
USENIX Association

Proceedings of the
12th USENIX Security Symposium

Washington, D.C., USA
August 4–8, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

12th USENIX Security Symposium USENIX Association 273

Scrash: A System for Generating Secure Crash Information

Pete Broadwell Matt Harren Naveen Sastry∗

University of California, Berkeley
{pbwell, matth, nks}@cs.berkeley.edu

Abstract

This paper presents Scrash, a system that safeguards user
privacy by removing sensitive data from crash reports that
are sent to developers after program failures. Remote crash
reporting, while of great help to the developer, risks the
user’s privacy because crash reports may contain sensitive
user information such as passwords and credit card num-
bers. Scrash modifies the source code of C programs to
ensure that sensitive data does not appear in a crash report.
Scrash adds only a small amount of run-time overhead and
requires minimal involvement on the part of the developer.

1 Introduction

Developers often examine a failed program’s state to diag-
nose and fix software bugs. For this reason, operating sys-
tems and programming suites include tools to capture a pro-
gram’s state in a core file at crash time. The recent advent
of ubiquitous network connectivity for personal computers
makes remote crash reporting possible, whereby programs
send crash information back to developers after a failure.
This practice, which allows developers to receive informa-
tion about bugs in their programs after the programs have
been distributed to users, has since become commonplace
[1, 2, 3, 4]. Remote crash reporting offers many readily
apparent benefits to developers, but the privacy-related im-
plications of the technology are not as well understood.
The contributions of this paper include

• An explanation of the privacy-related problems posed
by remote crash reporting.

• An analysis of the tradeoffs inherent in the design of
core file cleaning systems.

• A description of an easy-to-use system that safeguards
the user’s private information from exposure via crash
reports.

∗The authors were supported in part by DARPA NEST contract
F33615-01-C-1895, NSF grants CCR-0093337, CCR-0085899, CCR-
0085949, and CCR-0081588, and a grant from Microsoft.

1.1 Crash reporting background

Remote crash reporting tools appear in many forms, but
all perform the same basic task: gathering and trans-
mitting crash-related data to a remote database. Mi-
crosoft’s Dr. Watson tool for Windows [4] performs crash-
reporting services for most Microsoft applications. Another
Windows-based tool is BugToaster [2], a third-party crash
data collection utility that sends its reports to an indepen-
dent database. Bug-Buddy for the GNOME desktop en-
vironment [1] and Mozilla Talkback [3] are remote crash
reporting tools used in the open source community.

The types of data contained in a remote crash report can
vary widely, depending upon the configuration of the re-
porting tool. Crash reporting tools typically record some
information about the environment in which the failed pro-
gram was running, including the error associated with the
crash, program version information, loaded drivers, mem-
ory usage and open files. They also send back a subset of
the data present in a core file: part or all of the call stack,
processor registers, and heap contents of the crashed pro-
gram.

Remote crash reporting technology grants the developer
access to potentially vast amounts of crash data, speeding
the diagnosis and repair of software vulnerabilities. For ex-
ample, developers can fingerprint the call stacks returned
in crash reports to determine which bugs appear most often
and thus deserve the most attention. The developer also can
suggest fixes or patches to the user based on the contents of
a crash report.

Given the increasing prevalence of remote crash report-
ing, it is important to consider the security-related risks as-
sociated with the technology. Because they contain some
or all of the memory contents of the program at the time
it failed, crash reports may include sensitive user informa-
tion such as credit card numbers, passwords or web browser
cookies. A recent Department of Energy security advisory
regarding the Dr. Watson crash report tool for Office XP and
Internet Explorer warns that the program could send sensi-
tive information to Microsoft, since the memory dump in
the crash report might contain portions of the document be-
ing viewed [12]. A related concern about Dr. Watson is that
the program stores comprehensive crash reports in a world-
readable directory on the host computer [18]. This practice

12th USENIX Security Symposium USENIX Association274

raises security and privacy concerns, because a malicious
party on a multi-user system could examine the crash re-
port and extract confidential information.

There are inherent privacy risks associated with sending
crash data to a remote party over a network. An initial
vulnerability is that the data may be intercepted en route.
Dr. Watson guards against this threat by encrypting the data
stream with SSL [4], but GNOME’s Bug-Buddy currently
sends crash reports unencrypted via sendmail [1].

The primary concern, though, is the fate of the failure
data after it reaches the crash data repository. These repos-
itories contain crash reports from many users, and may be-
come popular targets if they are known to house sensitive
information. An important distinction here is that the user
trusts the developer to produce quality software – the user
installs and executes the software voluntarily, after all. The
user should not, however, be obligated to trust the developer
to safeguard his sensitive crash data for an indefinite length
of time. Securely maintaining data takes a different kind of
expertise than writing secure and correct code. Thus, users
may be more willing to participate in remote crash reporting
if the crash reports can be stripped of personal information.

We also hypothesize that developers often won’t want
to store a user’s sensitive information. The inclusion of
privacy-sensitive information in the crash report presents a
risk for the developer: a security breach of a crash reposi-
tory could result in bad publicity or financial liability. For
these reasons, we believe that both users and developers
would like to eliminate sensitive information from crash
data.

2 Core File Filtering Systems

A core file is a snapshot of a program’s execution state gen-
erated when a crash occurs. We propose a core file filtering
system as a method of identifying sensitive information and
ensuring that it does not appear in a core file. The devel-
oper decides which categories of data should be considered
“sensitive” for each particular executable; the filtering sys-
tem must then prevent sensitive information from appearing
in the final crash report. Conversely, insensitive information
is allowed to appear in the crash report. A filtering system
is composed of two separate phases: the first phase trans-
forms the application source code, and the second phase
transforms core files that result from application crashes.
We place two restrictions on the source code modifi-

cation phase: the behavior of the application to be mod-
ified must be indistinguishable from that of the original,
and the transformation should not modify the program in
a way that makes debugging the filtered core file unneces-
sarily difficult. Since the filtering system is supposed to pre-
serve a developer’s ability to debug the original application,
the transformation must preserve the variables and control

structure of the application to the greatest extent possible.
For example, we allow transformations that move the mem-
ory locations of variables since the contents of these vari-
ables are still present in the resulting core file. Thus, an
information-preserving source code transformation retains
all of the same variables of the original program but may
rearrange their layout in memory.

The second phase of a filtering system modifies the core
file generation process so that no sensitive data appears in
the core file. In practice, this task can be accomplished by
running a separate program to delete selected information
from a complete core file after it has been generated.

We now outline two metrics to characterize the effective-
ness of the filtering system. The first metric measures the
usefulness of the core file to the developer, since debugging
a crash is more difficult if a critical piece of data has been
removed from the core file. Using this metric, the origi-
nal, full core file is the most useful for debugging, while
an empty core file is useless. The second metric measures
the filtering system’s effectiveness from the user’s perspec-
tive, i.e., howwell the system protects the user’s privacy and
data. Using this metric, a user’s privacy is best preserved if
the filter removes all information.

The challenge, then, of designing a filtering system in-
volves balancing the needs of the developer with those of
the user. The filtering system must preserve as much in-
formation as possible for the developer while maintaining
privacy for the user. A developer may choose any number
of different privacy guarantees, depending on the particular
application and the degree to which privacy is necessary.
One such guarantee, for example, may prevent passwords
from being leaked, but may not conceal the length of the
password if this value is useful for debugging.

This model assumes that the developer is trustworthy. It
does not guard against privacy violations by malicious de-
velopers, since a developer can easily insert a covert chan-
nel into the program. Rather, the developer controls the
filtering system and defines the balance between the user’s
privacy and the developer’s need to debug the application.
We imagine that advanced filtering systems might even give
the user a choice between multiple privacy-utility tradeoffs.
Thus, the primary goal of a filtering system is to protect
against privacy violations after the core file has been gener-
ated, particularly in crash repositories.

2.1 Scrash goals

Our system, Scrash, is an easy-to-use filtering system that
presents several tradeoffs between privacy guarantees and
developer utility of crash data. Its goal is to eliminate sen-
sitive memory locations and their copies from a core file.
In addition, Scrash provides developer control over certain
classes of derivative data that may be removed from the core
file. For example, Scrash considers the length of a sensitive

12th USENIX Security Symposium USENIX Association 275

buffer to be sensitive as well, which ensures that the length
of a sensitive password buffer computed via strlen will
also be regarded as sensitive. The developer may choose to
override this rule, however, if she feels that disclosing the
length of the buffer may be beneficial for problem debug-
ging and does not pose a significant privacy risk.
Scrash ignores privacy leaks resulting from indirect in-

formation flows or other covert channels. As an example
of such an information flow technique, the program counter
and call stack can leak information on the state of sensitive
variables. Consider the following example:

char c = password[0];
if (c >= ’a’ && c <= ’z’) {

// stmt a
} else {

// stmt b
}

If the program’s execution state indicates that statement
b was executed, then an adversary can infer that the pass-
word does not start with a lower case letter even if the pass-
word variable is marked as sensitive. Eliminating control
flow privacy leaks and other covert channels while retaining
enough information for debugging is difficult, so Scrash ig-
nores such vulnerabilities. For example, the processor reg-
isters and even the entire call stack would not be available
to the developer in a system that seeks to guard against con-
trol flow privacy leaks. All reveal the state of prior control
flow decisions and could be used to discover information
about the state of sensitive variables that had been used in
conditionals.

3 Implementation

Scrash seeks to eliminate sensitive information from the
heap, stack, and global variables while still providing use-
ful information to the developer. We perform source code
transformations to place the contents of any sensitive vari-
ables in a separate region of memory, which we then erase
during core file generation to ensure that it is not transmit-
ted as part of a crash report. Thus, the stack, globals and
main heap in our modified core file will only contain in-
sensitive information, so that the crash reporting tool is free
to transmit any of these regions. The key difficulty of this
task, which we will address below, is identifying the sen-
sitive data. Even though the heap is not often transmitted
using current crash reporting tools, we make a distinction
between the sensitive and insensitive heap in the case that it
may be transferred when sending a more detailed crash re-
port. Making this distinction has a negligible performance
cost, so we view the added safety it provides as worthwhile.

We implemented the source code transformation phase in
1200 lines of new Objective Caml code. We link the modi-

fied application with a memory allocator to which we added
250 lines of new C code. We wrote the cleaning phase using
90 lines of C code.

3.1 Merging of source files

We use CIL (a C Intermediate Language implemented in
OCaml) [11] as the infrastructure for our source-to-source
translation. CIL translates C code into a clean, easy-to-
manipulate subset of C. It includes drivers that act as drop-
in replacements for gcc, ar, and ld so that CIL can be
used with existing makefiles. CIL uses these drivers to col-
lect all of the source files for a program, preprocess them,
and merge them into a single C file to facilitate whole-
program analysis.

3.2 Analyzing the sensitivity of variables

Our system extends each type in a C program with a
type qualifier to indicate whether or not it may hold
sensitive information. Type qualifiers are an additional
specification of the traditional C types. For example,
“$sensitive int” is the type of an integer variable
that may hold sensitive information at some point during
its lifetime. When declaring a variable, the developer can
specify that the variable will contain sensitive information
by adding the $sensitive annotation. For all unanno-
tated variables, we use the CQual type qualifier inference
engine to determine whether the variable may hold sensi-
tive information [14].

CQual performs an interprocedural program analysis to
determine where sensitive data might flow from the initial
set of sensitive variables annotated by the programmer. If
CQual detects an assignment from a sensitive variable to an
“unconstrained” variable, the unconstrained variable will be
considered sensitive. Thus, CQual determines where the
$sensitive qualifier spreads throughout the program.
After CQual has finished, we know that all remaining un-
constrained variables only contain insensitive data, since
they never receive any assignments from sensitive variables.
Conversely, if CQual determines that a variable is sensitive,
it may contain sensitive information during the execution of
the program, since there is a possible assignment to it from
a known sensitive variable. The question of whether data
may be sensitive is analogous to the question of whether
it may be tainted, so we can use the same analysis as in
Shankar et al. [14].

As an alternative to annotating specific data at the point
it enters the program, the programmer may choose to use
a pre-annotated header file that marks as sensitive all data
returned by functions like read and recv. At the cost of
unnecessarily marking some values as sensitive, this option
makes it easy to denote user data as sensitive without the

12th USENIX Security Symposium USENIX Association276

need to enter program-specific annotations. We take this
approach in our evaluation experiments.

The CQual stage outputs the original program with at-
tributes added to each variable describing its sensitivity.
These annotations allow later stages of Scrash to determine
whether a variable should reside in the secure or insecure
region of memory.

3.3 Smalloc: secure malloc

After identifying sensitive variables, it becomes possible to
erase their contents before shipping the core file. A diffi-
culty arises in determining where the information resides in
the core file, however, since in general the sensitive vari-
ables will be scattered throughout the entire core file. We
need a way to communicate sensitivity information from the
static analysis to the runtime cleaning process.

One method to recognize sensitive variables would be to
append an immutable tag to each sensitive variable; the tag
would describe the variable’s sensitivity status. The post-
processing cleaning step could then iterate over the core file
and remove or overwrite all sensitive variables by checking
for the tag.

An alternative approach, which we utilize, groups sen-
sitive memory locations together and places an identifying
header at the start of the region. This approach is ultimately
more space-efficient than tagging each variable separately
and simplifies the process of removing sensitive data from
the core file.

We have written Smalloc, a region-aware memory allo-
cator, to manage this “secure” region. It is based on the
Vmalloc package, which provides an ideal platform for cre-
ating allocators [15]. The interface to Smalloc is similar to
malloc. The only difference is that we add an extra pa-
rameter to the smalloc function to identify whether the
new memory should be allocated in the sensitive or insen-
sitive memory region. The signatures of the realloc and
free functions remain unchanged. See Figure 2 for the
complete Smalloc interface.
Smalloc creates sensitive memory regions for heap allo-

cated variables, sensitive global variables, and the sensitive
stack. We will discuss these regions below. Each of the
regions is actually embedded within the normal heap seg-
ment. The globals and stack regions are statically sized and
allocated at program initialization. The size of the sensitive
heap region is dynamic.

3.4 Transformations

We perform transformations on the program source code to
ensure that the variables the CQual phase marks as sensitive
are placed into the sensitive memory region by Smalloc li-
brary routines. CIL provides an ideal platform for perform-
ing these transformations. We outline each of the transfor-

Insensitive heap region
(managed by Smalloc)

Insensitive call stack

Sensitive heap region
(managed by Smalloc)

Sensitive globals

Shadow stack (sensitive)

Higher
addresses

Lower
addreseses

Figure 1: Layout of a process’s memory when using Scrash.
Both heap regions are managed by Smalloc. The sensitive
globals, sensitive stack, and sensitive heap are embedded
within the insensitive heap region. The arrows indicate the
direction of stack growth.

void * smalloc (size t size, int issecure);
void * scmalloc (size t nmemb, size t size, int issecure);
void sfree (void * ptr);
void * srealloc (void * ptr, size t size);

Figure 2: The Smalloc allocator interface. The alloca-
tion functions take an extra boolean parameter that specifies
whether the data should be allocated in the sensitive region
or on the insecure heap.

#include <crypt.h>
#include <malloc.h>
#include <string.h>
int $sensitive private[2] = {0, 1};

void getPassword(char cryptpw[14]) {
char $sensitive * password = malloc (255);
memcpy (cryptpw, crypt (password, "00"), 14);

}

void check() {
char $sensitive cryptpw[14];
getPassword(cryptpw);

}

Figure 3: A sample code fragment that we will use to il-
lustrate some of the transformations that Scrash uses (see
Figure 4). It contains a sensitive global, a pointer to sensi-
tive data, and a sensitive stack variable.

12th USENIX Security Symposium USENIX Association 277

typedef unsigned int size t;
struct check shadow {

char cryptpw[14] ;
};
struct smalloc globals {

int private[2] ;
};
struct smalloc globals * smalloc global var ;
void (attribute ((constructor)) smalloc global init)() ;
char *stackPointer = 0;
void *srealloc(void *ptr , unsigned int size) ;
void sfree(void *ptr) ;
void *scalloc(unsigned int nmemb, unsigned int size, int issecure) ;
void *smalloc(unsigned int size , int issecure) ;
extern char *crypt(char const * key , char const * salt) ;
extern void *malloc(size t size) ;
extern void *memcpy(void * restrict dest ,

void const * restrict src, size t n) ;
void getPassword(char *cryptpw) {

char *password ;
char *tmp ;
void const * restrict tmp 0 ;
{
tmp = (char *)smalloc(255U, 1);
password = tmp;
tmp 0 = (void const *)
crypt((char const *)password, (char const*)"00");

memcpy((void *)cryptpw, tmp 0, 14U);
return;

}
}
void check(void) {

struct check shadow *check shadow ;
{
check shadow = (struct check shadow *)stackPointer;
stackPointer = stackPointer + sizeof(struct check shadow);
getPassword((char *)(check shadow−>cryptpw));
{
stackPointer = (char *)check shadow;
return;

}
}

}
void smalloc global init(void) {
{

smalloc global var = (struct smalloc globals *)
smalloc(sizeof(struct smalloc globals), 1);

smalloc global var−>private[0] = (int)0;
smalloc global var−>private[1] = (int)1;

}
}

Figure 4: The results of running Scrash on the code frag-
ment from Figure 3. Note that the constructor function
smalloc global init allocates the sensitive global

inside the smalloc globals structure, which is allo-
cated on the sensitive heap. This constructor function runs
prior to main and is specified with the constructor
attribute. The sensitive heap variable password is now al-
located on the secure heap. Finally, the sensitive local array
cryptpw is allocated on the shadow stack. A new struc-
ture, check shadow, contains this variable. Maintenance
of the shadow stack is performed on entry and exit of the
check function.

mations below. The results of applying the complete set of
transformations to the program in Figure 3 can be seen in
Figure 4.

3.4.1 Sensitive heap variables

We allocate memory on the sensitive heap when the results
of a malloc call are assigned to a pointer declared with
the $sensitive qualifier. Recall that CQual assigns this
qualifier to variables that could potentially contain sensitive
information. Similarly, the absence of the $sensitive
qualifier on a pointer indicates that the memory should be
allocated on the insensitive heap. Thus, we change each of
the allocation calls to use the Smalloc allocator, using the
presence of the $sensitive attribute to denote which
region the Smalloc allocator uses. We similarly replace
calloc with scalloc.
In addition to replacing the allocation functions, we re-

place any instances of free and realloc with the Smal-
loc equivalents: sfree and srealloc. These functions
have the same arguments and return types as the functions
they replace, so we can perform a simple substitution.

3.4.2 Sensitive stack variables

There are two possible transformations that can be applied
to place sensitive stack variables within the secure memory
region:

Heap allocation of local variables. This transformation
moves the sensitive stack variables into the secure heap.
At function entry, we allocate a block of space on the se-
cure heap for all of the sensitive local variables, which we
deallocate before exiting. We also rewrite all references
within the function to point to the reallocated stack vari-
ables.

This transformation, however, requires adding a
smalloc and sfree call to any function with sensitive
stack variables. We found that these extra calls had a sig-
nificant impact on performance (see Section 4.2), so we de-
veloped an alternative transformation for stack variables:

Shadow stack. A shadow stack is a separate area of mem-
ory that parallels the normal stack and holds sensitive vari-
ables. The shadow stack resides within the secure region,
maintaining the invariant that all sensitive information is
contained within that region. The shadow stack’s size is
set to the maximum size of the program’s regular stack. We
insert code to adjust the shadow stack pointer, which we
implement as a global variable, at the entry and exit points
of each function. This approach offers better performance
than allocating all local variables on the secure heap.

Every time control reaches a function body entry point,
the shadow stack pointer is incremented by the combined
size of all of the sensitive variables for that frame. Thus,
the shadow stack grows toward higher memory addresses.

12th USENIX Security Symposium USENIX Association278

We rewrite all accesses to variables declared with the
$sensitive qualifier to use the new sensitive stack. We
also insert code to decrement the stack pointer just before
control leaves the end of the function body. After exiting
a function, the memory located at higher addresses than
the current shadow stack pointer is unused, but it still con-
tains the remnants of the sensitive information that the func-
tion body placed there. We could overwrite the contents of
this memory to eliminate the leftover values, but since the
shadow stack is allocated within the sensitive region, it will
be overwritten during the core file cleaning process anyway.
Thus, overwriting the unused portion of the shadow stack is
an unnecessary step, as the cleaning process will erase all
of the stack contents, even the unused portions. See Sec-
tion 3.5 for a description of the cleaning process.

3.4.3 Sensitive global variables

Finally, we define a new structure to contain all
of the sensitive global variables, instantiating it as
smalloc global var. We allocate this structure on

the secure heap with a special initialization function, using
the gcc-specific attribute “constructor” to ensure that this
function runs before main(). We also perform any ini-
tializations that are needed for sensitive global variables by
expanding their initializer clauses into regular C statements
and placing them in the constructor function.

3.5 Postprocessing: cleaning the core file

After employing the above transformations, all of the pro-
gram’s sensitive information will be fully contained within
the secure memory region. The core file will still contain
the sensitive information, however, if the program crashes
and no further filtering steps are taken. At this point, we use
a cleaning process to overwrite the secure region of a core
file after it has been generated. The cleaner operates by first
searching for a special tag that identifies the metadata for
the secure region. The metadata encodes the type and size
of the region, allowing the cleaning process to overwrite it.

Recall that the secure heap region is dynamically sized.
When the region changes size, its new size is reflected in
the metadata. If the region shrinks, memory that previously
contained sensitive data will remain outside of the sensitive
region. Thus, the cleaning process will not overwrite it. To
maintain the invariant that sensitive data resides only within
sensitive regions, Smalloc overwrites the contracted mem-
ory whenever a sensitive region shrinks.
The cleaning process must take special care to ensure that

an adversary does not trick the cleaner into leaving portions
of the sensitive region intact. Consider a cleaning process
that scans through the core file sequentially, searching for
the metadata that marks the boundary and size of a secure
region and then erasing the specified number of bytes after

the tag. A crafty adversary could arrange for a counterfeit
secure region tag to appear in an insensitive memory re-
gion prior to the secure region, and construct the metadata
so that the cleaner overwrites the actual secure region tag.
Since the real secure region tag has at this point been erased
from the core file, the cleaner would find no further tags and
go on to generate a core file that still contains sensitive in-
formation.

To counter this attack, we wrote the cleaner to locate all
secure region tags that might appear within a core file first,
and then perform the overwriting. This approach prevents
a metadata entry earlier in the core file from causing the
cleaner to disregard a later one. Thus, all sensitive infor-
mation will still be removed from the core file. An attack
of this form may still induce the cleaner to remove insen-
sitive data from the core file, but this is only a denial of
service attack. The shortcoming doesn’t represent a privacy
or security threat, though it could hinder the developer from
debugging the core file. We view guarding against denial of
service attacks as a secondary concern, compared to pro-
tecting the user’s privacy.

One could imagine incorporating core file cleaning into
the operating system routines that produce the core file.
Making this change would ensure that the cleaning process
always runs before the crash report is written to disk, and
would prevent problems such as the Dr. Watson bug men-
tioned in the introduction.

3.6 Implementation details

3.6.1 Threads

The Vmalloc package, on which the Smalloc allocator is
built, is thread-safe, so extending our design to multi-
threaded programs is straightforward. If sensitive local
variables are transformed into heap-allocated structures, no
changes to our system are necessary. Performance is a con-
cern, however, since the many calls to smalloc in each
thread will contend for the lock that guards the heap.

Alternatively, using the shadow stack approach to hold
the sensitive local variables requires each thread to have its
own shadow stack, just as each has its own traditional stack.
The shadow stack pointer, which in single-threaded pro-
grams is simply a global variable, must therefore be stored
into thread-local storage. Each thread has a pointer to its
own shadow stack. The stack space for the thread is al-
located during the first use of the shadow stack and freed
when the thread terminates.

Since the same function may be called in different
threads, each function with sensitive local variables re-
trieves the shadow stack pointer for the current thread upon
entry to the function. When the pointer is updated, it must
be stored into thread-local storage. For programs using
POSIX threads, we add the following to the beginning of

12th USENIX Security Symposium USENIX Association 279

each function body:

void * stackPointer = pthread getspecific(scrash stack key);
stackPointer += sizeof(struct function shadow);
pthread setspecific(scrash stack key, stackPointer);

and before each return statement, we add:

stackPointer −= sizeof(struct function shadow);
pthread setspecific(scrash stack key, stackPointer);

Note that the structure function shadow holds the
contents of all sensitive local variables for that function.
The first part of the structure’s name identifies the func-

tion in which it is used.
An alternative to thread-local storage would be to add

an extra parameter to every function that holds the address
of the current thread’s shadow stack. Unfortunately, it is
often not possible to change the signature of every function,
since functions such as event handlers and signal handlers
are called by underlying systems.

3.6.2 setjmp / longjmp

A naı̈ve implementation of the shadow stack will not cor-
rectly handle setjmp and longjmp. These functions are
frequently used as a mechanism to pass control non-locally
as an interprocedural goto, which is useful for error han-
dling. The setjmp call saves the register contents, in-
cluding stack pointer and program counter, in a jmp buf
structure. A longjmp call takes a previously populated
jmp buf as an argument and restores the registers saved
in this structure. Since restoring the jmp buf replaces the
stack pointer and program counter, the stack is unwound
and the program returns to the site of the setjmp call, this
time with a non-zero return value from setjmp.

Scrash maintains its shadow stack by pushing a new
frame upon entry to a function and popping it just prior to
exiting the function. However, the default longjmp im-
plementation is unaware of the Scrash shadow stack, and
will not properly restore the shadow stack pointer as it does
the regular stack pointer.
We address this problem by using CIL to introduce a

new structure, scrash jmp buf, which replaces a reg-
ular jmp buf. It has two fields: one to contain the
old jmp buf structure and one to store the shadow stack
pointer. We then search for all calls to setjmp and
longjmp and replace them with functions that properly
maintain the shadow stack pointer in addition to the regis-
ters in jmp buf.

Note that when calling setjmp in a threaded environ-
ment, we store the thread-specific shadow stack pointer
(normally stored in thread-local storage) in the jmp buf.
This transformation is necessary because a thread’s state in
Scrash is described by the contents of the registers, stack

pointer, and shadow stack pointer, all of which must be
stored in jmp buf for longjmp to work properly. On a
longjmp call, we restore the stack pointer back into thread
local storage.

3.6.3 Sensitive function arguments

The C calling convention places all arguments to a function
on the call stack. Thus, calling a function with a sensitive
value will place sensitive information on the unprotected
call stack. Our solution to this problem does not require
any effort on the part of the programmer; instead, a Scrash
transformation converts a sensitive argument into a pointer
reference to the sensitive data. Thus, the sensitive value is
never placed on the call stack. Naturally, all such function
bodies, declarations, and call sites need to be modified. To
transform the call site, we first allocate space on the sen-
sitive stack for any sensitive arguments. Then, we make a
copy to preserve the call-by-value semantics of C and call
the function with a pointer to the data.

Rewriting a function is not possible if the program ex-
ports a fixed API, passes a function pointer to a library call-
back function, or has a variable number of arguments. If
Scrash detects that the address of a particular function is
ever passed as an argument, it will refuse to modify that
function, since changing its signature could yield unpre-
dictable behavior. Instead, Scrash prints a warning advis-
ing the user of the security vulnerability. It is then up to
the developer to modify the API to avoid passing sensitive
variables by value.

4 Evaluation

We tested our system by applying the Scrash code transfor-
mations to a set of open-source applications and then com-
paring the behavior of each modified program to that of the
original. We chose our set of test applications to include
commonly-used graphical and command-line programs that
handle significant amounts of user data.

Our first graphical test application was gnomecal,
the calendar portion of the GNOME Personal Informa-
tion Management suite. This application consists of about
25,000 lines of C code. Our other GUI-based test applica-
tion was J-Pilot, a desktop organizer application for Palm
OS-based handheld computers that contains about 42,000
lines of C code. It provides support for datebook, ad-
dress storage, memo and “to-do list” handheld applications,
while also facilitating PC-to-handheld data synchronization
and backup. Both gnomecal and J-Pilot use the GTK+
graphical user interface libraries. When instrumenting these
programs, we first examined the source code to determine
which library I/O routines were most likely to be involved in
the processing of sensitive user data. We then included ap-

12th USENIX Security Symposium USENIX Association280

Figure 5: A screenshot of the GNOME Calendar applica-
tion running with the Scrash transformations.

propriate declarations of these functions in a pre-annotated
header file (as described in Section 3.2) prior to performing
sensitivity inference on the program source code.

We chose the OpenSSH secure shell client, which con-
tains about 39,000 lines of C code, as our command-line
test program. For this application, it was necessary to treat
all data typed by the user at the keyboard as sensitive. The
password used to set up a secure connection is the most
obvious sensitive value, but even after the connection is es-
tablished, the client may send passwords and other private
information to the server. Therefore, we again used pre-
specified annotations to mark all data returned by read
(among other functions) as sensitive.

After Scrash ran its compile-time type inference on our
test applications, 24% and 10% of the stack variables used
by gnomecal and J-Pilot, respectively, were marked as
possibly containing sensitive data. For ssh, this figure was
59%.

We instrumented our Smalloc library to record the size
and sensitivity of each run-time memory allocation request
issued during the lifetime of a program. We then used each
of the test applications for brief session. The run-time val-
ues from these tests are listed in Table 1. We only counted
allocations performed by the application and not by any
linked, precompiled libraries; this issue is discussed further
in Section 5. The overall percentages of memory operations
that dealt with sensitive data were lower for the graphical
applications than for ssh. In ssh, the insensitive heap con-
tains a few control structures representing the internal state
of the connection, while the majority of the heap allocations
are for sensitive user data that is to be transmitted over the
network. We argue that the connection data is more relevant
for debugging than the data being transmitted.

core.normal.dirty:

000732e0: 6d80 0608 7fd0 0708 0cf3 ffbf 0004 0000 m...............
000732f0: 0200 0000 34f7 ffbf e854 0908 98f8 ffbf4....T......
00073300: 6842 0908 1800 0000 a066 2440 6162 7261 hB.......f$@abra
00073310: 6361 6461 6272 6100 5842 0908 f058 0908 cadabra.XB...X..
00073320: c830 0840 c4ef 0f40 7c3b 0908 28f4 ffbf .0.@...@|;..(...
00073330: 28f4 ffbf 5842 0908 0000 0000 8855 0908 (...XB.......U..

core.smalloc.dirty:

0006a330: 70d0 2340 0000 0000 0000 0000 0000 0000 p.#@............
0006a340: 70d0 2340 0904 0000 0100 0000 0df0 edfe p.#@............
0006a350: 6162 7261 6361 6461 6272 6100 0000 0000 abracadabra.....
0006a360: 80d3 2340 0000 0000 70d0 2340 0000 0000 ..#@....p.#@....
0006a370: 70d0 2340 0000 0000 90d3 2340 0000 0000 p.#@......#@....

core.smalloc.clean:

0006a330: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0006a340: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0006a350: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0006a360: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
0006a370: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

Figure 6: Excerpts from the core file of an induced crash
in the ssh client. The top core file excerpt shows the stack
with the password present – “abracadabra” from an unmod-
ified ssh client. The middle core file is from a version of
ssh that has been modified using the Scrash transforma-
tions and annotations. The password now resides in the se-
cure region, but since the cleaning process has not yet been
executed on the core file, the password is again present. The
bottom core file shows that the cleaner overwrites the se-
cure region, and all occurrences of the password have been
removed.

4.1 Security evaluation

We examined core files produced by our modified version
of ssh to verify that sensitive information was placed only
in the secure region and that the cleaning process properly
eliminated sensitive data. Figure 6 shows the excerpts from
three core files in which we induced a program crash. The
top core file is the original version of ssh, in which the
password is present on the stack. The middle core file is the
result of running ssh after applying the Scrash transforma-
tions, in which the password resides in the secure heap. The
final excerpt shows the result after running the cleaner.

4.2 Performance

Finding privacy-relevant and performance-critical applica-
tions proved to be a rather tricky exercise for us. Many of
the applications for which one would be concerned about
leaks of personal data were interactive: editors, browsers,
information management tools, or remote access programs
like ssh. In the course of testing, we found that the Scrash
transformations did not reduce the responsiveness of the
interactive applications we tested. In an attempt to bet-
ter quantify the performance impact of Scrash, we ran two
tests: one real application and a micro-benchmark to illus-
trate worst case behavior.

To test Scrash against a privacy-sensitive program that
also has performance requirements, we chose to transfer

12th USENIX Security Symposium USENIX Association 281

GNOME Calendar J-Pilot OpenSSH client
number of percent number of percent number of percent

Size (bytes) requests sensitive requests sensitive requests sensitive

0 - 1023 4216 86.9% 5914 26.7% 2073 97.6%
1024 - 2047 9 77.5% 0 – 46 100%
2048 - 3071 1 0% 1 100% 67 100%
3072 - 4095 7 85.7% 1 100% 3 100%
4096 - 5119 2 50% 2 100% 50 100%
5120 - 6143 1 100% 0 – 3 100%
6144 - 7167 0 – 0 – 3 100%
7168 - 8191 7 100% 0 – 2 100%
8192 - 9215 0 – 0 – 1 100%

9216+ 9 100% 0 – 12 100%

Total 4252 86.9% 5918 26.8% 2260 97.8%

Table 1: The number and size of all run-time memory allocations (smalloc, scalloc, srealloc) performed by our
test applications during a brief test run and the percentage of these allocations that handled sensitive data. We only count
allocations done by the applications and not by any libraries that they use.

Sensitive Elapsed Increase
locals Time(s) over
moved to: baseline
Heap 27.24 33%
Shadow stack 21.71 6%

Baseline 20.51 –

Table 2: Time needed for scp to transfer 100 megabytes of
data to a server on the same machine. The results demon-
strate that using a shadow stack gives much better perfor-
mance than storing sensitive locals in the heap.

Sensitive Heap Elapsed Increase
locals allocs Time(s) over
moved to: baseline
Heap 657393865 242.64 373%
Shadow stack 2 62.42 22%

Baseline 1 51.28 –

Table 3: Results of running the greatest common divisor
(GCD) microbenchmark. We computed 50 million GCD
computations on integers. The other two implementations
place the sensitive local variables on the heap and shadow
stack. The first column indicates the number of heap alloca-
tions that the microbenchmark makes. The results demon-
strate that using a shadow stack gives much better perfor-
mance than storing sensitive locals in the heap.

large files using scp. This program has many of the same
privacy vulnerabilities as ssh, as it in fact calls the ssh
executable. The program is non-interactive, allowing us to
measure changes in performance easily. For the tests, we
transferred a 100-megabyte file to a server on the same ma-
chine to eliminate network-induced performance variabil-
ity.
The second test is a microbenchmark that exercises the

call stack heavily. We wrote this recursion-intensive bench-
mark to expose the worst case performance of Scrash, since
every function entry and exit requires intervention from
Scrash. Furthermore, all locals are declared to be in the
sensitive stack, increasing the normal memory access times.
The microbenchmark computes the greatest common di-
visor of 50 million pairs of random numbers, where each
number is between 1 and 10 million. The benchmark uses
Euclid’s algorithm, which admits a natural recursive imple-
mentation. Each invocation performs very little computa-
tion: a modulus call, two comparisons and assignments,
and then a recursive call. Due to the heavy use of recur-
sion, the amount of stack maintenance overhead that this
microbenchmark incurs is significantly greater than that of
a typical application. We used the same random seed when
testing all implementations, processing 657,393,863 func-
tion calls per test run. To exercise the Scrash transforma-
tions, we marked all local variables as sensitive, as well
as one global variable that we used to track the number of
function calls.
We performed the above tests on a 1.5 GHz Pentium 4

with 1 gigabyte of RAM, running a Linux 2.4.18 kernel
with gcc 2.95. All tests were run with optimizations turned
on at -O3. The tests were conducted under three different
configurations: without Scrash (the baseline), using Scrash

12th USENIX Security Symposium USENIX Association282

to place all sensitive local variables on the heap, and finally
using the shadow stack to hold the sensitive local variables.
The results, shown in Tables 2 and 3, are based on the aver-
ages of three separate test runs per configuration. See Sec-
tion 3.4.2 for a description of the two Scrash configurations.

Our initial strategy of moving sensitive stack variables to
the heap via a call to smalloc at the beginning of each ap-
plicable function, as described in Section 3.4.2, resulted in
a large performance penalty of 33% overhead for ssh and
373% for the microbenchmark. The microbenchmark suf-
fers a larger overhead because it performs over 600 million
allocation and free calls – one for every procedure entry.
It also incurs a much higher percentage increase over the
baseline because function entry time is a larger percentage
of the CPU time for the microbenchmark than for ssh.
The second strategy, using Scrash transformations to im-

plement a shadow stack, added much less overhead: 22%
for the GCD microbenchmark and 6% overhead for ssh –
a moderate overhead for the realistic application scenario.
This overhead is a result of maintaining the shadow stack
pointer at the beginning and end of the function, as well as
the extra level of indirection required to access local vari-
ables.
We see that the shadow stack gives much better perfor-

mance than placing sensitive locals on the heap. Conse-
quently, we enable the shadow stack by default.

We conclude that Scrash adds only a minimal perfor-
mance overhead to real applications.

5 Discussion

In addition to the runtime overhead imposed by Scrash, the
system requires some effort from the programmer. This ef-
fort includes annotating an initial set of sensitive variables
or deciding to use a pre-annotated “prelude” file that au-
tomatically marks the parameters and return values of cer-
tain functions as sensitive. In addition, it was necessary
to make 33 lines of source code changes to ssh before
it could run through the Scrash transformation, due to the
fact that CIL is more restrictive in type checking than gcc.
Such changes included fixing missing or mismatched vari-
able declarations.
The performance of the Scrash code transformation tool

is adequate. It takes roughly three minutes to run the
entire Scrash transformation on ssh, from preprocessing
through program modification, using the same test machine
as above.
One feature of the ssh code was particularly problematic

for Scrash: all calls to malloc are performed using a wrap-
per function, xmalloc, that checks for a null return value.
Recall that Scrash rewrites calls to the malloc function to
use smalloc, locating the new region on either the secure
or insecure heap as appropriate. Since the ssh program

calls the xmalloc wrapper, the only instance of malloc
in the ssh source code is within the xmalloc wrapper.
Scrash must choose whether to translate this malloc call
into an allocation on the secure or insecure heap at com-
pile time. Since the results of this allocation are assigned to
some variables declared with the $sensitive keyword,
Scrash conservatively translates the malloc call to allo-
cate all its storage on the sensitive heap. As a result, all heap
allocations in ssh would normally appear on the sensitive
heap. To avoid this problem, we replaced the xmalloc
function with an equivalent preprocessor macro at each al-
location point. Thus, in the post-processed file, there is now
one malloc call where each xmalloc call previously ap-
peared, allowing the different malloc calls to be assigned
to different heaps.

We must be a bit careful in evaluating the success of a
technique like Scrash. For example, the absence of the pass-
word from the core file does not mean that there is no sen-
sitive information related to the password in the core file. It
may be possible to ascertain the size of a sensitive buffer by
comparing pointers. If p is a pointer to a sensitive data field,
an attacker can bound the size of the sensitive data by com-
paring all other heap-allocated pointers, t, to the sensitive
data pointer:

min
t>p

(t − p)

That is, the size of the buffer at p is at most the differ-
ence between p and the first pointer whose value is greater
than p. Thus, it may be possible to reveal the length of a
variable-sized sensitive buffer even if all variables that ex-
plicitly store this length are kept in the sensitive memory
region. This apparent vulnerability would seem to suggest
that p is also sensitive and should be placed on the sensitive
heap, adding an extra level of indirection to all accesses to p.
We eschew this extra indirection, however, in favor of pro-
viding greater debugging usefulness to the developer, since
hiding the pointer values may hamper the developer’s abil-
ity to track down memory problems.

Another issue with Scrash involves the use of precom-
piled and dynamic (shared) libraries. Current libraries such
as glibc are written without consideration of the con-
cept of sensitive data. CQual understands the semantics of
many glibc functions and will correctly propagate quali-
fiers across, for example, calls to memcpy. There is no way,
however, for a source-level translation like Scrash to mod-
ify the storage of variables in precompiled libraries. For
example, a precompiled version of strcpy may keep a
char temporarily on the stack, or strlen may keep a run-
ning string length count as a stack variable. In the event of
a crash, these variables will remain on the insecure stack,
where they can leak pieces of sensitive information. One
solution would be to recompile libraries with Scrash under
the assumption that all data passed to a shared library is sen-
sitive. The library would therefore use the shadow stack and

12th USENIX Security Symposium USENIX Association 283

sensitive heap so that sensitive data may be passed to the
shared library without fear of privacy violations. However,
we have not implemented this solution in our prototype.

As we discussed in Section 2.1, there are tradeoffs be-
tween user privacy and utility to the developer when dealing
with crash information. Scrash provides the developer with
a larger set of tradeoffs than the all-or-nothing choice that
exists currently, while requiring minimal effort and time to
specify and apply these tradeoffs to a program.

We believe that Scrash will help developers to allay
users’ privacy concerns about using crash reporting tools,
and dissuade users from turning off the automatic crash re-
porting features in their applications. Widespread use of
remote crash reporting will aid developers in improving
the overall quality of software, in addition to helping make
users aware of software patches for problems that they are
experiencing.

6 Related Work

To the best of our knowledge, there has been no previous
research published on the topic of limiting crash data to
ensure privacy. The only other sources to mention this is-
sue are the aforementioned Department of Energy advisory
about Microsoft’s Dr. Watson [12] and an online article on
the same subject [18]. Both sources suggest that the user
should disable crash reporting altogether to avoid a privacy
risk.

Dr. Watson [4], the independent BugToaster application
for Windows [2], the Bug-Buddy bug reporting tool for
GNOME [1] and the Talkback quality reporting agent for
Netscape/Mozilla [3] represent the current state of the art in
remote crash reporting software. All are capable of sending
back portions of the program’s memory contents, including
the registers, call stack and heap. Bug-Buddy is the least au-
tomated of the four, starting automatically when a GNOME
program fails but then requiring a high degree of user par-
ticipation to send a crash report. The other three require
only the consent of the user via a dialog box to send a crash
report.

The core file cleaning process is analogous to the scrub-
bing process that Gutmann advocates for securely deleting
sensitive information from media, such as RAM or mag-
netic media [10]. His cleaning process is aimed at protect-
ing against physical attacks against storage media that are
not easily erasable. Other work focuses on creating a large
block of erasable memory from a much smaller block us-
ing cryptographic techniques to achieve similar ends [6]. In
contrast, we view our cleaner as operating on the contents
of files to eliminate sensitive information so that they may
be safely sent over the network.
There is a large body of work that describes techniques

for efficient allocators [17] and garbage collectors [16].

Region-based memory allocators in which multiple heaps
are exposed have also been studied [7, 8]. While they
present a richer set of semantics than we need, these sources
helped to inspire our implementation. We used the Vmal-
loc software release as the basis for Smalloc, our secure
memory allocator [15]. Vmalloc provides an alternative al-
locator to malloc that exposes many different allocation
fit strategies and provides rich internal interfaces.

We use CQual, a static analysis tool, to track the possible
spread of sensitive information [14]. Sabelfeld and Myers
[13] survey language-based systems for statically tracking
information flow in a secure manner. Tracking information
flow typically involves removing covert channels within a
program, which can require extensive code modifications.
While information-flow concerns are a central theme of this
work, we do not address the issue of convert channels.

7 Future Work

Changes to Scrash in the short term mostly involve im-
provements to the analysis phase. The implementation of
CQual that our current system uses is at times too conser-
vative – it marks too many variables as $sensitive –
but we expect to be able to use a more accurate version
soon. The new implementation, currently under develop-
ment, will use a polymorphic analysis of functions so that
more variables can be safely labeled insensitive. Modifying
Scrash to work with C++ is another area of active interest;
CQual has recently been extended to work with C++ code.

In addition, we hope that support for Scrash will be in-
corporated into some of the standard bug reporting tools,
such as the GNOME Bug-Buddy. Another avenue would
be to combine runtime error detection tools, such as Stack-
Guard or CCured [5, 9], with Scrash. When these runtime
tools would detect a violation, Scrash would send a core file
to the developer. This pairing would aid in the detection of
security vulnerabilities such as buffer overruns.

8 Acknowledgments

Many people have contributed to this project. Dan Wilker-
son and Rob Johnson implemented many last-minute CQual
features for us, while John Kodumal, Jeff Foster, and the
rest of the CQual team provided advice on using CQual.
We thank Ben Liblit, David Gay, and Jeremy Condit for
their insightful comments and suggestions. Finally, David
Wagner provided helpful guidance along the way.

References

[1] Jacob Berkman. Project Info for Bug-Buddy. http:
//www.advogato.org/proj/bug-buddy/,

12th USENIX Security Symposium USENIX Association284

2002.

[2] Bugtoaster. Do Something about Computer Crashes.
http://www.bugtoaster.com, 2002.

[3] Netscape Communications Corp. Netscape Quality
Feedback System. http://wp.netscape.com/
communicator/navigator/v4.5/qfs1.
html, 2002.

[4] Microsoft Corporation. Dr. Watson Overview.
http://www.microsoft.com/TechNet/
prodtechnol/winxppro/proddocs/
drwatson%_overview.asp, 2002.

[5] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In Proc. 7th USENIX Se-
curity Conference, pages 63–78, San Antonio, Texas,
January 1998.

[6] Giovanni Di Crescenzo, Niels Ferguson, Russell Im-
pagliazzo, and Markus Jakobsson. How to Forget a
Secret. In Proceedings of Symposium on Theoretical
Aspects of Computer Science, number 1563 in Lecture
Notes In Computer Science, 1999.

[7] David Gay and Alexander Aiken. Memory Manage-
ment with Explicit Regions. In SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 313–323, 1998.

[8] David Gay and Alexander Aiken. Language Support
for Regions. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages
70–80, 2001.

[9] Scott McPeak George C. Necula and Westley Weimer.
CCured: Type-Safe Retrofitting of Legacy Code. In
Principles of Programming Languages, 2002.

[10] Peter Gutmann. Secure Deletion of Data from Mag-
netic and Solid-State Memory. In Sixth USENIX Se-
curity Symposium Proceedings, 1996.

[11] George C. Necula, Scott McPeak, Westley Weimer,
Raymond To, and Aman Bhargava. CIL: In-
frastructure for C Program Analysis and Trans-
formation. http://www.cs.berkeley.edu/
˜necula/cil, 2002.

[12] U.S. Department of Energy Computer Incident Advi-
sory Capability. Office XP Error Reporting May Send
Sensitive Documents to Microsoft. http://www.
ciac.org/ciac/bulletins/m-005.shtml,
October 2001.

[13] Andrei Sabelfeld and Andrew C. Myers. Language-
Based Information Flow Security. IEEE Journal on
Selected Areas in Communications, January 2003.

[14] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and
David Wagner. Detecting Format String Vulnerabil-
ities with Type Qualifiers. In 10th USENIX Security
Symposium, pages 201–220, August 2001.

[15] Kiem-Phong Vo. Vmalloc: A General and Efficient
Memory Allocator. Software Practice & Experience,
26:1–18, 1996.

[16] Paul R. Wilson. Uniprocessor Garbage Collection
Techniques. In Proc. Int. Workshop on Memory Man-
agement, number 637, Saint-Malo (France), 1992.
Springer-Verlag.

[17] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic Storage Allocation: A
Survey and Critical Review. In Proc. Int. Workshop on
Memory Management, Kinross Scotland (UK), 1995.

[18] Brandon Wirtz. Dr. Watson’s a Big-Mouth.
http://www.griffin-digital.com/
dr__watson.htm, 2002.

