Building an Application-aware IPsec Policy System

Heng Yin

Haining Wang

Department of Computer Science
The College of William and Mary
Williamsburg, VA 23187
{hyin, hnhw}@cs.wm. edu

Abstract

As a security mechanism at the network-layer, the IP se-
curity protocol (IPsec) has been available for years, but
its usage is limited to Virtual Private Networks (VPNs).
The end-to-end security services provided by IPsec have
not been widely used. To bring the IPsec services into
wide usage, a standard IPsec API is a potential solution.
However, the realization of a user-friendly IPsec API in-
volves many modifications on the current IPsec and In-
ternet Key Exchange (IKE) implementations. An alter-
native approach is to configure application-specific IPsec
policies, but the current IPsec policy system lacks the
knowledge of the context of applications running at up-
per layers, making it infeasible to configure application-
specific policies in practice.

In this paper, we propose an application-aware [Psec
policy system on the existing IPsec/IKE infrastructure, in
which a socket monitor running in the application con-
text reports the socket activities to the application policy
engine. In turn, the engine translates the application poli-
cies into the underlying security policies, and then writes
them into the IPsec Security Policy Database (SPD) via
the existing IPsec policy management interface. We im-
plement a prototype in Linux (Kernel 2.6) and evaluate
it in our testbed. The experimental results show that
the overhead of policy translation is insignificant, and
the overall system performance of the enhanced IPsec
is comparable to those of security mechanisms at up-
per layers. Configured with the application-aware IPsec
policies, both secured applications at upper layers and
legacy applications can transparently obtain IP security
enhancements.

1 Introduction

Network-layer security protection is essential to Inter-
net communications. No matter how secure the upper-
layer protocols are, adversaries can exploit the vulner-

ability of the network-layer, such as IP spoofing [25]
and IP fragmentation attacks [16], to sabotage end-to-
end communications. The IP security (IPsec) proto-
col [17, 18, 19, 27] is a suite of protocols that secure data
communications on the Internet at the network-layer.
IPsec provides packet-level source authentication, data
confidentiality and integrity, and supports perfect for-
ward security. There are two major protocols in the I[Psec
protocol suite: the Authentication Header (AH) protocol
and the Encapsulation Security Payload (ESP) protocol.
The AH protocol provides source authentication and data
integrity, while the ESP protocol provides data confiden-
tiality and authentication. Internet Key Exchange (IKE)
[13, 21] is the default key agreement protocol for the es-
tablishment of IPsec security associations (SAs), doing
mutual authentication and choosing cryptographic keys.

However, while IPsec has been available for years, its
usage is limited to the deployment of Virtual Private Net-
works (VPNs). Currently, the IPsec policy is not aware
of the specific security requirements of Internet appli-
cations. It is static and coarse-grained, providing all
or nothing security protection to Internet applications.
Thus, in comparison with the success of security proto-
cols and techniques deployed at the transport and appli-
cation layers such as SSL/TLS and PGP, IPsec has been
rarely used to provide end-to-end security protection for
Internet applications. The major obstacles to the wide us-
age of IPsec beyond VPN (i.e., providing end-to-end se-
curity services to Internet applications) are listed as fol-
lows.

e [Psec only provides rudimentary policy manage-
ment support [8, 14], and IPsec lacks the knowl-
edge of application context. Thus, the policy selec-
tor can only be the tuple of source/destination ad-
dresses, port numbers, and transport protocol type.
The trust relationship and security policy between
two participants must be set up in advance. Due to
dynamic port numbers and unpredicted destination

USENIX Association

14th USENIX Security Symposium

315

IP addresses, configuring fine-grained application-
specific policies beforehand is infeasible in prac-
tice. Note that many applications, including passive
FTP data connections, DCOM/CORBA-based ap-
plications, and RTP-based streaming applications,
even negotiate source/destination ports at runtime.

e There is no standard IPsec API, and implement-
ing a user-friendly IPsec API requires many modi-
fications on the current [Psec and IKE implementa-
tions. For instance, the current two-phase IKE pro-
tocol only performs host-oriented authentication,
whereas user-oriented authentication is one basic
requirement of a secured application (see more dis-
cussion in Section 2). Moreover, the wide usage of
upper-layer security mechanisms such as SSL/TLS
and SSH greatly dampens the demand for IPsec
APL

o [Psec needs Public Key Infrastructure (PKI) to per-
form identity authentication in the public network
environment, whereas PKI itself is not widely de-
ployed yet. The lack of scalable authentication
mechanisms is another major impediment to the
wide use of IPsec.

The good news about IPsec is: (1) IPsec and IKE have
been implemented on nearly all modern operating sys-
tems, and have been applied to the VPNs scenario ma-
turely now; and (2) while no standard IPsec API exists,
each implementation does have its own policy manage-
ment interface.

In this paper, we explore an approach other than the
IPsec API to facilitating the wide usage of IPsec. We at-
tempt to provide application-aware [Psec service by in-
troducing application context into IPsec policy model,
while leaving the IPsec and IKE implementations in-
tact. We propose an application-aware IPsec policy sys-
tem as middleware to provide Internet applications with
network-layer security protection. In order to bring ap-
plication context into the IPsec policy model, a socket
monitor detects the socket activities of applications and
reports them to the application policy engine. Then,
the application policy engine automatically generates the
fine-grained IPsec policy in accordance with the applica-
tion policy, and writes them into the IPsec Security Pol-
icy Database (SPD) via the existing IPsec policy man-
agement interface. ! To ease policy configuration, we
also propose an application specification language. Be-
ing simple, uniform, and extendable, the proposed spec-
ification language is essential to configure and distribute
application-specific policies easily, and hence, reduces
the management burden.

In addition to the feasibility issue, compared with a
potential standard IPsec API, the application-aware pol-

icy system has the following advantages: (1) without any
modification, Internet applications can transparently ob-
tain end-to-end security protection at the network-layer
by simply configuring application-specific policies; and
(2) the application-aware policy system is built on the ex-
isting IPsec policy configuration interface, and no mod-
ifications on the current IPsec and IKE implementations
are needed. Thus, it is much easier for IPsec vendors to
support and deploy it.

We implement a prototype of the proposed IPsec pol-
icy system in Linux (Kernel 2.6), and evaluate the ef-
ficacy of our prototype in the testbed. The experi-
mental results show that the overhead of policy transla-
tion is insignificant and overall system performance of
the enhanced IPsec is comparable to those of security
mechanisms at upper layers. More importantly, our ex-
periments demonstrate that the application-aware IPsec
policy system provides network-layer security enhance-
ments (e.g., packet-level integrity protection) for secured
applications and provides a variety of network-layer se-
curity services for legacy applications.

Note that [Psec is not a panacea to resolve all network-
layer security problems. For example, IPsec can-
not thwart the bandwidth-exhaustion Denial of Service
(DoS) attacks [31] and IKE itself is vulnerable to frag-
mentation flooding attacks [16]. Seeking solutions to
these problems is outside the scope of this paper. Al-
though IPsec is able to protect broadcast and multicast
traffic, the current key management protocols for IPsec
can only work in one-to-one mode for now. Therefore,
our proposed scheme applies to unicast communication
only. The scenarios of broadcast and multicast are also
beyond the scope of our research.

The remainder of this paper is organized as follows.
Section 2 presents the background of this research and
related work. Section 3 details the application-aware
IPsec policy system. We describe the implementation of
our prototype in Linux (Kernel 2.6) in Section 4. In Sec-
tion 5, we conduct a series of experiments on our testbed
to evaluate the proposed scheme. Finally, the paper con-
cludes with Section 6.

2 Background and Related Work

Since IPsec is a layer-3 security protocol, it must be
implemented in the kernel space. There are two aux-
iliary databases that IPsec consults with: Security Pol-
icy Database (SPD) and Security Association Database
(SAD). Generally speaking, a security policy determines
what kinds of services are to be offered to an IP flow, and
a security association (SA) specifies how to process it.
Although the SAs can be manually created, in most
cases they are created automatically by the key manage-
ment program. The IKE [13] is the current IETF stan-

316

14th USENIX Security Symposium

USENIX Association

dard for key establishment and SA parameter negotia-
tion. IKEv2 [15] has been proposed to replace the origi-
nal IKE protocol for simplicity and strong DoS protec-
tion. Both are two-phase protocols. During the first
phase, the two key management daemons authenticate
each other and establish a secure channel between them
(i.e IKE SA). Multiple Phase I SAs (i.e. IPsec SAs) can
be negotiated through this secure channel, to amortize
the cost of the Phase I negotiation.

Currently IPsec/IKE has been implemented on major
modern operating systems and network devices, but has
not been widely used yet. One main reason is no standard
IPsec API available for end-users [14]. The requirements
for an IPsec API have been detailed in [29]. One of the
requirements is to allow an application to authenticate a
peer’s identity, and then, make access control decisions.
Nonetheless, it is difficult for the key management dae-
mon (i.e., IKE) to expose the functionality of authentica-
tion and policy negotiation to applications.

At present IKE is only used for host-oriented au-
thentication, but user-oriented authentication is usually
needed by secured applications. To enable IKE with
user-level authentication, Litvin et al. proposed a hybrid
authentication mode for IKE [20]. This scheme enables
a two-way authentication between a remote user and
an IPsec device through challenge-response techniques.
The IPsec device is authenticated via standard public-
key techniques. At the end of phase I, the remote user
is authenticated via an X-Auth exchange [10]. However,
if we apply this authentication mode to the client/server
scenarios, it cannot work with a server having multiple
services. Since each service has its own authentication
and access control policies, during phase I negotiation,
the server-side IKE cannot know which service the re-
mote user wants to access.

The Just Fast Keying protocol (JFK) [7] may over-
come the problems mentioned above. Seeking simplicity
and efficiency, it rejects the notion of two-phase negoti-
ation. Thus, JFK may easily support user-oriented au-
thentication. However, since JFK has not been deployed
yet, whether JFK will replace IKE and be widely used is
still unclear. Also, there are obstacles for integrating JFK
into IPsec. For instance, JFK disallows extensions, thus
it would be difficult to negotiate UDP encapsulation for
NAT.

Although we still have no standard IPsec API, there
are some preliminary implementations of IPsec APIs.
McDonald [22] designed and implemented a simple
IPsec API for BSD sockets. Applications can configure
per-socket policy using setsockopt, which is extended to
support IPsec policy options. This mechanism is avail-
able in BSD-family Unix systems. In [32], Wu et al. de-
signed and implemented IPsec/PHIL interface to enable
the controllability over which set of IPsec tunnels will be

used to send a particular outgoing packet. Microsoft has
integrated IPsec in its Windows 2000 and Windows XP
products, but no official IPsec API has been published
yet. A home-brewed IPsec API library [3] for Windows
2000 and above versions has been implemented by ma-
nipulating the local policy repository. Because of their
very limited functionality, these IPsec APIs are not used
in the real world.

Some research has been done to cope with the rudi-
mentary policy support for [Psec. The IETF IP Secu-
rity Policy Working Group [1] has been established for
many years. Condell et al. [12] defined the Security
Policy Specification Language (SPSL), a language de-
signed to express IPsec security policies and IKE poli-
cies. While SPSL offers considerable flexibility in spec-
ifying IPsec security policies, it is only a low-level lan-
guage. In contrast, the Application Policy Specification
Language we propose is a high-level policy specification
language for individual applications. Therefore, it is sim-
pler, more concise, and more convenient to use. Blaze et
al. [11] proposed an efficient policy management scheme
for IPsec, based on the principles of trust management.
It provides a simple language for describing and imple-
menting policies, trust relationships, and credentials for
IPsec. However, without the knowledge of application
context, the scheme itself does not address the problem
of protecting individual Internet applications directly.

FreeS/WAN proposed an extension to IPsec, which is
called opportunistic encryption [26]. By putting the au-
thentication information in the DNS (domain name ser-
vice), any two FreeS/WAN gateways are able to encrypt
their traffic without prior contact and configuration. This
technique may move us toward a more secure Internet,
allowing users to create an environment where message
privacy is the default. However, encrypting all traffic
would waste precious encryption bandwidth. In fact, a
large portion of network traffic does not need strong con-
fidentiality protection. Moreover, security gateways that
originally serve their own organizations cannot get any
benefit from doing opportunistic encryption, and there-
fore they lack incentive to support it.

Miltchev et al. [24] investigated the performance of
IPsec using micro- and macro-benchmarks, and com-
pared it against other secure data transfer mechanisms,
such as SSL, scp, and sftp. Their experiment results have
shown that IPsec outperforms all other popular schemes
that try to accomplish secure network communications,
because of faster processing and no handshake for each
connection.

An alternative approach to transparently securing
legacy applications is to tunnel their communications via
TLS/SSL or SSH [6]. However, compared with these
tunneling techniques, our application-aware IPsec policy
system has the following advantages: (1) we can protect

USENIX Association

14th USENIX Security Symposium

317

Process

® ©66

(@

Socket JActivity

I

®

Application Policy

\

A I/
vV

Ll

~

{4

Application Policy Repository

Policy Translation

IPsec Security Policy

y Y 4

7

SPD

Figure 1: The Overview of the Application-aware IPsec Policy System.

the applications that negotiate port numbers at runtime,
while the tunneled applications must have well-known
service ports; (2) we can specify flexible security require-
ments, while tunneled applications have no options; (3)
IPsec has inherent security and performance superiority
over the tunneled security mechanisms.

3 System Design

Our research attempts to build middleware, called an
application-aware IPsec policy system, between Inter-
net applications and the IPsec/IKE implementations un-
derneath. Through the proposed policy system, Internet
applications can specify their requirements of network-
layer security protection, and then rely on the underlying
IPsec/IKE functionalities implemented at each end-host
to obtain the desired network-layer security protection
transparently. Note that the proposed application-aware
IPsec policy model is preliminary but not a complete one,
and it paves the path to further research work.

As shown in Figure 1, we have a high-level security
policy abstraction in the context of applications: called
application security policy. To have a high-level applica-
tion security policy enforced, it must be translated into a
low-level IPsec security policy. The policy translation is
triggered by the the socket activities of a process, which
are monitored and bound to an application security pol-
icy. Then, we create a fine-grained IPsec security policy,
write it into SPD, and provide the specific protection for
the communication over the particular socket at runtime.
Note that IPsec manipulates each inbound or outbound
IP packet by consulting with SPD and SAD.

The key management program (e.g. IKE, IKEv2) on
each host is responsible to authenticate the hosts to each
other, and create IPsec SAs automatically. However,
we have not addressed the user-oriented authentication

problem in this paper, which involves non-trivial mod-
ifications in IKE. Therefore, the identification authenti-
cation has to rely on Public Key Infrastructure (PKI). If
PKI is not available, an alternative approach is to allow
the mutually suspicious hosts to communicate with each
other, as long as there is a security mechanism enforced
in higher layer that performs secure identity authentica-
tion (e.g. TLS/SSL, SSH). We leave the support of the
user-oriented authentication as our future work.

In the rest of this section, we present the architecture
of the application-aware policy system, the necessary
support from the current IPsec implementations, the ap-
plication policy specification language, and runtime pol-
icy translation.

3.1 Architecture

The generic architecture of an application-aware policy
system at an end-host is shown in Figure 2. In the net-
work protocol stack, the socket monitor is installed atop
the socket interface. Thus the socket monitor can ob-
serve the Internet socket activities within the context of
application processes. In other words, it knows which
application is operating on what kind of socket inter-
face. The detailed information about the socket activi-
ties of the application, including the specific parameters,
is forwarded to the application policy engine, which is
a privileged program and can manipulate the local SPD
and SAD. With that knowledge, the security policy en-
gine fetches the corresponding application policy from
the application policy repository, and prepares appropri-
ate fine-grained IPsec security policies for the specific
socket, and then writes them into the local SPD via the
existing IPsec policy management interface. The socket
monitor is a crucial component in our design, because it
disseminates the application context into the IPsec policy
model, making it possible to configure policy for each in-

318

14th USENIX Security Symposium

USENIX Association

Application
Application E’glicy
Engine

Application — | Application
PP 1 ¥ 5 | Policy
Policy Z % | Specification

Repository = "g Language

-

Socket Monitor

Socket Interface

Qoejiomu] JudwaSeurA Aorjod

Transport Layer

o [

SPD
SAD

Figure 2: The Architecture of Application-aware IPsec Policy System.

dividual application.

To facilitate policy management, we further design an
application policy specification language. The adminis-
trator specifies application policies using the proposed
high-level specification language. A language parser
converts the human-readable language into the internal
data structures and stores them into the application pol-
icy repository. In comparison with the underlying IPsec
security policy, the application policy is a higher-level
application-oriented policy, which specifies the security
requirements of the application. This high-level policy
specification language is easy to write, and therefore alle-
viates the administrator’s burden of policy configuration.
Moreover, while there are potential conflicts and faults
in the system-wide IPsec security policies, the policy
translation effectively confine the potential policy con-
flicts and faults in the domain of an application — an
error in one application policy can only affect that appli-
cation. We describe the application policy specification
language in detail in Section 3.3.

Triggered by the events of socket invocations from
applications, the application policy engine executes the
creation and deletion of the fine-grained IPsec security
policies. For example, the event of an application call-
ing connect would trigger the application policy engine
to generate the necessary IPsec security policies for it,
and the subsequent calling of closesocket would cause
the deletion of these policies. We detail the socket-event-
driven policy translation process in Section 3.4.

3.2 Support from Current IPsec Imple-
mentations

As an IPsec enhancement, our policy system cannot
work independently without the appropriate support
from the current IPsec implementations. In general, the
support we need lies in three areas: the underlying policy
management interface, the process of the IP packet that
triggers the policy negotiation, and the setup of security

level of a security policy. We describe the availability of
the support in the current IPsec implementations and our
design choices as follows.

e Each IPsec implementation has its own policy man-
agement interface, whether it is published or not.
Since the KAME IPsec implementation [4] for BSD
Unix families and the native IPsec implementation
for Linux (Kernel 2.6), provide PF_KEY extensions
for IPsec policy management [5, 23], we build our
policy system on basis of the KAME-like IPsec im-
plementations. The proposed application policy en-
gine utilizes the underlying policy management in-
terface to create and delete security policies. How-
ever, this does not imply that our policy system is
restricted to the KAME-like IPsec implementations
only. The proposed scheme can be integrated with
other IPsec implementations, as long as they pro-
vide the basic policy management interfaces.

e When an outgoing IP packet triggers a policy ne-
gotiation, IPsec has to hold the IP packet until the
completion of the negotiation, rather than drop it
and return an error. This is because the upper-layer
protocols usually cannot cope with this kind of error
well. Thus, IPsec needs to handle the negotiation-
triggering packets properly. According to our study,
most of the current IPsec implementations are capa-
ble of providing this kind of support.

e Finally, [Psec should allow users to specify the se-
curity level of a security policy. Considering that a
server sometimes needs to communicate with both
IPsec clients and regular clients, we should have at
least two levels: mandatory and optional. Manda-
tory indicates that the flows of this policy must be
protected. Optional indicates that the establishment
of an IPsec channel is optional for its flows. Once
the IPsec channel has been established as manda-
tory or optional, the IP flow belonging to this chan-

USENIX Association

14th USENIX Security Symposium

319

nel must go through it. Many IPsec implementa-
tions do support optional security. For instance, the
KAME IPsec implementation has three levels: use,
require, and unique, and the native IPsec imple-
mentation of Windows 2000/XP also allows users
to specify an optional policy.

3.3 Application Policy Specification Lan-
guage

In order to facilitate the configuration of application poli-
cies, we define a simple application policy specification
language. Figure 3 illustrates a sample of application
policy described in the proposed language, and more re-
alistic examples are shown in Section 5. The keyword
application indicates the start of one application policy.
Following the same line is the application name (or its
path) or a list of application names that have the same
policy setting. The body of the application policy con-
sists of two classes of settings: one is network setting,
and the other is protection setting.

application appl, app?2

{
network 192.168.0.0/24
network 192.168.2.0/24
network www.abc.com
network 0.0.0.0/0
protection P1 {

localport=123

trusted;
untrusted;
protected P1l;
protected P2;

remoteport=any
encryption mandatory;
remoteport=any
authentication mandatory;

localport=any

}
protection P2 {

localport=any remoteport=any

authentication optional;

Figure 3: A Sample of Application Policy

3.3.1 Network setting

The network setting classifies the IP address space into
three categories: trusted, untrusted, and protected net-
works. In trusted networks (e.g., the local area network
on which the end-host resides), their machines are trust-
worthy, and hence the IP traffic from and to the trusted
networks will bypass IPsec processing. By contrast, the
untrusted networks define a blacklist of machines, and
the IP traffic from and to those machines will be dis-
carded by IPsec. The machines of the protected networks
are not trustworthy before the successful authentication
of their identifications. After the approval of their iden-
tifications, the appropriate IPsec protocols (ESP or AH)

are applied to their IP traffic to prevent eavesdropping
and tampering.

The Backus Naur Form (BNF) of a network setting is
given below:

network-def -> "network" address-range
network-type ";"

address-range -> ipaddress "-" ipaddress
| ipaddress "/" integer
| ipaddress

network-type -> "trusted" | "untrusted"
| "protected" string

The keyword “network” indicates that the following
parts of this line is a network definition. The address-
range can be a single IP address (or hostname) or a range
of IP addresses specified by an IP address prefix and
mask. The keywords “trusted”, “untrusted”, and “pro-
tected” indicate the specific category that the network
belongs to. If the network is a protected, the protection-
setting given below determines how communications are
protected.

3.3.2 Protection setting

The protection setting defines how the IP traffic of an ap-
plication is protected. Since an application usually uses
unique (well-known) port numbers to distinguish differ-
ent classes of IP flows, port-number-based protection set-
ting is effective to appropriately secure different classes
of IP flows belonging to the same application. Here we
take FTP as an example, the local/remote port pair of
(21, any) identifies FTP control connections, and the tu-
ple (any, any) identifies the remaining FTP data connec-
tions (either passive or port mode). Then we may set en-
cryption protection to FTP control connections, but au-
thentication protection to FTP data connections. How-
ever, if an application negotiates source/destination port
numbers at runtime for all its IP flows, we cannot tune
the protection settings for the different IP flows based
on (unknown) port numbers. Therefore, we have to use
the tuple of (any, any) to cover all its IP flows and spec-
ify a unified protection for them. On the other hand, the
setting of one protection policy per application is still ac-
ceptable if either security or performance requirements
are not stringent.

The BNF form of a protection setting is given as fol-
lows:

protection-setting -> "protection" string
"{" protection-list "}"

320

14th USENIX Security Symposium

protection-list -> protection-list protection-item
| protection-item

protection-item -> "localport=" portnumber
"remoteport=" portnumber
protection-type
protection-level ";"

portnumber -> integer | "any"

protection-type -> "encryption" | "authentication"

protection-level -> "optional" | "mandatory"

USENIX Association

The keyword “protection” indicates that the following
tokens form a protection setting. As a unique identifier,
the subsequent string is the name of the protection set-
ting and a referral for a network setting if the network
is a protected. The brace encloses a list of protection
items. The selector of each item is a tuple of local and re-
mote port numbers, indicating the class of TCP connec-
tions or UDP flows. The protection type—“encryption
or authentication”—indicates the specific IPsec protec-
tion required. Since ESP provides both data authentica-
tion and encryption services, the data authentication is
implicitly enabled in the encryption service. The last pa-
rameter of a protection item is the protection level: “op-
tional or mandatory”, which determines whether the de-
fined protection is optional or mandatory.

Note that the optional policy in the proposed policy
system needs resource isolation support at the kernel
level; otherwise, it may be vulnerable to malicious at-
tacks. The reason is that for an optional policy, an IPsec
packet and a non-IPsec packet that match this optional
policy would both be accepted. This opens a hole to at-
tackers. Since the traffic in plaintext may still go through
without packet-level authentication, an attacker can in-
ject spoofed IP packets to abuse the victim’s resources at
the kernel level, which are shared among different ap-
plications. Fortunately, fine-grained resource isolation
and accurate resource accounting have been proposed
and implemented [9, 30] to prevent resource abuse and
shield the privileged traffic from the other traffic. Im-
plementation of the fine-grained resource isolation in the
kernel space is the subject of our future work.

3.4 Runtime policy translation

Runtime policy translation is essential to the application-
aware [Psec policy system. Based on the socket activi-
ties of an application, the application policy engine must
translate the application security policies into the under-
lying IPsec policies. The translation needs to observe
two principles. One principle is exclusiveness, and there
are two levels of exclusiveness. The first-level exclusive-
ness requires that the security policies created for one
application will not interfere with those for other appli-
cations. This guarantees that a configuration error in one
application policy will not be propagated outside the do-
main of this application. The second-level exclusiveness
requires that the security policies created for one class
of traffic will not influence other class of traffic within
the same application. Note that the most straightforward
approach to achieving this two-level exclusiveness is to
create the specific IPsec policy for each particular socket.
The other principle is completeness, which requires that
all the targeted traffic should be under protection. For
UDP-based applications, each UDP datagram should be

protected; and for TCP-based applications, the whole
TCP connection should be protected, including hand-
shaking messages, keepalive messages, and connection
closing messages.

One difficulty of achieving completeness is that we
need to know which local port the socket is going to be
used beforehand, since the security policy of the socket
should be configured before network operations begin.
However, a dynamic socket—the socket not explicitly
bound to a local port—would only be bound to a local
port during the first network operation. We cannot pre-
dict the local port of the dynamic socket. Fortunately,
the bind interface is able to bind a socket to an avail-
able local port if its caller sets the argument of local port
number as 0. By calling bind with local port number “0”,
we can explicitly bind a dynamic socket to an available
local port before configuring the security policies of the
dynamic socket.

The general policy translation procedure is as follows.
When the socket monitor intercepts an invocation of a
socket function (e.g. connect), it retrieves the socket ad-
dress information (IP address and port number) of that
socket, knowing which application is currently making
this call. Then, it passes the socket address, the infor-
mation of application (e.g name or path), and the socket
function name to the application policy engine. Based
on the information of application, the application policy
engine locates the corresponding application policy from
the application policy repository. Depending on which
socket function is called, the application policy engine
will create or delete the underlying IPsec security pol-
icy for the particular socket with the knowledge of the
socket address information. In the rest of the section, we
describe the translation process in more detail for TCP-
based and UDP-based communication, respectively.

3.4.1 TCP-based communication

As shown in Figure 4, we use an FTP application as
an example to detail the translation procedure for TCP-
based communication. Since the source and destina-
tion port numbers of a passive FTP data connection are
determined at runtime, without our policy system, it is
impossible to configure application-specific IPsec policy
for FTP applications. In contrast, the application-aware
IPsec policy system enables us to configure simple ap-
plication polices for FTP client and server programs, re-
spectively. The policy for the client-side program fip
specifies two different networks: 1.1.1.0/24 is the local
trusted network, and the other is protected network. The
protected network has the following security policy: the
IP packets with remote port number 21 (FTP control con-
nection) must be encrypted, and the other traffic (FTP
data connection) should be authenticated. The policy for

USENIX Association

14th USENIX Security Symposium

321

application ftp

network 1.1.1.0/24 trusted;
network 0.0.0.0/0 protected P1;
protection P1 {
localport=any remoteport=21 encryption mandatory;

FTP Client: 1.1.1.1 FTP Server:2.2.2

[

localport=any remoteport=any authentication
mandatory;

}

[Socket Event] Socket 1 connects Server:21: ESPITCPISYN]

Add Policy 1: <1.1.1.1:2222, 2.2.2.2:21, TCP, mirrored, mandatory,

ESP, transport>; ESPITCP[SYN+ACK

%

[Socket Event] Socket 2 connects Server:5678: ‘%‘
Add Policy 2: <1.1.1.1:3333, 2.2.2.2:5678, TCP, mirrored, mandatory, AHITCP[S YN+ACK]
AH, transport>;
AHTCP[ACK]

AHITCP[FIN]

AHITCP[FIN]

P p———

AHITCP[ACK]

|

[Socket Event] Socket 1 is closed: ESPITCPIFIN]

Delete Policy 1; | Esrcriack] ™

P —
P

[Socket Event] Socket 2 is closed:
Delete Policy 2;

ESPITCP[FIN]

PITCP[ACK]

application vsftpd
{

network 2.2.2.0/24 trussted;
network 0.0.0.0/0 protected P1;
2 protection P1 {
localport=21 remoteport=any encryption optional;
— localport =any remoteport=any authentication
=| |optional;

}

[Socket Event] Socket 1 listens on local port 21:

Add Policy 1: <2.2.2.2:21, 2.2.2.0/24, TCP, mirrored, bypass>;

Add Policy 2: <2.2.2.2:21, 0.0.0.0/0, TCP, mirrored, optional,
ESP, transport>;

[Socket Event] Socket 1 listens on local port 5678:

Add Policy 3: <2.2.2.2:5678, 2.2.2.0/24, TCP, mirrored, bypass>;

Add Policy 4: <2.2.2.2:5678, 0.0.0.0/0, TCP, mirrored, optional,
AH, transport>;

[Socket Event] Socket 2 is closed:
Delete Policy 3;
Delete Policy 4;

[Socket Event] Socket 2 is closed:
Delete Policy 1;
Delete Policy 2;

Figure 4: Runtime Policy Translation for TCP-based Communication.

the server program vsfipd also defines two different net-
works: 2.2.2.0/24 is the local trusted network, and the
other is the protected network. The policy of the pro-
tected network is as follows: the traffic with the local
port number 21 may be encrypted in option, and the other
traffic may be authenticated as an option too.

When the server process vsftpd calls listen on a par-
ticular socket, we need to set up the appropriate security
policies to protect the prospective incoming connections.
At that moment, we do not know where a TCP connec-
tion comes from. So, we create a mirrored security policy
for each network defined in the application policy. Here
a mirrored security policy is a policy for both inbound
and outbound processing. If the underlying IPsec im-
plementation does not support mirrored security policy,
individual inbound and outbound policies can be created
instead. If the network is trusted, a bypass policy is cre-
ated; if the network is untrusted, a discard policy is cre-
ated; if the network is protected, then the protection item
that matches the local port of this socket is retrieved from
the protection setting of the network. In this example, we
create a bypass policy (Policyl) for the trusted network,
and an optional ESP policy (Policy2) for the protected
one.

When the client-side process ftp calls connect to open
one FTP control connection with the server, we need to
prepare a mirrored security policy for this particular con-
nection, since we have the knowledge of local/remote ad-

dresses and port numbers. The attribute of the network,
in which the remote address is located, determines the
configuration of its IPsec policy. If it is trusted or un-
trusted, then a bypass or discard policy is created; other-
wise, the protection item that matches both the local and
the remote port will be retrieved from the protection set-
ting of this network, and an ESP or AH policy is created
accordingly. In this example, the server’s address locates
in the client’s protected network, and the first protection
item matches the connection. So, we create a manda-
tory ESP policy (Policyl) for the TCP connection be-
tween the local address (1.1.1.1) and local port (2222)
and the server’s address and port (2.2.2.2 and 21). After
policy configuration, the TCP packets of this connection
are protected. If SAs of this policy have not been cre-
ated, the first SYN packet will trigger the IKE process to
negotiate and create SAs on both sides.

Afterwards, when the client initiates an FTP data con-
nection, similar procedures happen on the server and the
client. Upon the listen call at the server side, we cre-
ate a bypass policy (Policy3) for the trusted network, and
an optional AH policy (Policy4) for the protected net-
work. Upon the connect call at the client side, we cre-
ate a mandatory AH policy (Policy2) for this connection.
After the socket is closed, the socket monitor notifies the
application policy engine to delete the security policies
related to the socket.

322

14th USENIX Security Symposium

USENIX Association

application udp-cli
{

network 1.1.1.0/24 trusted;
network 0.0.0.0/0 protected P1;
protection P1 {
localport=any remoteport=any encryption mandatory;

UDP Client
(1.1.1.1)

[Socket Event] Socket 1 sends datagram to Server:2345:
Add Policy 1: <1.1.1.1:5678, 2.2.2.2:2345, UDP, out, mandatory,
ESP, transport>;

cee see
[Socket Event] Socket 1 calls "recvfrom":

Add Policy 2: <1.1.1.1:5678, 1.1.1.0/24, UDP, in, bypass>;
Add Policy 3: <1.1.1.1:5678, 0.0.0.0/0, UDP, in, mandatory,

ESPIUDP

I — e — . Add Policy 2: <2.2.2.2:2345, 0.0.0.0/0, UDP, in, optional,

ESPIUDP

application udp-srv
{
network 2.2.2.0/24 trussted;
network 0.0.0.0/0 protected P1;
protection P1 {
localport=any remoteport=any encryption optional;

UDP Server
(2.2.2.2)

il

[Socket Event] Socket 1 (bound on 2345) calls "recvfrom":
Add Policy 1: <2.2.2.2:2345, 2.2.2.0/24, UDP, in, bypass>;
ESP, transport>;

[Socket Event] Socket 1 sends datagram to Client:5678:

ESP, ransport>; |q———————— | 1iqPolioy 3: <2.2.2.2:2345, 1.1.1.1:5678, UDP, out, optional,

[Socket Event] Socket1 is closed:
Delete Policy 1;
Delete Policy 2;
Delete Policy 3;

ESP, transport>;

[Socket Event] Socket 2 is closed:
Delete Policy 1;
Delete Policy 2;
Delete Policy 3;

Figure 5: Runtime Policy Translation for UDP-based Communication.

3.4.2 UDP-based communication

In contrast to connection-oriented TCP-based commu-
nication, in which a stream socket is bound to commu-
nicate with a fixed destination, a datagram socket can
talk with multiple destinations simultaneously. There-
fore, the policy translation of UDP is more complicated
than that of TCP.

Figure 5 shows an example of translation process for
UDP-based communication. When the server process
udpsrv calls recvfrom to receive a datagram from the
socket that bound to local port 2345, the policy engine
retrieves the corresponding application policy. Then, for
each network defined in this application policy, it creates
the appropriate IPsec policy. Here we create a bypass
policy (Policy1) for the trusted network, and an optional
ESP policy (Policy2) for the protected network. The pro-
cedure is similar to that of /isten in TCP-based commu-
nication. The difference is that for listen we create mir-
rored policies, but for recvfrom we only create inbound
policies.

When the client process udp-cli calls sendto to send
a datagram to the server, the application policy engine
creates an outbound policy if the policy has not been cre-
ated before. The destination address and port number are
the server’s, while the source address and port number
are fetched from the socket descriptor. This procedure
is similar to that of connect in TCP-based communica-
tion. The difference is that for connect we create mir-
rored policies, but for sendfo we only create outbound
policies. In this example, we create a mandatory ESP
policy (Policy1).

After that, the server returns a datagram to the client,

and similar procedures happen on both sides, as shown
in Figure 5. Upon the recvfrom call at the client side,
we create two inbound security polices: one bypass pol-
icy (Policy2) for the trusted network, and one mandatory
ESP policy (Policy3) for the protected network. Upon
the sendto call at the server side, we create an optional
outbound ESP policy (Policy3).

Recall in TCP, once a socket descriptor is closed, the
application policy engine will remove all security poli-
cies related to it. However, it would be problematic in
UDP if we only remove security policies after a socket
is closed. It is possible that even if a socket only talks
with a few destinations simultaneously, a large number
of policies may have been created for the socket after a
long time due to the accumulation effect. Our solution
is to define a TTL (time-to-live) for each outbound UDP
policy, and delete it when its TTL expires.

In this example, we only describe the policy transla-
tion performed on recvfrom and sendto. UDP-based ap-
plications can also use send to transmit a datagram after
connect is called. The translation procedure for send is
the same as the one for sendto.

4 Implementation

We have implemented a prototype of our application-
aware IPsec policy system in Linux (Kernel 2.6). There
is a native [Psec implementation in the Linux kernel af-
ter version 2.5.47, which is similar to KAME imple-
mentation [4] in the BSD variants such as FreeBSD,
NetBSD and OpenBSD. The user-level utilities [2], in-
cluding racoon (an IKE daemon), PF_.KEYV2 library

USENIX Association

14th USENIX Security Symposium

323

Application

Policy

Daemon
Applications

Application
Policy
Repository

USER SPACE
________________ ptkeyv2 |7 Jreadwrie” T T T
Modified KERNEL SPACE
Socket socket event
Syscalls
/dev/ipspdev
Pseudo
IPsec SPD Character
SAD Device

Figure 6: The Prototype in Linux (Kernel 2.6).

pfkeyv2, and setkey (a tool for policy configuration), have
also been ported to Linux kernel 2.6.

The structure of this prototype is illustrated in Figure
6. The function of the socket monitor is implemented by
modifying socket system calls, and the application policy
engine is implemented as a user-level daemon. The com-
munication between the user-level policy daemon and the
kernel is through a pseudo character device. The socket
monitor enqueues the socket events into the pseudo char-
acter device /dev/ipspdev, and the policy daemon uses
regular file reading operation interfaces (i.e. read) to
retrieve these socket events from /dev/ipspdev and writ-
ing operation (i.e. write) to acknowledge them after
translation. The policy daemon creates and deletes se-
curity policies via the interface defined in the pfkeyv2 li-
brary. The socket monitor can detect which application
is running based on the current process id pid, which is
retrieved from the appropriate entry in the /proc filesys-
tem.

As an independent kernel module, the kernel-space
portion, including the socket monitor and the pseudo
character device, only consists of 500 lines of C code.
We also notice that the socket monitor could be imple-
mented in user space in some operating systems. For
example, in Windows systems it can be implemented as
a Winsock?2 Layered Service Provider (a dynamic link li-
brary). So, the programming in kernel space is minimal.

In terms of security policy, like the KAME implemen-
tation, the native IPsec implementation in Linux ker-
nel 2.6 supports three security levels: use, require, and
unique. The use level indicates that the kernel can utilize
an SA if it is available, otherwise the kernel just stays
in normal operation. This security level can be used for
an optional policy. The require level indicates that SA
is a must whenever the kernel sends a packet matched
with the policy. The unique level is similar to require.

In addition, it allows the policy to bind with the unique
out-bound SA. Both the require and unique levels can be
used for a mandatory policy. However, since we create
fine-grained security policies, using uniqgue security level
may cause frequent policy negotiation, leading to perfor-
mance degradation. Besides, we have no such strict re-
quirement that no policies can share an SA. Therefore,
we choose the require level for a mandatory policy.

5 System Evaluation

The purpose of our system evaluation is two-fold: (1) to
demonstrate the efficacy of the proposed policy system in
security enhancement and protection; and (2) to measure
the overhead of the proposed policy system. We employ
a simple setup for the testbed, which consists of two PCs
connected by a 100Mbps Ethernet. The server machine
has two Pentium-4 2.8 GHZ CPUs, and 512MB memory,
and the client machine has one Pentium-4 2.8GHZ CPU
and 256MB memory. Both have Redhat 9.0 installed
with Linux kernel 2.6.7.

We conduct file-transfer across the testbed using
secure-version and legacy-version applications (sftp and
ftp), respectively. With respect to the different running
applications on the testbed, we divide our experiments
into two classes: the experiments running sftp and the
experiments running ftp. As shown in [28], the median
size of Web objects is 2KB, the median size of P2P ob-
jects is 4MB, and about 5% of Kazaa objects are over
100MB. Therefore, we apply two typical workloads in
our experiments: the small-file workload and the large-
file workload. The small-file workload consists of down-
loading 5000 different small files, each of which is 2KB
long; while the large-file workload consists of download-
ing a single large file of 100MB. The performance metric
we used here is end-to-end file transfer time.

324

14th USENIX Security Symposium

USENIX Association

In the extreme case of downloading a large number of
small files in FTP, we intend to amplify the overhead of
policy translation. On the other hand, downloading a sin-
gle large file amortizes the overhead incurred by policy
translation, and demonstrates the basic processing over-
head of IPsec in comparison with other security mech-
anisms. Equipped with the IPsec and the proposed pol-
icy system, the total overhead of an application can be
classified into the following three categories: the base
overhead of the application, the additional overhead in-
curred by IPsec processing, and the additional overhead
incurred by the policy system. In order to evaluate these
three kinds of overheads, we measure the end-to-end file
transfer time under three different protections: no pro-
tection at all, IPsec protection with the direct [Psec pol-
icy configuration, and the application-aware IPsec policy
system protection.

5.1 Security Enhancement for Secured Ap-
plications

For those secured applications that already have identifi-
cation authentication, data confidentiality and integrity
protection, the application data has already been en-
crypted and authenticated at the upper layers. Thus, the
packet-level authentication provided by IPsec is effective
enough to counter various network-layer attacks such as
IP spoofing and enhance the security of these applica-
tions.

application sshd

{

application ssh, sftp, scp

network 192.168.1.0/24 protected Enh;
network 0.0.0.0/0 trusted;
protection Enh {
localport=any remoteport=any
authentication mandatory;

network 192.168.1.0/24 protected Enh;
network 0.0.0.0/0 trusted;
protection Enh {
localport=any remoteport=any
authentication mandatory;)

} }

}

Figure 7: A Policy Example for SSH Server and Client.

Here we use ssh as an example. Figure 7 shows the
application policies for the SSH server daemon sshd and
the client processes ssh, sftp, and scp. The policies are
simple: the local area network 192.168.1.0/24 is a pro-
tected network with mandatory authentication.

To demonstrate the virtue of the network-layer secu-
rity enhancement, we launch SYN flooding attacks from
the client machine targeting at the SSH service port 22
of the server. The spoofed source IP addresses are ran-
domly chosen from a private network of 10.0.0.0/4, and
the server’s responses to these non-existing addresses
are redirected to a third machine that drops these bogus
packets directly. We configure the server with three dif-
ferent settings: no protection, IPsec protection, and SYN

cookies. The SYN flooding rate varies from 15,000 to
112,000 packets per second that is the maximum flood-
ing rate we can reach in the 100Mbps Ethernet.

We observe that without protection of IPsec or SYN
cookies, the server is easily clogged and no legitimate
SSH connection can be established under the minium
flooding rate of 15,000 packets per second. Both SYN
cookies and IPsec are effective defense mechanisms,
since a legitimate TCP connection can be established
even under the maximum flooding rate of 112,000 pack-
ets per second. Nevertheless, SYN cookies consume
considerably more CPU cycles than IPsec. In particu-
lar, when the flooding rate exceeds 100,000 packets per
second, a legitimate SSH client cannot login even though
the TCP connection has been established, due mainly to
the shortage of CPU cycles and the expensive crypto-
graphical computation thereafter. The CPU utilization
under different protection settings is depicted in Figure 8
(a). The extra CPU cycles used by SYN cookies are due
to cookie generation and sending responses with each
spoofed SYN requests. By contrast, IPsec drops spoofed
SYN requests directly and only accepts AH packets.

A potentially more effective attack against IPsec
would be to flood spoofed AH packets, which may ex-
haust the victim’s CPU resource on verifying MACs of
AH packets. The challenge of launching such an attack is
the necessity of knowing the detailed information of the
victim’s inbound SA, including the source IP address,
SPI and current position of anti-replay window. Other-
wise, the spoofed AH packets without correct combina-
tion of source IP address, SPI and sequence number will
be easily sifted out by IPsec via lightweight checking.
Thus, as shown in Figure 8 (b), with IPsec protection the
number of CPU cycles burnt by blind AH flooding at-
tacks (i.e., spoofing without correct detailed information
about inbound SA) is similar to that of SYN flooding at-
tacks. To amplify the effect of AH flooding attacks, we
flood spoofed AH packets with the correct combination
of source IP address, SPI and sequence number. Figure 8
(b) clearly demonstrates that the CPU overhead incurred
by IPsec is still less than that of SYN cookies for pro-
tecting SYN flooding attacks, and it is no surprise that
IPsec takes more CPU cycles in defending such attacks
than blind AH flooding attacks.

The performance of sftp under different protections is
listed in Table 1. With application policy protection, the
elapsed time of sftp increases from 20.945s to 22.493s
for the small-file workload, and from 9.355s to 9.452s for
the large-file workload. For both workloads, the perfor-
mance degradation induced by the the packet-level au-
thentication for sftp is insignificant. In the SSH proto-
col, only one TCP connection needs to be established
for each login session, and all the subsequent data (user-
commands and files) is transferred over the single TCP

USENIX Association

14th USENIX Security Symposium

325

S
T

CPU Utilization
>
T

o
=
T

02l A—A No defense B
- X - X IPsec

SYN cookies

CPU Utilization
\

S

o

o
=
T
\
1

02l z: B - [Pscc (accurate) B
i o x - x IPsec (blind)

" SYN cookies

. .
% 20 40 60 80 100 120
Flooding Rate (thousand packets per second)

(a) SYN Flooding

. .
% 20 40 60 80 100 120
Flooding Rate (thousand packets per second)

(b) AH Flooding

Figure 8: The CPU Utilization under SYN and AH Flooding Attacks

connection. Thus, the policy translation overhead for that
single TCP connection is negligible compared to the total
file transfer time. We will evaluate the policy translation
overhead in Section 5.2.

Table 1: Experiments of Protecting SSH

| [small-file case (s) | large-file case (s) |

sftp 20.945 9.355
sftp with AH 21.776 9.409
sftp with App Policy 22.493 9.452

5.2 Security Protection for Legacy Appli-
cations

Many Internet applications are not secure, such as FTP,
HTTP, Telnet, SMTP, POP3, etc. Their traffic, including
sensitive authentication information (e.g. username and
password), is transmitted in plaintext. Most of them are
still widely used. By specifying application-aware IPsec
policies, these legacy applications can transparently ob-
tain network-layer security protection. Furthermore,
compared with other security mechanisms deployed at
the upper layers, the network-layer security provided by
IPsec protects these legacy applications against various
network-layer attacks.

Here we use the FTP protocol as an example. There
are two kinds of TCP connections in FTP: FTP control
connections and FTP data connections. The login infor-
mation (username and password) and all user-commands
are transferred over the FTP control connection; while
the real file data and directory information are transferred
over the FTP data connection. Therefore, the FTP con-
trol connection must be encrypted, and the FTP data con-
nection can be encrypted or authenticated according to
the specific circumstances. Here, we give two different
suites of policies. The left suite of application policies

in Figure 9 is for FTP server process vsftpd and client
process ftp. Since it is configured to encrypt all FTP traf-
fic, we simply call it the secure policy. The right suite of
application policies is configured to encrypt the FTP con-
trol connection but only authenticate the FTP data con-
nection. Thus, we call it the fast policy.

Table 2: Experiments of Securing FTP protocol

| || small-file case (s) | large-file case (s) |

FTP 4.838 9.837
FTP with AH/ESP 6.133 9.983
FTP with Fast Policy 11.909 10.062
FTP with ESP 7.383 14.262
FTP with Secure Policy 13.131 14.282

The performance of FTP under the different protec-
tions is listed in Table 2. With the security protection,
the file-transfer delay of the large-file workload increases
from 9.837s to up to 14.282s, which is mainly caused
by the overhead of IPsec processing. In the case of the
small-file workload with the security protection, the file-
transfer delay increases from 4.838s to up to 13.131s,
which is caused by both the overhead of IPsec process-
ing and the overhead of policy processing. Note that
since multiple security policies may share a single SA in
our implementation, the overhead of SA establishment
is negligible even in the case of the small-file workload.
Figure 10 plots the proportion of the application policy
processing overhead to the whole file-transfer overhead
under the different workloads. The percentage of the
policy processing overhead in the small-file workload is
48.5% for the fast policy and 43.8% for the secure pol-
icy, respectively. Compared with the large-file workload
case, the large portion of overhead incurred by the policy
system is due to the following two reasons.

326

14th USENIX Security Symposium

USENIX Association

application vsftpd
{
network 192.168.1.0/24 protected P1;
network 0.0.0.0/0 trusted;
protection P1 {
localport=any remoteport=any

encryption mandatory;

application ftp
{

network 192.168.1.0/24 protected P1;
network 0.0.0.0/0 trusted;
protection P1 {
localport=any remoteport=any
encryption mandatory;
}

}

application vsftpd
{
network 192.168.1.0/24 protected P1;
network 0.0.0.0/0 trusted;
protection P1 {
localport=21 remoteport=any

encryption mandatory;

localport=any remoteport=any

authentication mandatory;

application ftp
{

network 192.168.1.0/24 protected P1;
network 0.0.0.0/0 trusted;
protection P1 {

localport=any remoteport=21

encryption mandatory;

localport=any remoteport=any

}

authentication mandatory;

} }

(a) Secure Policy

(b) Fast Policy

Figure 9: A Policy Example for FTP Server and Client.

Small-file workload (fast) Small-file workload (secure)

ftp
ftp 2 37%
41% Policy
Policy 44%
48%

IPsec IPsec
1% 19%

Large-file workload (fast) Large-file workload (secure)

Policy Policy
1% 0%

ftp
69%

Figure 10: The Overhead of Application Policy Processing in
Securing FTP

e In the FTP protocol, a new TCP connection has to
be established for each file to be transferred, and
our policy system needs to create appropriate IPsec
policies for each TCP connection before it is to be
established and delete them after it is closed.

e The file size of small-file workload and the short
propagation delay in the LAN environment amplify
the overhead of policy system.

Note that the overhead of policy processing per connec-
tion is stable, if not constant, and is independent of the
file size and the propagation delay. By dividing the ad-
ditional overhead caused by the policy processing (about
5.7s) with the number of TCP connections (5000), we
can derive the cost of policy processing for one TCP con-
nection, which is about 1.1ms. Compared to the end-
to-end delay of 20-200ms in the WAN environment, the
policy processing overhead per connection is negligible.

In our implementation, the socket monitor residing in
the kernel space needs to report the socket activities to

the user-space policy engine. Thus, the communication
between kernel and user space and the synchronization
between the policy engine and the processes being mon-
itored induce the major overhead of the policy system.
However, even in the low-latency (less than 1ms) LAN
environment with the small-file workload that amplifies
the overhead of the proposed policy system, the perfor-
mance of FTP protected by either the fast policy or the
secure policy outperforms that of sfip with a large mar-
gin. Note that for a fair comparison, we choose the same
encryption algorithm (3DES) and authentication algo-
rithm (HMAC_SHAT1) for SSH and IPsec. Therefore, we
can conclude that the overall performance of our policy
system is satisfactory in both scenarios.

To demonstrate that the application policy for FTP is
correctly enforced, we dump the FTP traffic between the
server and the client, which is shown in Appendix A.

6 Conclusion

In this paper, we presented an application-aware IPsec
policy system as a flexible middleware to provide Inter-
net applications with network-layer security protection.
Since IPsec is at the network layer and lacks knowledge
of application context, the current IPsec policy is rigid
and coarse-grained, providing all or nothing security pro-
tection to different Internet applications. To make the
IPsec policy system flexible and application-aware, we
installed a socket monitor at the network stack of end
hosts. The socket monitor detects the socket activities
of Internet applications, and passes them to the applica-
tion policy engine. Then, the application policy engine
translates the corresponding application policies into the
underlying security policies via the existing policy man-
agement interface. Moreover, we defined an applica-
tion policy specification language to alleviate administra-
tor’s burden of configuring and distributing application
policies in different platforms. We have implemented a
prototype of the proposed policy system in Linux (Ker-
nel 2.6) and evaluated its efficacy in the testbed. Our
experiments have shown that utilizing the application-
aware [Psec policy system, both secured applications and

USENIX Association

14th USENIX Security Symposium

327

legacy applications can obtain the end-to-end security
enhancement or protection transparently. Furthermore,
the overhead of policy translation has insignificant im-
pact upon the end-to-end transfer delay over the Internet.

7

We

Acknowledgments

would like to thank the anonymous reviewers for

their insightful comments. We would also like to thank
William Bynum and Jianping Pan for helpful feedback.

References

(1]

[2]
[3]

[4]
[3]

(6]

[7]

(8]

[91

(10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

Ip security policy working group. http://www.ietf.org/
html.charters/ipsp- charter.html.

IPsec tools. http://ipsec- tools.sourceforge.net.

IPsec2k library. http://sourceforge.net/projects/
ipsec2k.

KAME Project. http://www.kame.net.

PF_KEY Extensions
KAME Stack.
20021210.

for IPsec Policy Management in
http://www.kame.net/newsletter/

Stunnel-universal ssl wrapper. http://www.stunnel .org.

AIELLO, W., BELLOVIN, S. M., BLAZE, M., CANETTI, R.,
I0ANNIDIS, J., KEROMYTIS, A. D., AND REINGOLD, O. Ef-
ficient, DoS-Resistant, Secure Key Exchange for Internet Pro-
tocols. In ACM Conference on Computer and Communication
Security (CCS’02) (Washington D.C, USA, November 2002).

ARKKO, J., AND NIKANDER, P. Limitations of IPsec Policy
Mechanisms. In Security Protocols, Eleventh International Work-
shop (Cambridge, UK, April 2003).

BANGA, G., DRUSCHEL, P., AND MOGUL, J. Resource contain-
ers: A new facility for resource management in server systems.
In USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’99) (New Orleans, LA, February 1999).

BEAULIEU, S., AND PEREIRA, R. Extended Authentication with
IKE (XAUTH). Internet Draft, Internet Engineering Task Force
(Oct 2001).

BLAZE, M., IOANNIDIS, J., AND KEROMYTIS, A. D. Trust
management for IPsec. ACM Transactions on Information and
System Security (TISSEC) 5, 2 (2002), 95-118.

CONDELL, M., LYNN, C., AND ZA0, J. Security Policy Specifi-
cation Language. Internet Draft, Internet Engineering Task Force
(October 1998).

HARKINS, D., AND CARREL, D. The Internet Key Exchange
(IKE). RFC 2409, Internet Engineering Task Force (November
1998).

TOANNIDIS, J. Why don’t we still have IPsec, Dammit. In Invited
talk at USENIX Security Symposium '02 (August 2002).

KAUFMAN, C. The Internet Key Exchange (IKEv2) Protocol.
Internet Draft, Internet Engineering Task Force (August 2004).

KAUFMAN, C., PERLMAN, R., AND SOMMERFELD, B. DoS
protection for UDP-based protocols. In ACM conference on Com-
puter and Communication Security (CCS’03) (Washington D.C,
USA, October 2003), pp. 2-7.

KENT, S., AND ATKINSON, R. IP Authentication Header. RFC
2402, Internet Engineering Task Force (November 1998).

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

KENT, S., AND ATKINSON, R. IP Encapsulating Security Pay-
load (ESP). RFC 2406, Internet Engineering Task Force (Novem-
ber 1998).

KENT, S., AND ATKINSON, R. Security architecture for the
internet protocol. RFC 2401, Internet Engineering Task Force
(November 1998).

LITVIN, M., SHAMIR, R., AND ZEGMAN, T. A Hybrid Authen-
tication Mode for IKE. Internet Draft, Internet Engineering Task
Force (June 2001).

MAUGHAN, D., SCHNEIDER, M., AND SCHERTLER, M.
Internet Security Association and Key Management Protocol
(ISAKMP). RFC 2408, Internet Engineering Task Force
(November 1998).

McDONALD, D. A Simple IP Security API Extension to
BSD Sockets. Internet Draft, Internet Engineering Task Force
(November 1996).

METZ, C., AND PHAN, B. PF_.KEY Key Management API Ver-
sion 2. RFC 2367, Internet Engineering Task Force (October
2001).

MILTCHEV, S., IOANNIDIS, S., AND KEROMYTIS, A. D. A
Study of the Relative Costs of Network Security Protocols. In
USENIX Annual Technical Conferences, Freenix Track (Mon-
terey, CA, June 2002), pp. 41-48.

MORRIS, R. T. A weakness in the 4.2bsd unix TCP/IP software.
In Computing Science Technical Report 117, AT&T Bell Labora-
tories (Murray Hill, NJ, February 1985).

Opportunistic Encryption. http://www.freeswan.org.

PIPER, D. The Internet IP Security Domain of Interpretation.
RFC 2407, Internet Engineering Task Force (November 1998).

SAROIU, S., GUMMADI, K., DUNN, R., GRIBBLE, S., AND
LEVY, H. An analysis of internet content delivery systems. In
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’02) (Boston, MA, December 2002).

SOMMERFELD, W. Requirements for an IPsec API. Internet
Draft, Internet Engineering Task Force (June 2003).

SPATSCHECK, O., AND PETERSON, L. Defending against denial
of service attacks in Scout. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI’99) (New Orleans,
LA, February 1999).

WANG, X., AND REITER, M. Mitigating bandwidth-exhaustion
attacks using congestion puzzles. In ACM conference on Com-
puter and Communication Security (CCS’04) (Washington D.C,
USA, October 2004).

Wu, C. L., WU, S., AND NARAYAN, R. IPSEC/PHIL (Packet
Header Information List): Design, Implementation, and Evalua-
tion. In IEEE International Conference on Computer Communi-
cation and Networks *01 (October 2001).

Notes

I At present each IPsec vendor has a very different policy manage-
ment interface. Note that if it does not exist in one operating system, it
will be much easier to build such interface than a standard IPsec API.

328

14th USENIX Security Symposium

USENIX Association

A Efficacy of Application Policy for FTP

Using ethereal, we dump the FTP traffic between the server and the client, and show that the application policy for
FTP is correctly enforced (see Figure 11). The left figure shows the FTP traffic without any protection, in which
the sensitive information like username and password can be easily fetched. The right figure shows the FTP traffic
protected by the fast policy, in which the FTP control connection is protected by ESP as predicted, and hence the
confidentiality is guaranteed.

=B x] [+ =i
File Edit Capiure Display Tools Help File Edit Capture Display Tools Help
Mo, |Time |Snurce Destination Protocal |Info [2] JDVIT\me |Suume Destination Protocol |Info [+]
8 7.330426 192.168,1.27 192,168.1.26 TCP 32776 > ftp [SYN] Seqe2 5 2,070266 132,168,1,27 132,168,1,26 I5AKHP fOuick Hode
9 7,330443 192,168,1.26 192,168.1,27 TP Ftp > 32776 [SYN, ACK] b 2,088872 192,168,1.26 192,168,1,27 T5AKHP Quick HMode

10 7,330455 182,168,1.27 192,168.1,26 TCP 32776 > ftp [ACK] Seq=2 7 2,091664 192,168,1,27 192,168,1,26 TSAKHP Huick Mode

11 7,331874 152,168,1.26 152,168,1,27 FTP Response: 220 (wsFTRd 1 8 2,114408 192,168,1.27 192,162,1,26 ESP ESP (3PI=0x01555ba8)

12 7.332189 192.162.1.27 192,168.1.26 Tcp 32776 > ftp [ACK] Seqe2 9 2,114604 192,168,1,26 192,162,127 ESP ESP (3PI=0utb3ciFal)

13 8.E700E4 192.162,1.27 192,168.1.26 FTP Request: USER test 10 2,114653 192,168,1,27 192,162,1,26 ESP ESP (3l n(11555ba8)

14 8.670032 192,168,1.26 192,168.1.27 Tcr ftp > 32776 [ACK] Seq=2 11 2.116042 192.168,1.26 ESP ESP (3PI=0u0b3ciFal)

15 B,670171 192,168,1,26 192,168.1,27 FTP Response: 331 Please sp 12 2,116413 ESP ESP (3PI=0x01555ba8)

16 8,670516 152,168,1,27 1592,168,1,26 TCP 32776 > Frp [ACK] Seq 13 Z.E7T243 ESP ESP (3PI=0x01555ba8])

12, 1 edquest: 14 Z.E78015 ESP ESP

20 12,121068 192.162.1.26 192,168,127 FTP Response: 220 Login suc 3.E7E107 ESP ESP

21 12,121261 192.162,1.27 192,168.1.26 TcP 32776 > Ftp [ACK] Seq=2 E

22 12,122289 192,168,1,27 192,168.1,26 FTP Request: SYST 7.202620 192,168, ESP ESP

23 12,122326 192,168,1.26 192,168,1,27 FTP Response: 215 UNIH Tupe 20 7,207820 192.168,1.26 192,168, ESP ESP (SPI=0n0b3ci?al)

24 12,162271 192,168,1,27 192,168,126 TcP 32776 > frp [ACK] Seq=2 21 7.208053 192.168,1.27 192.162,1.26 ESP ESP (SPI=0n01555ba8)

OF 13 Z/A7A 190 1RR 1 07 197 1RR 1 9% FTR Reuiest+ PASH [l 29 7 90R119 199 1RR 1 97 199 1RR 1 9% FSP FSP SPT=vil16RGhaR T [+]
[+ I = | |E - : | D
Internet Protocol, Sre Addr: 192.168.1.27 (192.168.1.27), Dst Addr: 152.168.1.26 (132.168.1. Tnternet Protocel, Sre Addr: 190.16%,1.27 (192.168.1,27), Dst Addr: 192.169.1.05 (192.168.1.2 [~]
Transmission Control Protocol. Src Port: 32776 (32776), Dst Port: ftp (21), Seq: 2002391032, B Encapsulating Security Payload
B File Transfer Protocal (FTP) SPL: 0x01555bal

Request command; PASS 000000005

01 1280 0B 00 15 77 53 73 b3 B0 be £3 16 80 18 vewerutl Suvernrs ooz
16 d0 0a cO 00 00 01 01 O 00 I B L 0030
&7 5h 50 41 53 53 20 3 [PASS m 0040

1 0d 0

eth.iype == 0x500

Request arg (ftprequestarg), 10 bytes

] Lprota ==

Data (datay, 60 bytes

Figure 11: Screenshots of Unprotected and Protected FTP Connections

USENIX Association 14th USENIX Security Symposium 329

