleton needs to be-
have like the example when executed on size N = 16.
The skeleton looks like the above SIMD code with the
complicated expressions replaced with templates such
as Expr(I,offset). We synthesized from examples all
scan algorithms in [7].

3.3 Tuning algorithms for GPUs

The Problem. The algorithms synthesized in the pre-
vious subsection are not tuned for real GPU architec-
tures. Real GPU architectures are inefficient when the
code produces bank conflicts and thread divergence [12].

The Challenge. The algorithm designer would like
to explore many transformations that remove these inef-
ficiencies, but they often involve tricky array placement.
Furthermore, an optimal implementation may need to ac-
cept imperfect array placement in exchange for easy in-
dex computations. Arriving at such optimization may re-
quire exploring many code variants.

Our Approach. Inefficiencies are addressed by de-
signing an entirely new algorithm; synthesizing a variant
of an algorithm, e.g., bk3 (base-3 Brent-Kung); apply-
ing index remapping; or placing array elements in extra
storage [14, 10].

The algorithm designer provides templates for differ-
ent alternative implementations, and our solver will se-
lect one that minimizes bank conflicts. We abstract the
count of bank conflicts as a programmable function that
takes a sequence of array access and synchronization
points.

Example. In the bk, algorithm, bank conflicts arise at
deeper levels of recursion when the algorithm simultane-
ously accesses array elements at 2 offsets (as seen in the
figure in Section 3.2). As an example, consider access-
ing elements 1 and 9. We hypothesize that remapping
array indices with a function ¢ may reduce the number
of bank conflicts. The scan will now access the physical
locations ¢ (1) and ¢(9), allowing them to be in different
banks. ¢ maps logical indices 1...n to physical indices
1...m, for m > n. We translate the original algorithm by
replacing index expressions array[e] with array[¢(e)].

The user provides a template for ¢, which could be a
table lookup permitting arbitrary permutations or a se-
quence of arithmetic operations. For the latter case, our
synthesizer (re)invents the common padding technique:

N s i
Pl =i+ number of banks
where the division refers to integer division.

Discussion. In practice, this implementation does not
improve performance as the expense of index compu-
tation offsets the savings from avoiding conflicts. For-
tunately, our synthesizer synthesizes bk3 because it has
fewer bank conflicts than bk,, even without index remap-
ping. On a nVidia GTX 260 we observe a 14% speedup.
We are currently applying the index remapping technique
to other algorithms with more compute intensive con-
flicting steps, and synthesizing more efficient ¢.

3.4 Synthesizing Behavioral Variants

The last step in our workflow transforms a parallel algo-
rithm for one problem to algorithm for a similar prob-
lem. From Brent-Kung for forward scans we can syn-
thesize Brent-Kung for backward scans, for both regular
and segmented scans. The naive approach for backwards
scans of reversing the array involves expensive copy-
ing, and therefore a dedicated backwards in-place scan
is more desirable. We turn the forward scan into a tem-
plate by relaxing the index expressions and loop bounds
by making them template expressions. This relaxed tem-
plate is then used to synthesize a backward scan.

4 Algorithm Discovery

In Section 3.2, we synthesized code from examples net-
works but did not explain where these examples came
from. To generate these examples, workflow also in-
cludes interative algorithm discovery for algorithms with
properties beneficial for GPUs. These techniques are not
template-based so we only outline them here. This ap-
proach enumerates all scan networks of a given size with
desired properties such as bank conflict avoidance. We
then mine in these networks, finding modules which can



Synthesis problem N S Synth. time

example — scan 16 ~ 10'"® ~ 1 min
Seg. Y operator ® 8 ~10° ~1sec

Bank confl. min() 8 ~10° ~1min
bk3 8 ~10° ~1min
fw — backward 8 ~ 10" ~1sec

bkw. — seg. bkw. 8 ~ 10> ~ 1 min
fw — seg. fw 8 ~ 10! ~1min
MSS operator 8 ~ 10 ~1hour

Table 1: Synthesis times for various problems with input
bounds N and search space sizes S.

be used as recursive subcomputations, facilitating divide-
and-conquer generation of potentially new algorithms.

S Experiments

Table 1 summarizes our synthesis results. We present a
brief description of the problem, the size of the input ar-
ray N on which the synthesized program was verified, the
size of the candidate space S defined by the template, and
the synthesis time. We want to point out that these prob-
lems all work with the two-phase work-efficient Brent-
Kung algorithm, which is the most advanced scan imple-
mented in software. The low synthesis times suggest that
we can potentially synthesize more advanced implemen-
tations.

6 Related Work and Conclusion

Synthesizers of various kinds have been used to gen-
erate high-performance code. Rewriting synthesizers
such as FFTW and AutoBayes rewrite the specifica-
tion using their databases of problem decomposition
rules [5, 11, 4]. Deductive synthesizers obtain desired
code by computing it from a specification using a do-
main algebra [8, 9, 16]. We have shown that high-
performance code can be generated also with inductive
synthesis [2, 6, 17, 16].

We believe that our synthesizer has the potential to
simplify code generation because the programmer need
not develop an algorithm that completes a code template.
The completion is done automatically by the synthesizer.
We believe templates that guide our synthesis can be
modified by synthesis non-experts who can generalize
them to derive new algorithms and optimizations.

The programs that we currently synthesize run at half
the speed of distributed nVidia libraries. This limitation
is mainly because our optimizations have not yet been
combined. We believe that combining them is a matter
of engineering.

References

(1]

[2]

(3]

(4]

(51

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Sketch: a synthesizer language and compiler.
bitbucket.org/gatoatigrado/sketch-frontend.

http://

ANGLUIN, D., AND SMITH, C. H. Inductive inference: Theory
and methods. ACM Comput. Surv. 15, 3 (1983), 237-269.

BLELLOCH, G. E. Prefix sums and their applications. Tech. Rep.
CMU-CS-90-190, School of Computer Science, Carnegie Mellon
University, Nov. 1990.

FISCHER, B., AND SCHUMANN, J. Autobayes: a system for
generating data analysis programs from statistical models. J.
Funct. Program. 13,3 (2003), 483-508.

FRIGO, M., AND JOHNSON, S. G. The design and implementa-
tion of FFTW3. Proceedings of the IEEE 93, 2 (2005), 216-231.
Special issue on “Program Generation, Optimization, and Plat-
form Adaptation”.

GULWANI, S. Automating string processing in spreadsheets us-
ing input-output examples. In POPL (2011), pp. 317-330.

HARRIS, D. A taxonomy of parallel prefix networks. In In The
10th Text Retrieval Conference (TREC-2001 (2002), pp. 2213—
2217.

MATEEV, N., PINGALI, K., STODGHILL, P., AND KOTLYAR,
V. Next-generation generic programming and its application to
sparse matrix computations. In Proceedings of ICS’00, pp. 88—
99.

MCDONALD, J., AND ANTON, J. SPECWARE - producing soft-
ware correct by construction. Tech. Rep. KES.U.01.3., 2001.

MERRILL, D., AND GRIMSHAW, A. Parallel scan for stream
architectures. Tech. Rep. CS2009-14, Department of Computer
Science, University of Virginia, Dec. 2009.

PUSCHEL, M., MOURA, J. M. F., JOHNSON, J., PADUA,
D., VELOSO, M., SINGER, B., XIONG, J., FRANCHETTI, F.,
GAcCIC, A., VORONENKO, Y., CHEN, K., JOHNSON, R. W,
AND Ri1zzoLO, N. SPIRAL: Code generation for DSP trans-
forms. Proceedings of the IEEE, special issue on “Program Gen-
eration, Optimization, and Adaptation” 93,2 (2005), 232— 275.

RYOO, S., RODRIGUES, C. I., BAGHSORKHI, S. S., STONE,
S. S., KIRK, D. B., AND HWU, W.-M. W. Optimization prin-
ciples and application performance evaluation of a multithreaded
gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming (New
York, NY, USA, 2008), PPoPP *08, ACM, pp. 73-82.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
Scan primitives for gpu computing. In Graphics Hardware
(2007), M. Segal and T. Aila, Eds., Eurographics Association,
pp. 97-106.

SHUBHABRATA SENGUPTA, MARK HARRIS, M. G. Efficient
parallel scan algorithms for gpus. Tech. Rep. NVR-2008-003,
UC Davis, NVIDIA, Dec. 2008.

SOLAR-LEZAMA, A., TANCAU, L., BODIK, R., SESHIA, S.,
AND SARASWAT, V. Combinatorial sketching for finite pro-
grams. In ASPLOS-XII (2006), ACM, pp. 404-415.

SRIVASTAVA, S., GULWANI, S., AND FOSTER, J. S. From pro-
gram verification to program synthesis. In POPL (2010).

VECHEV, M. T., YAHAV, E., AND BACON, D. F. Correctness-
preserving derivation of concurrent garbage collection algo-
rithms. In PLDI (2006), pp. 341-353.



