
N-Variant Systems

A Secretless Framework for Security through Diversity

Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,

Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser

University of Virginia, Department of Computer Science
http://www.nvariant.org

Abstract

We present an architectural framework for systematically using automated diversity to provide high assurance detec-

tion and disruption for large classes of attacks. The framework executes a set of automatically diversified variants on

the same inputs, and monitors their behavior to detect divergences. The benefit of this approach is that it requires an

attacker to simultaneously compromise all system variants with the same input. By constructing variants with disjoint

exploitation sets, we can make it impossible to carry out large classes of important attacks. In contrast to previous

approaches that use automated diversity for security, our approach does not rely on keeping any secrets. In this pa-

per, we introduce the N-variant systems framework, present a model for analyzing security properties of N-variant

systems, define variations that can be used to detect attacks that involve referencing absolute memory addresses and

executing injected code, and describe and present performance results from a prototype implementation.

1. Introduction

Many security researchers have noted that the current

computing monoculture leaves our infrastructure vul-

nerable to a massive, rapid attack [70, 29, 59]. One

mitigation strategy that has been proposed is to increase

software diversity. By making systems appear different

to attackers, diversity makes it more difficult to con-

struct exploits and limits an attack’s ability to propa-

gate. Several techniques for automatically producing

diversity have been developed including rearranging

memory [8, 26, 25, 69] and randomizing the instruction

set [6, 35]. All these techniques depend on keeping cer-

tain properties of the running execution secret from the

attacker. Typically, these properties are determined by a

secret key used to control the randomization. If the se-

cret used to produce a given variant is compromised, an

attack can be constructed that successfully attacks that

variant. Pointer obfuscation techniques, memory ad-

dress space randomization, and instruction set randomi-

zation have all been demonstrated to be vulnerable to

remote attacks [55, 58, 64]. Further, the diversification

secret may be compromised through side channels, in-

sufficient entropy, or insider attacks.

Our work uses artificial diversity in a new way that does

not depend on keeping secrets: instead of diversifying

individual systems, we construct a single system con-

taining multiple variants designed to have disjoint ex-

ploitation sets. Figure 1 illustrates our framework. We

refer to the entire server as an N-variant system. The

system shown is a 2-variant system, but our framework

generalizes to any number of variants. The polygrapher

takes input from the client and copies it to all the vari-

ants. The original server process P is replaced with the

two variants, P0 and P1. The variants maintain the cli-

ent-observable behavior of P on all normal inputs. They

are, however, artificially diversified in a way that makes

them behave differently on abnormal inputs that corre-

spond to an attack of a certain class. The monitor ob-

serves the behavior of the variants to detect divergences

which reveal attacks. When a divergence is detected,

the monitor restarts the variants in known uncompro-

mised states.

As a simple example, suppose P0 and P1 use disjoint

memory spaces such that any absolute memory address

that is valid in P0 is invalid in P1, and vice versa. Since

the variants are transformed to provide the same seman-

tics regardless of the memory space used, the behavior

Server

Input

from
Client

P
0

Polygrapher

P
1

Output
to

Client

Monitor

Figure 1. N-Variant System Framework.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 105

on all normal inputs is identical (assuming deterministic

behavior, which we address in Section 5). However, if

an exploit uses an absolute memory address directly, it

must be an invalid address on one of the two variants.

The monitor can easily detect the illegal memory access

on the other variant since it is detected automatically by

the operating system. When monitoring is done at the

system call level, as in our prototype implementation,

the attack is detected before any external state is modi-

fied or output is returned to the attacker.

The key insight behind our approach is that in order for

an attacker to exploit a vulnerability in P, a pathway

must exist on one of the variants that exploits the vul-

nerability without producing detectably anomalous be-

havior on any of the other variants. If no such pathway

exists, there is no way for the attacker to construct a

successful attack, even if the attacker has complete

knowledge of the variants. Removing the need to keep

secrets means we do not need to be concerned with

probing or guessing attacks, or even with attacks that

take advantage of insider information.

Our key contributions are:

1. Introducing the N-variant systems framework

that uses automated diversity techniques to pro-

vide high assurance security properties without

needing to keep any secrets.

2. Developing a model for reasoning about N-vari-

ant systems including the definition of the nor-

mal equivalence and detection properties used to

prove security properties of an ideal N-variant

system (Section 3).

3. Identifying two example techniques for provid-

ing variation in N-variant systems: the memory

address partitioning technique (introduced

above) that detects attacks that involve absolute

memory references and the instruction tagging

technique that detects attempts to execute in-

jected code (Section 4).

4. Describing a Linux kernel system implementa-

tion and analyzing its performance (Section 5).

In this paper we do not address recovery but consider it

to be a successful outcome when our system transforms

an attack that could compromise privacy and integrity

into an attack that at worst causes a service shutdown

that denies service to legitimate users. It has not es-

caped our attention, however, that examining differ-

ences between the states of the two variants at the point

when an attack is detected provides some intriguing

recovery possibilities. Section 6 speculates on these

opportunities and other possible extensions to our work.

2. Related Work

There has been extensive work done on eliminating

security vulnerabilities and mitigating attacks. Here, we

briefly describe previous work on other types of de-

fenses and automated diversity, and summarize related

work on redundant processing and design diversity

frameworks.

Other defenses. Many of the specific vulnerabilities

we address have well known elimination, mitigation and

disruption techniques. Buffer overflows have been

widely studied and numerous defenses have been devel-

oped including static analysis to detect and eliminate the

vulnerabilities [66, 67, 39, 23], program transformation

and dynamic detection techniques [19, 5, 30, 45, 49, 57]

and hardware modifications [38, 40, 41, 64]. There

have also been several defenses proposed for string

format vulnerabilities [56, 20, 63, 47]. Some of these

techniques can mitigate specific classes of vulnerabili-

ties with less expense and performance overhead than is

required for our approach. Specific defenses, however,

only prevent a limited class of specific vulnerabilities.

Our approach is more general; it can mitigate all attacks

that depend on particular functionality such as injecting

code or accessing absolute addresses.

More general defenses have been proposed for some

attack classes. For example, no execute pages (as pro-

vided by OpenBSD’s W^X and Windows XP Service

Pack 2) prevent many code injection attacks [2], dy-

namic taint analysis tracks information flow to identify

memory corruption attacks [43], and control-flow integ-

rity can detect attacks that corrupt an application to fol-

low invalid execution paths [1]. Although these are

promising approaches, they are limited to particular

attack classes. Our framework is more general in the

sense that we can construct defense against any attacker

capability that can be varied across variants in an

N-variant system.

Automated diversity. Automated diversity applies

transformations to software to increase the difficulty an

attacker will face in exploiting a security vulnerability

in that software. Numerous transformation techniques

have been proposed including rearranging memory [26,

8, 69, 25], randomizing system calls [17], and random-

izing the instruction set [6, 35]. Our work is comple-

mentary to work on producing diversity; we can incor-

porate many different sources of variation as long as

variants are constructed carefully to ensure the disjoint-

Security ’06: 15th USENIX Security Symposium USENIX Association106

edness required by our framework. A major advantage

of the N-variant systems approach is that we do not rely

on secrets for our security properties. This means we

can employ diversification techniques with low entropy,

so long as the transformations are able to produce vari-

ants with disjoint exploitation sets. Holland, Lim, and

Seltzer propose many low entropy diversification tech-

niques including number representations, register sets,

stack direction, and memory layout [31]. In addition,

our approach is not vulnerable to the type of secret-

breaking attacks that have been demonstrated against

secret-based diversity defenses [55, 58, 64].

O’Donnell and Sethu studied techniques for distributing

diversity at the level of different software packages in a

network to mitigate spreading attacks [44]. This can

limit the ability of a worm exploiting a vulnerability

present in only one of the software packages to spread

on a network. Unlike our approach, however, even at

the network level an attacker who discovers vulnerabili-

ties in more than one of the software packages can ex-

ploit each of them independently.

Redundant execution. The idea of using redundant

program executions for various purposes is not a new

one. Architectures involving replicated processes have

been proposed as a means to aid debugging, to provide

fault tolerance, to improve dependability, and more

recently, to harden vulnerable services against attacks.

The earliest work to consider running multiple variants

of a process of which we are aware is Knowlton’s 1968

paper [37] on a variant technique for detecting and lo-

calizing programming errors. It proposed simultane-

ously executing two programs which were logically

equivalent but assembled differently by breaking the

code into fragments, and then reordering the code frag-

ments and data segments with appropriate jump instruc-

tions inserted between code fragments to preserve the

original program semantics. The CPU could run in a

checking mode that would execute both programs in

parallel and verify that they execute semantically

equivalent instructions. The variants they used did not

provide any guarantees, but provided a high probability

of detecting many programming errors such as out-of-

range control transfers and wild memory fetches.

More recently, Berger and Zorn proposed a redundant

execution framework with multiple replicas each with a

different randomized layout of objects within the heap

to provide probabilistic memory safety [7]. Since there

is no guarantee that there will not be references at the

same absolute locations, or reachable through the same

relative offsets, their approach can provide only prob-

abilistic expectations that a memory corruption will be

detected by producing noticeably different behavior on

the variants. Their goals were to enhance reliability and

availability, rather than to detect and resist attacks.

Consequently, when variations diverge in their frame-

work, they allow the agreeing replicas to continue based

on the assumption that the cause of the divergence in

the other replicas was due a memory flaw rather than a

successful attack. Their replication framework only

handles processes whose I/O is through standard in/out,

and only a limited number of system calls are caught in

user space to ensure all replicas see the same values.

Since monitoring is only on the standard output, a com-

promised replica could be successfully performing an

attack and, as long as it does not fill up its standard out

buffer, the monitor would not notice. The key difference

between their approach and ours, is that their approach

is probabilistic whereas our variants are constructed to

guarantee disjointedness with respect to some property,

and thereby can provide guarantees of invulnerability to

particular attack classes. A possible extension to our

work would consider variations providing probabilistic

protection, such as the heap randomization technique

they used, to deal with attack classes for which disjoint-

edness is infeasible.

Redundant processing of the same instruction stream by

multiple processors has been used as a way to provide

fault-tolerance by Stratus [68] and Tandem [32] com-

puters. For example, Integrity S2 used triple redun-

dancy in hardware with three synchronized identical

processors executing the same instructions [32]. A ma-

jority voter selects the majority output from the three

processors, and a vote analyzer compares the outputs to

activate a failure mode when a divergence is detected.

This type of redundancy provides resilience to hardware

faults, but no protection against malicious attacks that

exploit vulnerabilities in the software, which is identical

on all three processors. Slipstream processors are an

interesting variation of this, where two redundant ver-

sions of the instruction stream execute, but instructions

that are dynamically determined to be likely to be un-

necessary are removed from the first stream which exe-

cutes speculatively [60]. The second stream executes

behind the first stream, and the processor detects incon-

sistencies between the two executions. These devia-

tions either indicate false predications about unneces-

sary computations (such as a mispredicted branch) or

hardware faults.

The distributed systems community has used active rep-

lication to achieve fault tolerance [9, 10, 16, 18, 50].

With active replication, all replicas are running the

same software and process the same requests. Unlike

Security ’06: 15th USENIX Security SymposiumUSENIX Association 107

our approach, however, active replication does nothing

to hide design flaws in the software since all replicas are

running the same software. To mitigate this problem,

Schneider and Zhou have suggested proactive diversity,

a technique for periodically randomizing replicas to

justify the assumption that server replicas fail independ-

ently and to limit the window of vulnerability in which

replicas are susceptible to the same exploit [51]. Active

replication and N-variant systems are complementary

approaches. Combining them can provide the benefits

of both approaches with the overhead and costs associ-

ated with either approach independently.

Design diversity frameworks. The name N-variant

systems is inspired by, but fundamentally different from,

the technique known as N-version programming [3, 14].

The N-version programming method uses several inde-

pendent development groups to develop different im-

plementations of the same specification with the hope

that different development groups will produce versions

without common faults. The use of N-version program-

ming to help with system security was proposed by Jo-

seph [33]. He analyzed design diversity as manifest in

N-version programming to see whether it could defeat

certain attacks and developed an analogy between faults

in computing systems that might affect reliability and

vulnerabilities in computer systems that might affect

security. He argued that N-version programming tech-

niques might allow vulnerabilities to be masked. How-

ever, N-version programming provides no guarantee

that the versions produced by different teams will not

have common flaws. Indeed, experiments have shown

that common flaws in implementations do occur [36]. In

our work, program variants are created by mechanical

transformations engineered specifically to differ in par-

ticular ways that enable attack detection. In addition,

our variants are produced mechanically, so the cost of

multiple development teams is avoided.

Three recent projects [46, 62, 28] have explored using

design diversity in architectures similar to the one we

propose here in which the outputs or behaviors of two

diverse implementations of the same service (e.g.,

HTTP servers Apache on Linux and IIS on Windows)

are compared and differences above a set threshold in-

dicate a likely attack. The key difference between those

projects and our work is that whereas they use diverse

available implementations of the same service, we use

techniques to artificially produce specific kinds of

variation. The HACQIT project [34, 46] deployed two

COTS web servers (IIS running on Windows and

Apache running on Linux) in an architecture where a

third computer forwarded all requests to both servers

and compared their responses. A divergence was de-

tected when the HTTP status code differed, hence di-

vergences that caused the servers to modify external

state differently or produce different output pages

would not be detected. The system described by Totel,

Majorczyk, and Mé extended this idea to compare the

actual web page responses of the two servers [62].

Since different servers do not produce exactly the same

output on all non-attack requests because of nondeter-

minism, design differences in the servers, and host-

specific properties, they developed an algorithm that

compares a set of server responses to determine which

divergences are likely to correspond to attacks and

which are benign. The system proposed by Gao, Reiter,

and Song [28] deployed multiple servers in a similar

way, but monitored their behavior using a distance met-

ric that examined the sequence of system calls each

server made to determine when the server behaviors

diverged beyond a threshold amount.

All of these systems use multiple available implementa-

tions of the same service running on isolated machines

and compare the output or aspects of the behavior to

notice when the servers diverged. They differ in their

system architectures and in how divergences are recog-

nized. The primary advantage of our work over these

approaches is the level of assurance automated diversity

and monitoring can provide over design diversity. Be-

cause our system takes advantage of knowing exactly

how the variants differ, we can make security claims

about large attack classes. With design diversity, secu-

rity claims depend on the implementations being suffi-

ciently different to diverge noticeably on the attack (and

functionality claims depend on the behaviors being suf-

ficiently similar not exceed the divergence threshold on

non-attack inputs). In addition, these approaches can be

used only when diverse implementations of the same

service are available. For HTTP servers, this is the case,

but for custom servers the costs of producing a diverse

implementation are prohibitive in most cases. Further,

even though many HTTP servers exist, most advanced

websites take advantages of server-specific functionality

(such as server-side includes provided by Apache), so

would not work on an alternate server. Design diversity

approaches offer the advantage that they may be able to

detect attacks that are at the level of application seman-

tics rather than low-level memory corruption or code

injection attacks that are better detected by artificial

diversity. In Section 6, we consider possible extensions

to our work that would combine both approaches to

provide defenses against both types of attacks.

Security ’06: 15th USENIX Security Symposium USENIX Association108

3. Model

Our goal is to show that for all attacks in a particular

attack class, if one variant is compromised by a given

attack, another variant must exhibit divergent behavior

that is detected by the monitor. To show this, we de-

velop a model of execution for an N-variant system and

define two properties the variant processes must main-

tain to provide a detection guarantee.

We can view an execution as a possibly infinite se-

quence of states: [S0, S1, …]. In an N-variant system, the

state of the system can be represented using a tuple of

the states of the variants (for simplicity, this argument

assumes the polygrapher and monitor are stateless; in

our implementation, they do maintain some state but we

ignore that in this presentation). Hence, an execution of

an N-variant system is a sequence of state-tuples where

St,v represents the state of variant v at step t: [<S0,0, S0,1,

… S0,N-1>, <S1,0, S1,1, … S1,N-1>, …].

Because of the artificial variation, the concrete state of

each variant differs. Each variant has a canonicalization

function, Cv, that maps its state to a canonical state that

matches the corresponding state for the original process.

For example, if the variation alters memory addresses,

the mapping function would need to map the variant’s

altered addresses to canonical addresses. Under normal

execution, at every execution step the canonicalized

states of all variants are identical to the original pro-

gram state:

∀t ≥ 0, 0 ≤ v < N, 0 ≤ w < N:

Cv (St, v) = Cw (St, w) = St.

Each variant has a transition function, Tv, that takes a

state and an input and produces the next state. The

original program, P, also has a transition function, T.

The set of possible transitions can be partitioned into

consistent transitions and aberrant transitions. Consis-

tent transitions take the system from one normal state to

another normal state; aberrant transitions take the sys-

tem from a normal state to a compromised state. An

attack is successful if it produces an aberrant transition

without detection. Our goal is to detect all aberrant tran-

sitions.

We partition possible variant states into three sets: nor-

mal, compromised, and alarm. A variant in a normal

state is behaving as intended. A variant in a compro-

mised state has been successfully compromised by a

malicious attack. A variant in an alarm state is anoma-

lous in a way that is detectable by the monitor. We aim

to guarantee that the N-variant system never enters a

state-tuple that contains one or more variants in com-

prised states without any variants in alarm states. To

establish this we need two properties: normal equiva-

lence and detection.

Normal equivalence. The normal equivalence property

is satisfied if the N-variant system synchronizes the

states of all variants. That is, whenever all variants are

in normal states, they must be in states that correspond

to the same canonical state. For security, it is sufficient

to show the variants remain in equivalent states. For

correctness, we would also like to know the canonical

state of each of the variants is equivalent to the state of

the original process.

We can prove the normal equivalence property stati-

cally using induction:

1. Show that initially all variants are in the same ca-

nonical state: ∀ 0 ≤ v < N: Ci (S0, v) = S0.

2. Show that every normal transition preserves the

equivalence when the system is initially in a normal

state:

∀S ∈ Normal, 0 ≤ v < N, Sv

where Cv (Sv) = S, p ∈ Inputs:

Cv (Tv (Sv, p)) = T (S, p).

Alternatively, we can establish it dynamically by exam-

ining the states of the variants and using the canonicali-

zation function to check the variants are in equivalent

states after every step. In practice, neither a full static

proof nor a complete dynamic comparison is likely to

be feasible for real systems. Instead, we argue that our

implementation provides a limited form of normal

equivalence using a combination of static argument and

limited dynamic comparison, as we discuss in Section 5.

Detection. The detection property guarantees that all

attacks in a certain class will be detected by the

N-variant system as long as the normal equivalence

property is satisfied. To establish the detection property,

we need to know that any input that causes one variant

to enter a compromised state must also cause some

other variant to enter an alarm state. Because of the

normal equivalence property, we can assume the vari-

ants all are in equivalent states before processing this

input. Thus, we need to show:

∀S ∈ Normal, 0 ≤ v < N, Sv where Cv (Sv) = S,

∀p ∈ Inputs:

Tv (Sv, p) ∈ Compromised

∃w such that Tw (Sw, p) ∈ Alarm and Cw (Sw) = S

If the detection property is established, we know that

whenever one of the variants enters a compromised

Security ’06: 15th USENIX Security SymposiumUSENIX Association 109

state, one of the variants must enter an alarm state. An

ideal monitor would instantly detect the alarm state and

prevent all the other variants from continuing. This

would guarantee that the system never operates in a

state in which any variant is compromised.

In practice, building such a monitor is impossible since

we cannot keep the variants perfectly synchronized or

detect alarm states instantly. However, we can approxi-

mate this behavior by delaying any external effects (in-

cluding responses to the client) until all variants have

passed a critical point. This keeps the variants loosely

synchronized, and approximates the behavior of in-

stantly terminating all other variants when one variant

encounters an alarm state. It leaves open the possibility

that a compromised variant could corrupt the state of

other parts of the system (including the monitor and

other variants) before the alarm state is detected. An

implementation must use isolation mechanisms to limit

this possibility.

4. Variations

Our framework works with any diversification tech-

nique that produces variants different enough to provide

detection of a class of attack but similar enough to es-

tablish a normal equivalence property. The variation

used to diversify the variants determines the attack class

the N-variant system can detect. The detection property

is defined by the class of attack we detect, so we will

consider attack classes, such as attacks that involve exe-

cuting injected instructions, rather than vulnerability

classes such as buffer overflow vulnerabilities.

Next, we describe two variations we have implemented:

address space partitioning and instruction set tagging.

We argue (informally) that they satisfy both the normal

equivalence property and the detection condition for

important classes of attacks. The framework is general

enough to support many other possible variations,

which we plan to explore in future work. Other possible

variations that could provide useful security properties

include varying memory organization, file naming,

scheduling, system calls, calling conventions, configura-

tion properties, and the root user id.

4.1 Address Space Partitioning

The Introduction described an example variation where

the address space is partitioned between two variants to

disrupt attacks that rely on absolute addresses. This

simple variation does not prevent all memory corruption

attacks since some attacks depend only on relative ad-

dressing, but it does prevent all memory corruption at-

tacks that involve direct references to absolute ad-

dresses. Several common vulnerabilities including for-

mat string [56, 54], integer overflow, and double-free

[24] may allow an attacker to overwrite an absolute

location in the target’s address space. This opportunity

can be exploited to give an attacker control of a process,

for example, by modifying the Global Offset Table [24]

or the .dtors segment of an ELF executable [48]. Re-

gardless of the vulnerability exploited and the targeted

data structure, if the attack depends on loading or stor-

ing to an absolute address it will be detected by our

partitioning variants. Since the variation alters absolute

addresses, it is necessary that the original program does

not depend on actual memory addresses (for example,

using the value of a pointer directly in a decision). Al-

though it is easy to construct programs that do not sat-

isfy this property, most sensible programs should not

depend on actual memory addresses.

Detection. Suppose P0 only uses addresses whose high

bit is 0 and P1 only uses addresses whose high bit is 1.

We can map the normal state of P0 and P1 to equivalent

states using the identity function for C0 and a function

that flips the high bit of all memory addresses for C1 (to

map onto the actual addresses used by P, more complex

mapping functions may be needed). The transition func-

tions, T0 and T1 are identical; the generated code is what

makes things different since a different address will be

referenced in the generated code for any absolute ad-

dress reference. If an attack involves referencing an

absolute address, the attacker must choose an address

whose high bit is either a 0 or 1. If it is a 0, then P0 may

transition to a compromised state, but P1 will transition

to an alarm state when it attempts to access a memory

address outside P1’s address space. In Unix systems,

this alarm state is detected by the operating system as a

segmentation fault. Conversely, if the attacker chooses

an address whose high bit is 1, P1 may be compromised

but P0 must enter an alarm state. In either case, the

monitor detects the compromise and prevents any ex-

ternal state modifications including output transmission

to the client.

Our detection argument relies on the assumption that

the attacker must construct the entire address directly.

For most scenarios, this assumption is likely to be valid.

For certain vulnerabilities on platforms that are not

byte-aligned, however, it may not be. If the attacker is

able to overwrite an existing address in the program

without overwriting the high bit, the attacker may be

able to construct an address that is valid in both vari-

ants. Similarly, if an attacker can corrupt a value that is

subsequently used with a transformed absolute address

in an address calculation, the detection property is vio-

Security ’06: 15th USENIX Security Symposium USENIX Association110

lated. As with relative attacks, this indirect memory

attacks would not be detected by this variation.

Normal equivalence. We have two options for estab-

lishing the normal equivalence property: we can check

it dynamically using the monitor, or we can prove it

statically by analyzing the variants. A pure dynamic

approach is attractive for security assurance because of

its simplicity but impractical for performance-critical

servers. The monitor would need to implement C0 and

C1 and compute the canonical states of each variant at

the end of each instruction execution. If the states

match, normal equivalence is satisfied. In practice,

however, this approach is likely to be prohibitively ex-

pensive. We can optimize the check by limiting the

comparison to the subset of the execution state that may

have changed and only checking the state after particu-

lar instructions, but the overhead of checking the states

of the variants after every step will still be unacceptable

for most services.

The static approach requires proving that for every pos-

sible normal state, all normal transitions result in

equivalent states on the two variants. This property re-

quires that no instruction in P can distinguish between

the two variants. For example, if there were a condi-

tional jump in P that depended on the high bit of the

address of some variable, P0 and P1 would end up in

different states after executing that instruction. An at-

tacker could take advantage of such an opportunity to

get the variants in different states such that an input that

transitions P0 to a compromised state does not cause P1

to reach an alarm state. For example, if the divergence

is used to put P0 in a state where the next client input

will be passed to a vulnerable string format call, but the

next client input to P1 is processed harmlessly by some

other code, an attacker may be able to successfully

compromise the N-variant system. A divergence could

also occur if some part of the system is nondeterminis-

tic, and the operating environment does not eliminate

this nondeterminism (see Section 5). Finally, if P is

vulnerable to some other class of attack, such as code

injection, an attacker may be able to alter the transition

functions T0 and T1 in a way that allows the memory

corruption attack to be exploited differently on the two

variants to avoid detection (of course, an attacker who

can inject code can already compromise the system in

arbitrary ways).

In practice, it will not usually be possible to completely

establish normal equivalence statically for real systems

but rather we will use a combination of static and dy-

namic arguments, along with assumptions about the

target service. A combination of static and dynamic

techniques for checking equivalence may be able to

provide higher assurance without the overhead neces-

sary for full dynamic equivalence checking. Our proto-

type implementation checks equivalence dynamically at

the level of system calls, but relies on informal static

arguments to establish equivalence between them.

Implementation. To partition the address space, we

vary the location of the application data and code seg-

ments. The memory addresses used by P0 and P1 are

disjoint: any data address that is valid for P0 is invalid

for P1, and vice versa. We use a linker script to create

the two variants. Each variant loads both the code and

data segments of the variants at different starting ad-

dresses from the other variant. To ensure that their sets

of valid data memory addresses are disjoint, we use

ulimit to limit the size of P0’s data segment so it cannot

grow to overlap P1’s address space.

4.2 Instruction Set Tagging

Whereas partitioning the memory address space dis-

rupts a class of memory corruption attacks, partitioning

the instruction set disrupts code injection attacks. There

are several possible ways to partition the instruction set.

One possibility would be to execute the variants on dif-

ferent processors, for example one variant could run on

an x86 and the other on a PowerPC. Establishing the

security of such an approach would be very difficult,

however. To obtain the normal equivalence property we

would need a way of mapping the concrete states of the

different machines to a common state. Worse, to obtain

the detection property, we would need to prove that no

string of bits that corresponds to a successful malicious

attack on one instruction set and a valid instruction se-

quence on the other instruction set. Although it is likely

that most sequences of malicious x86 instructions con-

tain an invalid PowerPC instruction, it is certainly pos-

sible for attackers to design instruction sequences that

are valid on both platforms (although we are not aware

of any programs that do this for the x86 and PowerPC,

Sjoerd Mullender and Robbert van Renesse won the

1984 International Obfuscated C Code Contest with an

entry that replaced main with an array of bytes that was

valid machine code for both the Vax and PDP-11 but

executed differently on each platform [35]).

Instead, we use a single instruction set but prepend a

variant-specific tag to all instructions. The diversifica-

tion transformation takes P and inserts the appropriate

tag bit before each instruction to produce each variant.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 111

Detection. The variation detects any attack that in-

volves executing injected code, as long as the mecha-

nism used to inject code involves injecting complete

instructions. If memory is bit-addressable, an attacker

could overwrite just the part of the instruction after the

tag bit, thereby changing an existing instruction while

preserving the original tag bit. If the attacker can inject

the intended code in memory, and then have the pro-

gram execute code already in the executable that trans-

forms the injected memory (for example, by XORing

each byte with a constant that is different in the two

variants), then it is conceivable that an attacker could

execute an indirect code injection attack where the code

is transformed differently on the two variants before

executing to evade the detection property. For all

known realistic code injection attacks, neither of these

is considered a serious risk.

Normal equivalence. The only difference between the

two variants is the instruction tag, which has no effect

on instruction execution. The variants could diverge,

however, if the program examines its own instructions

and makes decisions that depend on the tag. It is

unlikely that a non-malicious program would do this. As

with the memory partitioning, if the instruction tags are

visible to the executing process an attacker might be

able to make them execute code that depends on the

instruction tags to cause the variants to diverge before

launching the code injection attack on one of the vari-

ants. To prevent this, we need to store the tagged in-

structions in memory that is not readable to the execut-

ing process and remove the tags before those instruc-

tions reach the processor.

Implementation. To implement instruction set tagging,

we use a combination of binary rewriting before execu-

tion and software dynamic translation during execution.

We use Diablo [61, 22], a retargetable binary rewriting

framework, to insert the tags. Diablo provides mecha-

nisms for modifying an x86 binary in ELF format. We

use these to insert the appropriate variant-specific tag

before every instruction. For simplicity, we use a full

byte tag even though a single bit would suffice for two

variants. There is no need to keep the tags secret, just

that they are different; we use 10101010 and 01010101

for the A and B variant tags.

At run-time, the tags are checked and removed before

instructions reach the processor. This is done using

Strata, a software dynamic translation tool [52, 53].

Strata and other software dynamic translators [4, 11]

have demonstrated that it is possible to implement soft-

ware dynamic translation without unreasonable per-

formance penalty. In our experiments (Section 5),

Strata’s overhead is only a few percent. The Strata VM

mediates application execution by examining and trans-

lating instructions before they execute on the host CPU.

Translated instructions are placed in the fragment cache

and then executed directly on the host CPU. Before

switching to the application code, the Strata VM uses

mprotect to protect critical data structures including the

fragment cache from being overwritten by the applica-

tion. At the end of a translated block, Strata appends

trampoline code that will switch execution back to the

Strata VM, passing in the next application PC so that

the next fragment can be translated and execution will

continue. We implement the instruction set tagging by

extending Strata’s instruction fetch module. The modi-

fied instruction fetch module checks that the fetched

instruction has the correct tag for this variant; if it does

not, a security violation is detected and execution ter-

minates. Otherwise, it removes the instruction tag be-

fore placing the actual instruction in the fragment cache.

The code executing on the host processor contains no

tags and can execute normally.

5. Framework Implementation

Implementing an N-variant system involves generating

variants such as those described in Section 4 as well as

implementing the polygrapher and monitor. The trusted

computing base comprises the polygrapher, monitor and

mechanisms used to produce the variants, as well as any

operating system functionality that is common across

the variants. An overriding constraint on our design is

that it be fully automated. Any technique that requires

manual modification of the server to create variants or

application-specific monitoring would impose too large

a deployment burden to be used widely. To enable rapid

development, our implementations are entirely in soft-

ware. Hardware implementations would have security

and performance advantages, especially in monitoring

the instruction tags. Furthermore, placing monitoring as

close as possible to the processor eliminates the risk

that an attacker can exploit a vulnerability in the moni-

toring mechanism to inject instructions between the

enforcement mechanism and the processor.

The design space for N-variant systems implementa-

tions presents a challenging trade-off between isolation

of the variants, polygrapher, and monitor and the need

to keep the variant processes synchronized enough to

establish the normal equivalence property. The other

main design decision is the granularity of the monitor-

ing. Ideally, the complete state of each variant would be

inspected after each instruction. For performance rea-

sons, however, we can only observe aspects of the state

at key execution points. Incomplete monitoring means

Security ’06: 15th USENIX Security Symposium USENIX Association112

that an attacker may be able to exploit a different vul-

nerability in the server to violate the normal equivalence

property, thereby enabling an attack that would have

otherwise been detected to be carried out without detec-

tion. For example, an attacker could exploit a race con-

dition in the server to make the variants diverge in ways

that are not detected by the monitor. Once the variants

have diverged, the attacker can construct an input that

exploits the vulnerability in one variant, but does not

produce the detected alarm state on the other variants

because they started from different states.

In our first proof-of-concept implementation, described

in Section 5.1, we emphasized isolation and executed

the variants on separate machines. This meant that any

nondeterminism in the server program or aspects of the

host state visible to the server program that differed

between the machines could be exploited by an attacker

to cause the processes to diverge and then allow a suc-

cessful attack. It also meant the monitor only observed

the outputs produced by the two variants that would be

sent over the network. This enabled certain attacks to be

detected, but meant a motivated attacker could cause the

states to diverge in ways that were not visible from the

output (such as corrupting server data) but still achieved

the attacker’s goals.

Our experience with this implementation led us to con-

clude that a general N-variant systems framework

needed closer integration of the variant processes to

prevent arbitrary divergences. We developed such a

framework as a kernel modification that allows multiple

variants to run on the same platform and normal equiva-

lence to be established at system call granularity. This

eliminates most causes of nondeterminism and improves

the performance of the overall system. Section 5.2 de-

scribes our Linux kernel implementation, and Section

5.3 presents performance results running Apache vari-

ants on our system.

5.1 Proof-of-Concept Implementation

In our proof-of-concept implementation, the variants are

isolated on separate machines and the polygrapher and

monitor are both implemented by the nvd process run-

ning on its own machine. We used our implementation

to protect both a toy server we constructed and Apache.

In order for our approach to work in practice it is essen-

tial that no manual modification to the server source

code is necessary. Hence, each server variant must exe-

cute in a context where it appears to be interacting nor-

mally with the client. We accomplish this by using di-

vert sockets to give each variant the illusion that it is

interacting directly with a normal client. To implement

the polygrapher we use ipfw, a firewall implementation

for FreeBSD [27] with a rule that redirects packets on

port 80 (HTTP server) to our nvd process which adjusts

the TCP sequence numbers to be consistent with the

variant’s numbering. Instead of sending responses di-

rectly to the client, the variant’s responses are diverted

back to nvd, which buffers the responses from all of the

variants. The responses from P0 are transmitted back to

the client only if a comparably long response is also

received from the other variants. Hence, if any variant

crashes on a client input, the response is never sent to

the client and nvd restarts the server in a known uncom-

promised state.

We tested our system by using it to protect a toy server

we constructed with a simple vulnerability and Apache,

and attempted to compromise those servers using pre-

viously known exploits as well as constructed exploits

designed to attack a particular variant. Exploit testing

does not provide any guarantees of the security of our

system, of course, but it does demonstrate that the cor-

rect behavior happens under the tested conditions to

increase our confidence in our approach and implemen-

tation. Our toy server contained a contrived format

string vulnerability, and we developed an exploit that

used that vulnerability to write to an arbitrary memory

address. The exploit could be customized to work

against either variation, but against the N-variant system

both versions would lead to one of the variants crash-

ing. The monitor detects the crash and prevents com-

promised outputs from reaching the client. We also

tested an Apache server containing a vulnerable

OpenSSL implementation (before 0.9.6e) that contained

a buffer overflow vulnerability that a remote attacker

could exploit to inject code [13]. When instruction set

tagging is used, the exploit is disrupted since it does not

contain the proper instruction tags in the injected code.

We also conducted some performance measurements on

our 2-variant system with memory address partitioning.

The average response latency for HTTP requests in-

creased from 0.2ms for the unmodified server to 2.9ms

for the 2-variant system.

The proof-of-concept implementation validated the N-

variant systems framework concept, but did not provide

a practical or secure implementation for realistic ser-

vices. Due to isolation of the variants, various non-

attack inputs could lead to divergences between the

variants caused by differences between the hosts. For

example, if the output web page includes a time stamp

or host IP address, these would differ between the vari-

ants. This means false positives could occur when the

monitor observes differences between the outputs for

Security ’06: 15th USENIX Security SymposiumUSENIX Association 113

normal requests. Furthermore, a motivated attacker

could take advantage of any of these differences to con-

struct an attack that would compromise one of the vari-

ants without leading to a detected divergence.

5.2 Kernel Implementation

The difficulties in eliminating nondeterminism and pro-

viding finer grain monitoring with the isolated imple-

mentation, as well as its performance results, convinced

us to develop a kernel implementation of the framework

by modifying the Linux 2.6.11 kernel. In this implemen-

tation, all the variants run on the same platform, along

with the polygrapher and monitor. We rely on existing

operating system mechanisms to provide isolation be-

tween the variants, which execute as separate processes.

We modified the kernel data structures to keep track of

variant processes and implemented wrappers around

system calls. These wrappers implement the polygraph-

ing functionality by wrapping input system calls so that

when both variants make the same input system call, the

actual input operation is performed once and the same

data is sent to all variants. They provide the monitoring

functionality by checking that all variants make the

same call with equivalent arguments before making the

actual system call.

This system call sharing approach removes nearly all of

the causes of nondeterminism that were problematic in

the proof-of-concept implementation. By wrapping the

system calls, we ensure that variants receive identical

results from all system calls. The remaining cause of

nondeterminism is due to scheduling differences, in

particular in handling signals. We discuss these limita-

tions in Section 6.

In order to bring an N-variant system into execution we

created two new system calls: n_variant_fork, and

n_variant_execve. The program uses these system calls

similarly to the way a shell uses fork/execve to bring

processes into execution. The n_variant_fork system call

forks off the variants, however instead of creating a

single child process it creates one process per variant.

The variants then proceed to call n_variant_execve,

which will cause each of the variants to execute their

own diversified binary of the server. Note that our ap-

proach requires no modification of an existing binary to

execute it within an N-variant system; we simply invoke

a shell command that takes the pathnames of variant

binaries as parameters and executes n_variant_execve.

Next, we provide details on the system call wrappers

that implement the polygraphing and monitoring. The

Linux 2.6.11 kernel provides 267 system calls. We gen-

eralize them into three categories based on the type of

wrapper they need: shared system calls, reflective sys-

tem calls, and dangerous system calls.

Shared System Calls. For system calls that interact

with external state, including I/O system calls, the

wrapper checks that all variants make equivalent calls,

makes the actual call once, and sends the output to all

variants, copying data into each of the variants address

space if necessary. Figure 2 shows pseudocode for a

shared call, in this case the read system call. The actual

wrappers are generated using a set of preprocessor mac-

ros we developed to avoid duplicating code. The first if

statement checks whether this process is part of an

N-variant system. If not, the system call proceeds nor-

mally. Hence, a single platform can run both normal and

ssize_t sys_read(int fd, const void *buf, size_t count) {
if (!hasSibling (current)) { make system call normally } // not a variant process
else {

record that this variant process entered call
if (!inSystemCall (current->sibling)) { // this variant is first

save parameters
sleep // sibling will wake us up
get result and copy *buf data back into address space
return result;

} else if (currentSystemCall (current->sibling) == SYS_READ) { // this variant is second, sibling waiting
if (parameters match) { // what it means to “match” depends on variation and system call

perform system call
save result and data in kernel buffer
wake up sibling
return result;

} else { DIVERGENCE ERROR! } // sibling used different parameters
} else { DIVERGENCE ERROR! } } } // sibling is in a different system call

Figure 2. Typical shared system call wrapper.

Security ’06: 15th USENIX Security Symposium USENIX Association114

N-variant processes. If the process is a variant process,

it records that it has entered this system call and checks

if its sibling variant has already entered a system call. If

it has not, it saves the parameters and sleeps until the

other variant wakes it up. Otherwise, it checks that the

system call and its parameters match those used by the

first variant to make the system call. If they match, the

actual system call is made. The result is copied into a

kernel buffer, and the sibling variant process (which

reached this system call first and went to sleep) is

awoken. The sibling process copies the result from the

kernel buffer back into its address space and continues

execution.

Reflective System Calls. We consider any system call

that observes or modifies properties of the process itself

a reflective system call. For these calls, we need to en-

sure that all observations always return the same value

regardless of which variant reaches the call first, and

that all modifications to process properties are done

equivalently on all variants. For observation-only re-

flective calls, such as getpid, we check that all variants

make the same call, and then just make the call once for

variant 0 and send the same result to all variants. This is

done using wrappers similar to those for shared system

calls, except instead of just allowing the last variant that

reaches the call to make the actual system call we need

to make sure that each time a reflective call is reached,

it is executed for the same process.

Another issue is raised by the system calls that create

child processes (sys_fork, sys_vfork, and sys_clone).
The wrappers for these calls must coordinate each vari-

ant’s fork and set up all the child processes as a child

N-variant system before any of the children are placed

on the run queue. These system calls return the child

process’ PID. We ensure that all the parents in the

N-variant system get the same PID (the PID of variant

0’s child), as with the process observation system calls.

The other type of reflective system call acts on the

process itself. These system calls often take parameters

given by the reflective observation system calls. In this

case, we make sure they make the same call with the

same parameters, but alter the parameters accordingly

for each variant. For example, sys_wait4 takes a PID as

an input. Each of the variants will call sys_wait4 with

the same PID because they were all given the same

child PID when they called sys_fork (as was required to

maintain normal equivalence). However, each variant

needs to clean up its corresponding child process within

the child system. The wrapper for sys_wait4 modifies

the PID value passed in and makes the appropriate call

for each variant with its corresponding child PID. Simi-

lar issues arise with sys_kill, sys_tkill, and sys_waitpid.

Finally, we have to deal with two system calls that ter-

minate a process: sys_exit and sys_exit_group. A termi-

nating process does not necessarily go through these

system calls, since it may terminate by crashing. To

ensure that we capture all process termination events in

an N-variant system we added a monitor inside the

do_exit function within the kernel which is the last func-

tion all terminating processes execute. This way, if a

process receives a signal and exits without going

through a system call, we will still observe this and can

terminate the other variants.

Dangerous System Calls. Certain calls would allow

processes to break assumptions on which we rely. For

example, if the process uses the execve system to run a

new executable, this will escape the N-variant protec-

tions unless we can ensure that each variant executes a

different executable that is diversified appropriately.

Since it is unlikely we can establish this property, the

execve wrapper just disables the system call and returns

an error code. This did not pose problems for Apache,

but might for other applications.

Other examples of dangerous system calls are those for

memory mapping (old_mmap, sys_mmap2) which map

a portion of a file into a process’ address space. After a

file is mapped into an address space, memory reads and

writes are analogous to reads and writes from the file.

This would allow an attacker to compromise one vari-

ant, and then use the compromised variant to alter the

state of the uncompromised variants through the shared

memory without detection, since no system call is nec-

essary. Since many server applications (including

Apache) use memory mapping, simply blocking these

system calls is not an option. Instead, we place restric-

tions on them to allow only the MAP_ANONYMOUS

and MAP_PRIVATE options with all permissions and to

permit MAP_SHARED mappings as long as write per-

missions are not requested. This eliminates the com-

munication channel between the variants, allowing

memory mapping to be used safely by the variants.

Apache runs even with these restrictions since it does

not use other forms of memory mapping, but other solu-

tions would be needed to support all services.

5.3 Performance

Table 1 summarizes our performance results. We meas-

ured the throughput and latency of our system using

WebBench 5.0 [65], a web server benchmark using a

variety of static web page requests. We ran two sets of

Security ’06: 15th USENIX Security SymposiumUSENIX Association 115

experiments measuring the performance of our Apache

server under unsaturated and saturated load conditions.

In both sets, there was a single 2.2GHz Pentium 4

server machine with 1GB RAM running Fedora Core 3

(2.6.11 kernel) in the six different configurations shown

in Table 1. For the first set of experiences, we used a

single client machine running one WebBench client

engine. For the load experiments, we saturated our

server using six clients each running five WebBench

client engines connected to the same networks switch as

the server.

Configuration 1 is the baseline configuration: regular

apache running on an unmodified kernel. Configuration

2 shows the overhead of the N-variant kernel on a nor-

mal process. In our experiments, it was negligible; this

is unsurprising since the overhead is only a simple com-

parison at the beginning of each wrapped system call.

Configuration 3 is a 2-variant system running in our N-

variant framework where the two variants differ in the

address spaces according to the partitioning scheme

described in Section 4.1. For the unloaded server, the

latency observed by the client increases by 17.6%. For

the loaded server, the throughput decreases by 48% and

the latency nearly doubles compared to the baseline

configuration. Since the N-variant system executes all

computation twice, but all I/O system calls only once,

the overhead incurred reflects the cost of duplicating the

computation, as well as the checking done by the wrap-

pers. The overhead measured for the unloaded server is

fairly low, since the process is primarily I/O bound; for

the loaded server, the process becomes more compute-

bound, and the approximately halving of throughput

reflects the redundant computation required to run two

variants.

The instruction tagging variation is more expensive

because of the added cost of removing and checking the

instruction tags. Configuration 4 shows the performance

of Apache running on the normal kernel under Strata

with no transformation. The overhead imposed by Strata

reduces throughput by about 10%. The Strata overhead

is relatively low because once a code fragment is in the

fragment cache it does not need to be translated again

the next time it executes. Adding the instruction tagging

(Configuration 5) has minimal impact on throughput

and latency. Configuration 6 shows the performance of

a 2-variant system where the variants are running under

Strata with instruction tag variation. The performance

impact is more than it was in Configuration 3 because

of the additional CPU workload imposed by the instruc-

tion tags. For the unloaded server, the latency increases

28% over the baseline configuration; for the saturated

server, the throughput is 37% of the unmodified

server’s throughput.

Our results indicate that for I/O bound services, N-

variant systems where the variation can be achieved

with reasonable performance overhead, especially for

variations such as the address space partitioning where

little additional work is needed at run-time. We antici-

pate there being many other interesting variations of this

type, such as file renaming, local memory rearrange-

ment, system call number diversity, and user id diver-

sity. For CPU-bound services, the overhead of our ap-

proach will remain relatively high since all computation

needs to be performed twice. Multiprocessors may alle-

viate some of the problem (in cases where there is not

enough load to keep the other processors busy nor-

mally). Fortunately, many important services are largely

I/O-bound today and trends in processor and disk per-

formance make this increasingly likely in the future.

6. Discussion

Our prototype implementation illustrates the potential

for N-variant systems to protect vulnerable servers from

important classes of attacks. Many other issues remain

to be explored, including how our approach can be ap-

plied to other services, what variations can be created to

detect other classes of attacks, how an N-variant system

can recover from a detected attack, and how composi-

tions of design and artificially diversified variants can

provide additional security properties.

Configuration 1 2 3 4 5 6

Description

Unmodified

Apache,

unmodified

kernel

Unmodified

Apache,

N-variant

kernel

2-variant

system,

address

partitioning

Apache

running

under

Strata

Apache

with

instruc-

tion tags

2-variant

system,

instruc-

tion tags

Throughput (MB/s) 2.36 2.32 2.04 2.27 2.25 1.80
Unsaturated

Latency (ms) 2.35 2.40 2.77 2.42 2.46 3.02

Throughput (MB/s) 9.70 9.59 5.06 8.54 8.30 3.55
Saturated

Latency (ms) 17.65 17.80 34.20 20.30 20.58 48.30

Table 1. Performance Results.

Security ’06: 15th USENIX Security Symposium USENIX Association116

Applicability. Our prototype kernel implementation

demonstrated the effectiveness of our approach using

Apache as a target application. Although Apache is a

representative server, there are a number of things other

servers might do that would cause problems for our

implementation. The version of Apache used in our

experiments on uses the fork system call to create sepa-

rate processes to handle requests. Each child process is

run as an independent N-variant system. Some servers

use user-level threading libraries where there are multi-

ple threads within a single process invisible to our ker-

nel monitor. This causes problems in an N-variant sys-

tem, since the threads in the variants may interleave

differently to produce different sequences of system

calls (resulting in a false detection), or worse, interleave

in a way that allows an attacker to exploit a race condi-

tion to carry out a successful attack without detection.

One possible solution to this problem is to modify the

thread scheduler to ensure that threads in the variants

are scheduled identically to preserve synchronization

between the variants.

The asynchronous property of process signals makes it

difficult to ensure that all variants receive a signal at the

exact same point in each of their executions. Although

we can ensure that a signal is sent to all the variants at

the same time, we cannot ensure that all the variants are

exactly at the same point within their program at that

time. As a result, the timing of a particular signal could

cause divergent behavior in the variants if the code be-

haves differently depending on the exact point when the

signal is received. This might cause the variants to di-

verge even though they are not under attack, leading to

a false positive detection. As with user-level threads, if

we modify the kernel to provide more control of the

scheduler we could ensure that variants receive signals

at the same execution points.

Another issue that limits application of our approach is

the use of system calls we classified as dangerous such

as execve or unrestricted use of mmap. With our cur-

rent wrappers, a process that uses these calls is termi-

nated since we cannot handle them safely in the N-

variant framework. In some cases, more precise wrap-

pers may allow these dangerous calls to be used safely

in an N-variant system. Some calls, however, are inher-

ently dangerous since they either break isolation be-

tween the variants or allow them to escape the frame-

work. In these situations, either some loss of security

would need to be accepted, or the application would

need to be modified to avoid the dangerous system calls

before it could be run as an N-variant system.

Other variations. The variations we have implemented

only thwart attacks that require accessing absolute

memory addresses or injecting code. For example, our

current instruction tagging variation does not disrupt a

return-to-libc attack (since it does not involve injecting

code), and our address space partitioning variation pro-

vides no protection against memory corruption attacks

that only use relative addressing. One goal for our fu-

ture work is to devise variations that enable detection of

larger classes of attack within the framework we have

developed. We believe there are rich opportunities for

incorporating different kinds of variation in our frame-

work, although the variants must be designed carefully

to ensure the detection and normal equivalence proper-

ties are satisfied. Possibilities include variations involv-

ing memory layout to prevent classes of relative ad-

dressing attacks, file system paths to disrupt attacks that

depend on file names, scheduling to thwart race condi-

tion attacks, and data structure parameters to disrupt

algorithmic complexity attacks [21].

Composition. Because of the need to satisfy the normal

equivalence property, we cannot simply combine multi-

ple variations into two variants to detect the union of

their attack classes. In fact, such a combination risks

compromising the security properties each variation

would provide by itself. By combining variations more

carefully, however, we can compose variants in a way

that maintains the properties of the independent varia-

tions. To do this securely, we must ensure that, for each

attack class we wish to detect, there is a pair of variants

in the system that differs only in the transformation used

to detect that attack class. This is necessary to ensure

that for each variation, there is a pair of variants that

satisfy the normal equivalence property for that varia-

tion but differ in the varied property. This approach can

generalize to compose n binary variations using n + 1

variants. More clever approaches may be able to estab-

lish the orthogonality of certain variations to allow

fewer variants without sacrificing normal equivalence.

Another promising direction is to combine our approach

with design diversity approaches [46, 28, 62]. We could

create a 3-variant system where two variants are Apache

processes running on Linux hosts with controlled ad-

dress space partitioning variation, and the third variant

is a Windows machine running IIS. This would provide

guaranteed detection of a class of low-level memory

attacks through the two controlled variants, as well as

probabilistic detection of attacks that exploit high-level

application semantics through the design variants.

Recovery. Our modified kernel detects an attack when

the system calls made by the variants diverge. At this

Security ’06: 15th USENIX Security SymposiumUSENIX Association 117

point, one variant is in an alarm state (e.g., crashed),

and the other variant is in a possibly compromised state.

After detecting the attack, the monitor needs to restart

the service in an uncompromised state. Note that the

attack is always detected before any system call is exe-

cuted for a compromised process; this means no exter-

nal state has been corrupted. For a stateless server, the

monitor can just restart all of the variants. For a stateful

server, recovery is more difficult. One interesting ap-

proach is to compare the states of the variants after the

attack is detected to determine the valid state. Depend-

ing on the variation used, it may be possible to recover

a known uncompromised state from the state of the

alarm variant, as well as to deduce an attack signature

from the differences between the two variants’ states.

Another approach involves adding an extra recovery

variant that maintains a known uncompromised state

and can be used to restart the other variants after an

attack is detected. The recovery variant could be the

original P, except it would be kept behind the normal

variants. The polygrapher would delay sending input to

the recovery variant until all of the regular variants

process it successfully. This complicates the wrappers

substantially, however, and raises difficult questions

about how far behind the recovery variant should be.

7. Conclusion

Although the cryptography community has developed

techniques for proving security properties of crypto-

graphic protocols, similar levels of assurance for system

security properties remains an elusive goal. System

software is typically too complex to prove it has no vul-

nerabilities, even for small, well-defined classes of vul-

nerabilities such as buffer overflows. Previous tech-

niques for thwarting exploits of vulnerabilities have

used ad hoc arguments and tests to support claimed

security properties. Motivated attackers, however, regu-

larly find ways to successfully attack systems protected

using these techniques [12, 55, 58, 64].

Although many defenses are available for the particular

attacks we address in this paper, the N-variant systems

approach offers the promise of a more formal security

argument against large attack classes and correspond-

ingly higher levels of assurance. If we can prove that the

automated diversity produces variants that satisfy both

the normal equivalence and detection properties against

a particular attack class, we can have a high degree of

confidence that attacks in that class will be detected.

The soundness of the argument depends on correct be-

havior of the polygrapher, monitor, variant generator

and any common resources.

Our framework opens up exciting new opportunities for

diversification approaches, since it eliminates the need

for high entropy variations. By removing the reliance on

keeping secrets and providing an architectural and asso-

ciated proof framework for establishing security proper-

ties, N-variant systems offer potentially substantial

gains in security for high assurance services.

Availability

Our implementation is available as source code from

http://www.nvariant.org. This website also provides de-

tails on the different system call wrappers.

Acknowledgments

We thank Anil Somayaji for extensive comments and

suggestions; Lorenzo Cavallaro for help with the mem-

ory partitioning scripts; Jessica Greer for assistance

setting up our experimental infrastructure; Caroline

Cox, Karsten Nohl, Nate Paul, Jeff Shirley, Nora

Sovarel, Sean Talts, and Jinlin Yang for comments on

the work and writing. This work was supported in part

by grants from the DARPA Self-Regenerative Systems

Program (FA8750-04-2-0246) and the National Science

Foundation through NSF Cybertrust (CNS-0524432).

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and

Jay Ligatti. Control-Flow Integrity: Principles,

Implementations, and Applications. CCS 2005.

[2] Starr Andersen. Changes to Functionality in Mi-

crosoft Windows XP Service Pack 2: Part 3:

Memory Protection Technologies. Microsoft

TechNet. August 2004.

[3] Algirdas Avizienis and L. Chen. On the Imple-

mentation of N-version Programming for Software

Fault-Tolerance During Program Execution. In-

ternational Computer Software and Applications

Conference. 1977.

[4] Vasanth Bala, E. Duesterwald, S. Banerjia. Dy-

namo: A Transparent Dynamic Optimization Sys-

tem. ACM Programming Language Design and

Implementation (PLDI). 2000.

[5] Arash Baratloo, N. Singh, T. Tsai. Transparent

Run-Time Defense against Stack Smashing At-

tacks. USENIX Technical Conference. 2000.

[6] Elena Barrantes, D. Ackley, S. Forrest, T. Palmer,

D. Stefanovic, D. Zovi. Intrusion Detection: Ran-

domized Instruction Set Emulation to Disrupt Bi-

nary Code Injection Attacks. CCS 2003.

[7] Emery Berger and Benjamin Zorn. DieHard:

Probabilistic Memory Safety for Unsafe Lan-

Security ’06: 15th USENIX Security Symposium USENIX Association118

guages. ACM Programming Language Design and

Implementation (PLDI), June 2006.

[8] Sandeep Bhatkar, Daniel DuVarney, and R. Sekar.

Address Ofuscation: an Efficient Approach to

Combat a Broad Range of Memory Error Exploits.

USENIX Security 2003.

[9] Kenneth Birman. Replication and Fault Tolerance

in the ISIS System. 10
th

ACM Symposium on Op-

erating Systems Principles, 1985.

[10] K. Birman, Building Secure and Reliable Network

Applications, Manning Publications, 1996.

[11] Derek Bruening, Timothy Garnett, Saman

Amarasinghe. An Infrastructure for Adaptive Dy-

namic Optimization. International Symposium on

Code Generation and Optimization. 2003.

[12] Bulba and Kil3r. Bypassing StackGuard and

StackShield. Phrack. Vol 0xa Issue 0x38. May

2000. http://www.phrack.org/phrack/56/p56-0x05

[13] CERT. OpenSSL Servers Contain a Buffer Over-

flow During the SSL2 Handshake Process. CERT

Advisory CA-2002-23. July 2002.

[14] L. Chen and Algirdas Avizienis. N-Version Pro-

gramming: A Fault Tolerance Approach to Reli-

ability of Software Operation. 8
th

International

Symposium on Fault-Tolerant Computing. 1978.

[15] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi

Gauriar, R. K. Iyer. Non-Control-Data Attacks

Are Realistic Threats. USENIX Security 2005.

[16] Marc Chérèque, David Powell, Philippe Reynier,

Jean-Luc Richier, and Jacques Voiron. Active

Replication in Delta-4. 22
nd

International Sympo-

sium on Fault-Tolerant Computing. July 1992.

[17] Monica Chew and Dawn Song. Mitigating Buffer

Overflows by Operating System Randomization.

Tech Report CMU-CS-02-197. December 2002.

[18] George Coulouris, Jean Dollimore and Tim Kind-

berg. Distributed Systems: Concepts and Design

(Third Edition). Addison-Wesley. 2001.

[19] Crispin Cowan, C. Pu, D. Maier, H. Hinton, J.

Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,

and Q. Zhang. Stackguard: Automatic Adaptive

Detection and Prevention of Buffer-Overflow At-

tacks. USENIX Security 1998.

[20] C. Cowan, M. Barringer, S. Beattie, G. Kroah-

Hartman, M. Frantzen, and J. Lokier. Format-

Guard: Automatic Protection From printf Format

String Vulnerabilities. USENIX Security 2001.

[21] Scott Crosby and Dan Wallach. Denial of Service

via Algorithmic Complexity Attacks. USENIX Se-

curity 2003.

[22] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, D.

Chanet, K. De Bosschere. Link-time Optimization

of ARM Binaries. Language. Compiler and Tool

Support for Embedded Systems. 2004.

[23] Nurit Dor, M. Rodeh, M. Sagiv. CSSV: Towards a

Realistic Tool for Statically Detecting All Buffer

Overflows in C. ACM Programming Language

Design and Implementation. June 2003.

[24] Jon Erickson. Hacking: The Art of Exploitation.

No Starch Press. November 2003,

[25] Hiroaki Etoh. GCC extension for protecting appli-

cations from stack-smashing attacks. IBM, 2004.

http://www.trl.ibm.com/projects/security/ssp

[26] Stephanie Forrest, Anil Somayaji, David Ackley.

Building diverse computer systems. 6
th

Workshop

on Hot Topics in Operating Systems. 1997.

[27] The FreeBSD Documentation Project. FreeBSD

Handbook, Chapter 24. 2005.

[28] Debin Gao, Michael Reiter, Dawn Song. Behav-

ioral Distance for Intrusion Detection. 8
th

Interna-

tional Symposium on Recent Advances in Intru-

sion Detection. September 2005.

[29] Daniel Geer, C. Pfleeger, B. Schneier, J. Quarter-

man, P. Metzger, R. Bace, P. Gutmann. Cyberin-

security: The Cost of Monopoly. CCIA Technical

Report, 2003.

[30] Eric Haugh and Matt Bishop. Testing C programs

for buffer overflow vulnerabilities. NDSS 2003.

[31] David Holland, Ada Lim, and Margo Seltzer. An

Architecture A Day Keeps the Hacker Away.

Workshop on Architectural Support for Security

and Anti-Virus. April 2004.

[32] D. Jewett. Integrity S2: A Fault-Tolerant Unix

Platform. 17
th

International Symposium on Fault-

Tolerant Computing Systems. June 1991.

[33] Mark K. Joseph. Architectural Issues in Fault-

Tolerant, Secure Computing Systems. Ph.D. Dis-

sertation. UCLA Department of Computer Sci-

ence, 1988.

[34] James Just, J. Reynolds, L. Clough, M. Danforth,

K. Levitt, R. Maglich, J. Rowe. Learning Un-

known Attacks – A Start. Recent Advances in In-

trusion Detection. Oct 2002.

[35] Gaurav Kc, A. Keromytis, V. Prevelakis. Counter-

ing Code-injection Attacks with Instruction Set

Randomization. CCS 2003.

[36] John Knight and N. Leveson. An Experimental

Evaluation of the Assumption of Independence in

Multi-version Programming. IEEE Transactions

on Software Engineering, Vol 12, No 1. Jan 1986.

[37] Ken Knowlton. A Combination Hardware-

Software Debugging System. IEEE Transactions

on Computers. Vol 17, No 1. January 1968.

[38] Benjamin Kuperman, C. Brodley, H. Oz-

doganoglu, T. Vijaykumar, A. Jalote. Detection

and Prevention of Stack Buffer Overflow Attacks.

Communications of the ACM, Nov 2005.

Security ’06: 15th USENIX Security SymposiumUSENIX Association 119

[39] David Larochelle and David Evans. Statically De-

tecting Likely Buffer Overflow Vulnerabilities.

USENIX Security 2001.

[40] Ruby Lee, D. Karig, J. McGregor, and Z. Shi.

Enlisting Hardware Architecture to Thwart Mali-

cious Code Injection. International Conference on

Security in Pervasive Computing. March 2003.

[41] John McGregor, David Karig, Zhijie Shi, and

Ruby Lee. A Processor Architecture Defense

against Buffer Overflow Attacks. IEEE Interna-

tional Conference on Information Technology:

Research and Education. August 2003.

[42] Sjoerd Mullender and Robbert van Renesse. The

International Obfuscated C Code Contest Entry.

1984. http://www1.us.ioccc.org/1984/mullender.c

[43] James Newsome and Dawn Song. Dynamic Taint

Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity

Software. NDSS 2005.

[44] Adam J. O’Donnell and H. Sethu. On Achieving

Software Diversity for Improved Network Security

using Distributed Coloring Algorithms. CCS 2004.

[45] Manish Prasad and T. Chiueh. A Binary Rewriting

Defense against Stack-Based Buffer Overflow At-

tacks. USENIX Technical Conference. June 2003.

[46] James Reynolds, J. Just, E. Lawson, L. Clough, R.

Maglich, K. Levitt. The Design and Implementa-

tion of an Intrusion Tolerant System. Foundations

of Intrusion Tolerant Systems (OASIS). 2003.

[47] Michael Ringenburg and Dan Grossman. Prevent-

ing Format-String Attacks via Automatic and Effi-

cient Dynamic Checking. CCS 2005.

[48] Juan Rivas. Overwriting the .dtors Section. Dec

2000. http://synnergy.net/downloads/papers/dtors.txt

[49] Olatunji Ruwase and Monica S. Lam. A Practical

Dynamic Buffer Overflow Detector. NDSS 2004.

[50] Fred Schneider. Implementing Fault-Tolerant Ser-

vices Using the State Machine Approach: A Tuto-

rial. ACM Computing Surveys. Dec 1990.

[51] Fred Schneider and L. Zhou. Distributed Trust:

Supporting Fault-Tolerance and Attack-

Tolerance, Cornell TR 2004-1924, January 2004.

[52] Kevin Scott and Jack W. Davidson. Safe Virtual

Execution Using Software Dynamic Translation.

ACSAC. December 2002.

[53] Kevin Scott, N. Kumar, S. Velusamy, B. Childers,

J. Davidson, M. L. Soffa. Retargetable and Recon-

figurable Software Dynamic Translation. Interna-

tional Symposium on Code Generation and Opti-

mization. March 2003.

[54] Scut / team teso. Exploiting Format String Vul-

nerabilities. March 2001.

[55] Hovav Shacham, M. Page, B. Pfaff, Eu-Jin Goh,

N. Modadugu, Dan Boneh. On the effectiveness of

address-space randomization. CCS 2004.

[56] Umesh Shankar, K. Talwar, J. Foster, D. Wagner.

Detecting Format String Vulnerabilities with Type

Qualifiers. USENIX Security 2001.

[57] Stelios Sidiroglou, G. Giovanidis, A. Keromytis.

A Dynamic Mechanism for Recovering from

Buffer Overflow Attacks. 8
th

Information Security

Conference. September 2005.

[58] Ana Nora Sovarel, David Evans, Nathanael Paul.

Where’s the FEEB?: The Effectiveness of Instruc-

tion Set Randomization. USENIX Security 2005.

[59] Mark Stamp. Risks of Monoculture. Communica-

tions of the ACM. Vol 47, Number 3. March 2004.

[60] Karthik Sundaramoorthy, Z. Purser, E. Rotenberg.

Slipstream Processors: Improving both Perform-

ance and Fault Tolerance. Architectural Support

for Programming Languages and Operating Sys-

tems (ASPLOS). Nov 2000.

[61] Bjorn De Sutter and Koen De Bosschere. Intro-

duction: Software techniques for Program Com-

paction. Communications of the ACM. Vol 46, No

8. Aug 2003.

[62] Eric Totel, Frédéric Majorczyk, Ludovic Mé.

COTS Diversity Intrusion Detection and Applica-

tion to Web Servers. Recent Advances in Intrusion

Detection. September 2005.

[63] Timothy Tsai and Navjot Singh. Libsafe 2.0: De-

tection of Format String Vulnerability Exploits.

Avaya Labs White Paper. February 2001.

[64] Nathan Tuck, B. Calder, and G. Varghese. Hard-

ware and Binary Modification Support for Code

Pointer Protection from Buffer Overflow. Interna-

tional Symposium on Microarchitecture. Dec

2004.

[65] VeriTest Corporation. WebBench 5.0.

http://www.veritest.com/benchmarks/webbench

[66] John Viega, J. Bloch, T. Kohno, Gary McGraw.

ITS4 : A Static Vulnerability Scanner for C and

C++ Code. ACSAC. Dec 2000.

[67] David Wagner, J. Foster, E. Brewer, A. Aiken. A

First Step Towards Automated Detection of Buffer

Overrun Vulnerabilities. NDSS 2000.

[68] D. Wilson. The STRATUS Computer System.

Resilient Computer Systems: Volume 1. John

Wiley and Sons, 1986. p. 208-231.

[69] Jun Xu, Z. Kalbarczyk, R. Iyer. Transparent Run-

time Randomization for Security. Symposium on

Reliable and Distributed Systems. October 2003.

[70] Yongguang Zhang, H. Vin, L. Alvisi, W. Lee, S.

Dao. Heterogeneous Networking: a New

Survivability Paradigm. New Security Paradigms

Workshop 2001.

Security ’06: 15th USENIX Security Symposium USENIX Association120

