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Abstract—Peer-to-Peer (P2P) live video streaming systems
have recently received significant attention, with commercial
deployment gaining increased popularity in the Internet. It is
evident in our empirical experiences with real-world systems
that, it is not uncommon to have hundreds of thousands of
viewers trying to join a program in the first few minutes of
a live broadcast. This phenomenon in live streaming systems,
referred as the flash crowd, poses unique challenges in the system
design. In this paper, we develop a mathematical model to capture
the inherent relationship between time and scale during a flash
crowd. We derive an upper bound on the system scale, and then
demonstrate that the timing factor plays a critical role for such
a system to scale. In addition, our analysis also brings a more in-
depth understanding with respect to the use of Gossip protocols,
i.e., the effects of partial knowledge.

I. INTRODUCTION

Recently, the Internet has witnessed a significant increase

in the popularity of peer-to-peer (P2P) live media streaming

applications, that deliver real-time and sustained media content

to potentially millions of users. As participating peers not

only download media streams, but also contribute their upload

bandwidth capacities to serve one another, such systems are

potentially more scalable, and are thus cost-effective to be de-

ployed, compared to traditional infrastructure-based solutions,

such as IP multicast or Content Delivery Networks.

While recent measurement studies [1], [2] on real-world

P2P streaming systems have demonstrated that the streaming

performance can be typically maintained at a high level once

the systems have reached a reasonable scale, this is challenged

by a severe phenomenon called the flash crowd, in which

there could be a large number of peers arriving at the system

within a short period of time, just after a new live event

has been released. It is evident in our empirical experiences

from the latest version of Coolstreaming+ [3] that, it is

considerably more challenging for a P2P streaming system

to accommodate an abrupt surge of newly arrived peers, with

reasonable streaming qualities and initial startup delays.

In this paper, we seek to analyze and understand the inherent

relationship between time and scale in P2P streaming systems

under a flash crowd scenario (henceforth referred to as scale-

time), through a tractable analytical model that we propose.

Specifically, our major contributions are: (1) We first derive

the fundamental constraint of the scale-time relationship with

the upper bound of system scale over time, which explains
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in depth why the intuitive “demand vs. supply” condition is

insufficient to capture the system scale. (2) We further proceed

to an enhanced constraint that quantitatively characterizes how

the system scale is further constrained by the timing constraint,

if the partial knowledge of peers and their competition for the

limited upload bandwidth resources in the system are taken

into account. In addition, our analytical framework also offers

us the flexibility to investigate the effects of various critical

factors, including the initial system scale, the scale of the flash

crowd, the peer upload capacity, and the number of partners

each peer has.

With respect to analytical studies on P2P streaming systems,

Kumar et al. [4] have derived the maximum streaming rate

for churnless systems and developed a stochastic fluid model

with peer churn to examine its performance. There have also

emerged a number of analyses on the performance bounds

of tree-based or mesh-based systems in terms of streaming

rate, delay, and server load (e.g., [5]–[7]), particularly through

the perspective of chunk dissemination to participating peers.

Along this direction, a more recent study [8] has analyzed the

performance gap between the fundamental limits and actual

performance of mesh-pull systems. Zhou et al. [9] have com-

pared, through a stochastic model, different chunk scheduling

strategies based on the performance metrics of continuity and

startup latency. While recognizing the significance of these

prior works, our study is different from and complementary to

them. To our knowledge, this paper, for the first time, attempts

to provide an analytical characterization and understanding of

the scale-time relationship in P2P streaming systems, with a

particular focus on the flash crowd and various critical factors.

II. SYSTEM MODEL AND FUNDAMENTAL PRINCIPLES

A. System Model

In this section, we present our basic model for P2P live

video streaming under a flash crowd, including the underlying

assumptions and notations summarized in Table I. We consider

a video with rate R = xr to be streamed to all participating

peers, where r is the bit rate corresponding to a unit of

bandwidth, and R corresponds to the bandwidth requirement

of x units. This can alternatively be related to the concept of

substreams in the real-world large-scale P2P streaming system

Coolstreaming+ [2], in which a media stream is divided into

multiple substreams and peers could subscribe to different

substreams from different partners.

For a peer i, let ui denote the upload capacity of the peer.

The peer download capacity is assumed not to be the bottle-

neck, which is in accordance with most of the recent Internet
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access technologies and measurement studies of existing P2P

systems [10]. Given a streaming rate R, we define the relative

surplus upload capacity hi of a peer i as the ratio of (ui−R)
to r. Let u be the average peer upload capacity and h be the

relative average peer surplus capacity, which will be elaborated

in Theorem 1 (Sec. II-B) later.

To capture essential aspects of practical systems, yet be still

simple enough to yield relevant insights, our model mainly

considers the following aspects:

� First, initial system capacity. We assume initially there

are M existing peers that already joined the system. That is,

they have obtained sufficient upload bandwidth resources to

satisfy the streaming rate, and are able to contribute their

upload capacities to the system. We assume that there exists

one or multiple servers in the system with aggregate upload

capacity Us. Given a streaming rate R, the relative server

capacity us is defined as the ratio of Us/R.

� Second, flash crowd. We focus on an extreme flash crowd

scenario where N(� M) peers arrive at approximately the

same time [8], just after a new live event has been released.

Each new peer that has yet to join the system needs to gather at

least x units of upload bandwidth resource from those existing

peers to meet the streaming rate requirement. Our model

strives to capture the difficulty for peers to gather sufficient

upload bandwidth resources at startup, which we believe is a

critical issue under a flash crowd.

� Third, system scale and initial startup delays. Without

loss of generality, we assume that time t is slotted. If a new

peer — one that has not yet joined the system — has obtained

sufficient upload bandwidth resource (i.e., x units) at the t-th
time slot, it is regarded as “joined the system” and counted

towards the system scale S(t) of existing peers. Otherwise, the

peer will continue to seek upload bandwidth resource along the

subsequent time slots until it joins the system. In our model,

once a peer is able to join the system, it will not leave the

system during the flash crowd. From the perspective of user

experience, the time t represents the initial startup delays for

peers.

� Fourth, we first analytically consider the case of global

knowledge and centralized control of the system, which yields

an upper bound of the system scale over time. Further, we

proceed to demonstrate the effects of partial knowledge, by

a simple random partner selection strategy. Specifically, each

new peer will randomly select k partners from the current set

of existing peers to ask for their surplus upload capacities in

each time slot. Since an existing peer can be selected by a

number of new peers, it would randomly choose a certain

number of them to supply its upload bandwidth resource,

depending on its surplus capacity. Such random partner se-

lection strategy with parameter k essentially represents the

decentralized gossiping among peers to gather upload band-

width resource. This is a reasonable assumption, as such a

strategy is typically adopted in many practical P2P systems

(e.g., BitTorrent and Coolstreaming) for bootstrapping peers,

mainly due to its simplicity.

Different from the perspective of chunk dissemination that

TABLE I
KEY PARAMETERS IN THE SYSTEM MODEL.

Notation Definition

M Initial system scale.

N Flash crowd scale.

R Video streaming rate (= xr).

ui Upload capacity of peer i.

hi Relative surplus upload capacity of peer i (= (ui −R)/r).

u Average peer upload capacity.

h Relative average peer surplus capacity (= (u−R)/r).

k Number of partners of a new peer (≥ x).

S(t) System scale (number of existing peers) in the t-th time slot.

Us Server capacity provisioning.

us Relative server capacity provisioning (= Us/R).

takes the peer streaming buffer state or/and chunk scheduling

as main consideration (e.g., [5], [6], [8], [9]), we attempt to

provide a complementary perspective in this paper: we analyze

the asymptotic scaling behavior of the system, rather than the

individual peer behavior.

Based on this system model, we are able to derive a

tractable theoretical framework in Sec. II-B, which reveals

the fundamental relationship between time and scale in P2P

streaming systems under a flash crowd, as well as insights on

the impacts from various critical factors, including k, h, M ,

and N .
B. Scale-Time Relationship with Critical Factors

First of all, we derive the fundamental constraint of the

scale-time relationship in P2P streaming systems, even with

global knowledge and centralized control of the systems:

While “the average peer uploading capacity should be no

less than the average peer downloading rates” is a necessary

condition for P2P streaming systems to scale, it is insufficient

to capture the system scale, as the upload bandwidth resource

from newly arrived peers cannot be utilized immediately. This

leads to the following upper bound of system scale over time.

Theorem 1: For a P2P streaming system with a given

streaming rate R and average peer upload capacity u, the

system scale after the t-th time slot, S(t), has the following

upper bound:

S(t) ≤ min{(
u

R
)t(M + C)− C,N + M}, (1)

where C = Us/(u−R), M is the initial system scale at time

t = 0, Us is the server capacity provisioning, and N is a flash

crowd of newly arrived peers.

Proof: Clearly, the system scale cannot exceed the total

number of peers, including both existing and new peers; thus,

S(t) ≤ N + M .

Furthermore, the system scale after each time slot S(t)
is bounded by the aggregate upload bandwidth resource that

is currently available in the system, which depends on the

number of existing peers in previous time slots (i.e., S(t−1))
and their surplus upload capacities hi, as well as the server

capacity provisioning Us. If these resources can be fully

utilized, which essentially implies that global knowledge and
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centralized control of the system can be achieved, then

S(t) ≤ S(t− 1) +

∑
i∈S(t−1)

hi

x
+

Us

R

= S(t− 1) + S(t− 1)
h

x
+

Us

R

≤ (1 +
h

x
)tS(0) +

Us

u−R

(
(1 +

h

x
)t − 1

)

= (
u

R
)t(M +

Us

u−R
)−

Us

u−R
.

Combining the above two bounds gives Eq. (1). Equivalently, it

also implies the minimum time to accommodate a flash crowd

of N peers.

Note that this fundamental upper bound neither depends

on specific flash crowd arrival patterns, nor the bandwidth

unit. However, it intuitively would still be too optimistic

as it assumes all current surplus bandwidth resources from

existing peers can be fully utilized. Since the system scale

is further constrained by the partial knowledge of peers and

their competition for limited resources, how can we quantify

such effects? To this end, we proceed to analyze the scale-

time relationship with a random partner selection strategy as

follows.

Since it has already been proved in [4], [8] that the average

peer upload capacity u satisfies u > R in large-scale streaming

systems, we shall focus on the general homogeneous case

where ui = u > R (i.e., hi = h > 0) for all peers. This

is reasonable as we are more interested in the asymptotic

collective behavior of the system rather than the individual

peer behavior. As we focus on such a homogeneous case,

we first ignore the server capacity, and will introduce it as

a parameter later.

Lemma 1: For a P2P streaming system with each peer

having partial knowledge of the system and a random partner

selection strategy (i.e., each new peer independently and

randomly selects k partners from the set of existing peers),

the number of new partners of an existing peer during the t-th
time slot, q(t, k), is a random variable that follows a binomial

distribution with parameters (N +M −S(t− 1), k/S(t− 1)),
and an expected value of

E[q(t, k)] =
k(N + M − S(t− 1))

S(t− 1)
, (2)

where S(t− 1) is the current number of existing peers in the

system.

Proof: At the beginning of the t-th time slot, the number

of existing and new peers in the system is S(t− 1) and N +
M−S(t−1), respectively. Since each new peer independently

and randomly selects k partners from those existing peers, the

probability for an existing peer to be selected as a partner by

a new peer is Ck−1
S(t−1)−1/Ck

S(t−1) = k/S(t − 1). Hence, the

probability for an existing peer to be selected as a partner by

i new peers is a binomial distribution with parameters (N +
M−S(t−1), k/S(t−1)). Hence, the expected value of q(t, k)
can be expressed as Eq. (2).

Based on Lemma 1, we can derive an approximation of the

expected system scale as follows.

Theorem 2: For a P2P streaming system with each peer

having partial knowledge of the system and a random part-

ner selection strategy, assume that each existing peer could

randomly provide each of its new partner with 1 unit of

upload bandwidth resource with a probability of h/q(t, k). If

we use the expected value E[q(t, k)] given by Eq. (2) as an

approximation of q(t, k), then the expected system scale after

the t-th time slot, E[S(t)], can be approximated by

E[S(t)] ≈ S(t− 1) + (N + M − S(t− 1))

×
k∑

i=x

Ci

kp(t, k, h)i (1− p(t, k, h))
k−i

, (3)

where p(t, k, h) ≈ hα(t)/k is the probability for a new peer

to obtain 1 unit of upload bandwidth resource from an existing

peer; and α(t) = S(t − 1)/(N + M − S(t − 1)) is the ratio

of the number of existing peers to the number of new peers

in the system at the beginning of the t-th time slot.

Proof: Based on Lemma 1, we have q(t, k) ∼
Binomial(N + M − S(t − 1), k/S(t − 1)). Since one of

the important features of a binomial distribution is that its

probability mass function Pr[q(t, k) = j] gains the highest

value at j = E[q(t, k)], we choose E[q(t, k)] given by Eq. (2)

to approximate q(t, k) for all existing peers. Then, p(t, k, h)
can be derived as

p(t, k, h) ≈
h

E[q(t, k)]
=

(
h

k

)(
S(t− 1)

N + M − S(t− 1)

)

=
h

k
α(t).

Then, the amount of upload bandwidth resource i that can

be obtained by a new peer can be simplified to a binomial

distribution with parameters (k, p(t, k, h)). The corresponding

probability mass function is Ci

k
p(t, k, h)i (1− p(t, k, h))

k−i
.

Furthermore, recall that a new peer needs to gather at

least x units of upload bandwidth resource (corresponding

to the streaming rate R) to join the system; hence, the

expected system scale after the t-th time slot, E[S(t)], can

be approximated by Eq. (3).

Theorem 2 with Eq. (3) qualitatively indicates that, p(t, k, h)
plays an important role for the system scale, which depends on

α(t), h, and k. The effects of these factors will be thoroughly

demonstrated in Sec. III.

Furthermore, as demonstrated by both the real-world expe-

rience [3] and the numerical results (Sec. III) derived from

our model, P2P streaming systems by nature do not react

well to a flash crowd. Specifically, the system scale grows

relatively slower during the initial time slots. This motivates

a natural question: How a certain amount of server capacity

provisioning can help improve the system scale? Based on

Theorem 2, we can approximately derive the improved system

scale with a given amount of server capacity provisioning as

follows.

Corollary 1: For a P2P streaming system with a streaming

rate of R and an aggregate server upload capacity Us, assume
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that server(s) support a number of us = Us/R randomly

selected new peers at the beginning of each time slot. The

remaining N + M − S(t − 1) − us new peers still rely on

the S(t−1) existing peers through a random partner selection

strategy. Then, the expected system scale E[S(t)] given by

Theorem 2 can be potentially improved as

E[S(t)] ≈ S(t− 1) + us + (N + M − S(t− 1)− us)×
k∑

i=x

Ci

kp′(t, k, h, us)
i (1− p′(t, k, h, us))

k−i
(4)

where p′(t, k, h, us) = hα′(t, us)/k, α′(t, us) = S(t −
1)/(N + M − S(t− 1)− us), and us = Us/R is the relative

server capacity.

The proof of Corollary 1 is similar to the proof of Theo-

rem 2. The effects of the parameter us will be quantitatively

demonstrated in Sec. III.

III. NUMERICAL RESULTS AND INSIGHTS

In this section, we take advantage of the theoretical results

derived from our model to demonstrate the fundamental scale-

time relationship in P2P streaming systems under a flash

crowd, as well as the effects of various critical factors.

A. Scale-Time Relationship and Join Time Distribution

Fig. 1 compares the approximated system scale over time

slots obtained by Theorem 1, 2 and Corollary 1, under the

same flash crowd scenario setting. We observe the following:

First, the system scale grows relatively slower during initial

time slots, as a surge of newly arrived peers compete for the

limited surplus capacities from a relatively smaller number of

existing peers. This results in considerable difficulty for new

peers to obtain sufficient upload bandwidth resources.

Second, as more peers gradually joining the system with

positive gain of surplus capacities, the ratio of the number of

existing peers to the number of new peers α(t) continuously

increases and the total system capacity improves; thus the

system scale ramps up more and more quickly.

Third, as expected, the system scale can be improved

with an additional amount of server capacity provisioned,

especially for the initial time slots. However, we note that the

improvement slows down with more and more server capacity

provisioned, as demonstrated by the decreasing gaps between

the curves.

To reflect the user experience under a flash crowd, Fig. 2

plots the peer join time distribution (i.e., the percentage of

peers that joined the system in each time slot). It shows

that potentially many peers could suffer from long startup

delays under a flash crowd; while only a small portion of

peers can join the system within the initial time slots. As

an additional amount of server capacity is provisioned, the

join time distribution noticeably shifts towards the earlier time

slots, with a relatively larger portion of peers joining the

system with shorter startup delays.

The above findings suggest that an adequate amount of

additional server capacity provisioning could help alleviate the

flash crowd effect in P2P streaming systems, and improve the

user experience with shorter initial startup delays. Specifically,

it can help improve the system scale during the initial period

of a flash crowd. Once the system scale reaches a reasonable

level (e.g., this can be simply reflected by α(t), which can

be roughly captured by the tracking server used for peer

registration and discoveries), peer resources would then be

sufficient for the system to scale up further, and thus the server

capacity can be reduced accordingly.

B. Sensitivity Analysis on Critical Factors

We next demonstrate the effects of several critical factors

indicated by Theorem 2, by carrying out a series of sensitivity

analysis. Specifically, we apply the classical approach of

varying one or two parameters while keeping others constant.

First, Fig. 3 compares the approximated system scale over

time, by varying the number of partners for new peers k.

We observe that the system scale improves significantly as

k increases in the range of typical settings that real-world

systems use [2]. Equivalently, the time to accommodate a given

scale of a flash crowd decreases significantly. However, when

k continues to increase to larger values up to the size of current

set of existing peers S(t− 1), the improvements, though still

exist, become relatively minor.

We further examine the effects of k by comparing the time

to accommodate different scales of a flash crowd when k
varies, as shown in Fig. 4. We observe that: (1) When the flash

crowd is less severe relative to the initial system capacity (i.e.,

the demand to supply ratio of (Nx)/(Mh) is relatively less

stringent), results are relatively insensitive to different values

of k. Specifically, the increase of k actually does not help

(e.g., when the flash crowd scale N = 4000, the time to

accommodate it under different values of k stays nearly the

same); or could even bring negative effects when the flash

crowd scale decreases. This is in conflict with the intuitive

belief that an increase of the number of partners for peers

can always help reduce the startup delays and improve the

system scale. (2) As the scale of the flash crowd increases,

our results become more sensitive to different values of k, and

there are remarkable improvements by increasing k. However,

excessive increase of k brings relatively minor improvements,

which consists with previous observation from Fig. 3.

Finally, we examine the impact from the relative average

peer surplus capacity h, the initial system scale M , and

their correlation with k. Fig. 5 and Fig. 6 plot the time to

accommodate a given scale of a flash crowd when h or M
varies, respectively, under different settings of k. We observe

that: (1) As expected, the increase of h or M can effectively

reduce the time to accommodate flash crowd, as it essentially

enhances the entire system capacity. In general, the more

upload bandwidth resources exist in the system (though it takes

time to utilize them), the less time it takes to accommodate

a flash crowd. (2) The impact of k observed in Fig. 4 is also

verified. When the upload bandwidth resource is relatively

constrained (i.e., when h or M decreases), the performance
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Fig. 1. Approximated system scale along time
slots, with different amount of server capacity
provisioning. We set the initial system scale M
to 1500 and flash crowd scale N to 10000. The
number of partners for new peers k is set
to a typical value of 20. The relative server
capacity provisioning us varies from 0 to 200.
Others are set as h = x = 5.

Fig. 2. Peer join time distribution versus time
slots, with different amount of server capacity
provisioning. We set the initial system scale M
to 1500 and flash crowd scale N to 10000. The
number of partners for new peers k is set
to a typical value of 20. The relative server
capacity provisioning us varies from 0 to 200.
Others are set as h = x = 5.

Fig. 3. Approximated system scale over time
slots, with different settings of the number of
partners for new peers k. We set the initial
system scale M to 1500 and flash crowd scale N
to 10000. The value of k varies from 6 to S(t− 1).
Others are set as us = 0, h = x = 5.

Fig. 4. Time to accommodate different scales
of a flash crowd, under different settings of the
number of partners for new peers k. We
set the initial system scale M to 1500. The
value of k varies from 6 to S(t− 1).
Others are set as us = 0, h = 6, x = 5.

Fig. 5. Time to accommodate a flash crowd
of N = 10000 peers when relative average peer
surplus capacity h varies, under different settings
of the number of partners for new peers k.
We set the initial system scale M to 1500. The
value of k varies from 10 to 100. Others are
set as us = 0, x = 5.

Fig. 6. Time to accommodate a flash crowd
of N = 10000 peers when the initial system scale
M varies, under different settings of the
number of partners for new peers k.
The value of k varies from 10 to 100.
Others are set as us = 0, h = x = 5.

gaps (in terms of time saved) between different settings of k
are more profound.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have studied the inherent relationship

between time and scale in P2P streaming systems during a

flash crowd, through a mathematical framework we developed.

We have derived an upper bound on the system scale and

demonstrated that the timing factor plays a critical role for

such a system to scale. In addition, our analysis also brings

a more in-depth understanding with respect to the partial

knowledge of peers and their competition for the limited pool

of upload bandwidth resources, as well as important insights

on a few other critical factors.

We believe that this work represents only the first step

towards analyzing flash crowd behavior of P2P streaming

systems. For example, it is desirable to consider more general

and bursty patterns of peer arrival and departure, which is more

representative of real-world systems. From the perspective of

additional server capacity provisioning, it is also important to

dynamically adjust additional capacities from servers to adapt

to the size of the flash crowd. We defer these investigations

to our future work.
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