Automated and Scalable QoS Control - For Network Convergence

Wonho Kim (Princeton Univ.) Puneet Sharma, Jeongkeun Lee, Sujata Banerjee, Jean Tourrilhes, Sung-Ju Lee, and Praveen Yalagandula (HP Labs)

Motivation

- Why do we care about QoS control?
 - Network convergence
 - Multi-tenancy networks
- Automated QoS control is needed

Network convergence

Different protocols, adapters, switches, and configuration

Network convergence

Fewer switches, ports, adapters, cables Reduced power, equipment, cooling cost Simpler topology I/O consolidation Unified resource management Converged Enhanced Ethernet (CEE) Data Center Ethernet (DCE) Data Center Bridging (DCB) Fibre Channel over Ethernet (FCoE) Fibre Channel over CEE (FCoCEE)

Multi-tenancy networks

Customer A

- Serve multiple customers with a single fabric
- Better utilization of network infrastructure

Virtualized Servers

Variable Workloads

Bugs, malicious attack

- Need virtual network slices
- Need fine-grained performance isolation

Goal

Enables performance isolation with QoS control

Good news

- Most commodity switches have QoS knobs
 - rate limiter
 - priority queues
 - schedulers
- Single network domain
 - datacenters, enterprise networks, ...
 - free from Layer-8 issues (billing, collaborations, ...)
 - fine-grained control becomes feasible

Challenges

- Coarse-grained QoS knobs
 - designed for distributed management
 - class-based
 - no e2e performance
- Manual configuration
 - no standards for classifiers
 - error-prone
 - static (not adaptive)

Our Solution: OpenFlow QoS Controller

Overview of OpenFlow QoS controller

inven

Adaptive aggregation Flow specs Slice specs flow 1 Peak rate: 400 Mbps **Customer DB** Storage Delay bound: 10 ms Aggregate: False src IP: X.X.X.X, port: 9551 flow 2 Type: IP (UDP), ... flow 3 Peak rate: 100 Mbps Video **Employee DB** Delay bound: 100 ms flow 4 Aggregate: False flow 5 VoD flow 6 System backup flow 7 Aggregate: True Backup Log Archive flow 8

Available QoS Knobs (Priority queue)

Available QoS Knobs (Rate limiter)

OpenFlow QoS APIs

- Extension of OpenFlow specification
- Expose QoS capability in switches

OpenFlow QoS APIs

- With OpenFlow flow control
 - fine-grained control of flows
 - automated flow management
- With OpenFlow QoS APIs
 - uniform control of QoS knobs
 - configure QoS for individual (or aggregate) flows

Admission Control

- Input
 - new flow arrival event
 - performance requirements (peak rate, e2e delay)
 - database for the current network state
 - end-to-end performance model
- Output
 - admission control result (accept/reject)
 - priority queue assignment, rate limiter settings
 - path selection

Admission Control

- Two conditions should be satisfied
 - satisfy *f*'s performance requirement
 - not violate existing flows in the networks

Difficulties in queue assignment

We should consider interactions between

- flows in a switch
- flows in multiple switches

Admission control heuristic

- Goal
 - increase the ratio of admitted flows
 - lower the complexities in queue allocation
- Shortest Span First (SSF)
- Basic ideas
 - estimate affordable options for a flow
 - try first switches more likely to reject flow

Highest level & Lowest level

- Highest level: not violate existing flows
- Lowest level: not violate the new flow
- Span: available options for f

Step 1: compute highest & lowest levels independently

Step 2: sort switches in order of the span

Step 2: sort switches in order of the span

- Step 3: try highest level at each hop
 - try first a switch more likely to reject flow

Implementataion

- QoS APIs implemented on
 - hardware switch (HP ProCurve 5406zl)
 - software switch (Open vSwitch)
- QoS Controller implemented on top of NOX
 - open-source OpenFlow controller
 - <u>http://noxrepo.org</u>
- QoS Controller web interface

Prototype

Evaluation

- Traffic generation
 - generate 3 guaranteed flows from emulated services (UDP)
 - generate cross traffic (UDP, TCP)
- Disable/Enable QoS controller
- Measured throughput and packet loss in testbeds

Throughput with UDP cross traffic

Flow name	Route (queue assignment)
Customer DB	H3 – S3(8) – S1(8) – H1
Employee DB	H4 – S3(8) – S1(8) – H2
VoD	H3 – S3(7) – S1(7) – H1
System Backup	H4 – S3(1) – S1(1) – H2

QoS controller protects guaranteed flows in congestion

Packet loss with TCP cross traffic

QoS control is needed even when most traffic in network is TCP

Future works

- Evaluations
 - effectiveness of admission control heuristics (ratio of admitted flows)
 - compare with offline optimal assignment
 - simulations on a variety of datacenter networks (e.g., Hierarchical, FatTree, ...)
- Deployment
 - extend deployment to large networks
 - test with mixture of services

Conclusion

- Single integrated network fabric is desirable
- We need fine-grained automated QoS control
- Contributions
 - Design & Implement OpenFlow QoS APIs
 - QoS controller: automated QoS control for network slicing

Thank you

