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Abstract 

This paper describes WSDLite, a thin software layer 
that maps a useful subset of the WinSock2 API onto a 
system area network.  The development of WSDLite 
was motivated by our experience with an early version 
of Windows Sockets Direct Path (WSDP).  WSDP was 
developed by Microsoft to allow unmodified network 
applications to exploit the performance and reliability 
advantages of System Area Networks (SANs).  This is 
accomplished through the use of a software “switch” 
that, when appropriate, redirects message traffic 
through the SAN provider protocol stack instead of the 
standard TCP/IP protocol stack. In addition to the 
performance advantages, the WSDP architecture offers 
several other benefits, including automatic support for 
legacy code, a single well-known API for supporting 
many different underlying SAN network protocols, and 
substantially simpler buffer management than that 
required by the native SAN API. The beta version of 
WSDP that we examined did not perform as well as 
expected, achieving only 26% of the native SAN 
throughput on the system studied. In an effort to 
determine whether or not this performance difference 
was intrinsic, we developed WSDLite, a simple 
alternative to WSDP.  WSDLite is a user-level runtime 
library that implements a small but commonly used 
subset of the WinSock2 API. For those applications that 
do not require full WinSock2 functionality, WSDLite 
provides both the transparency of WSDP and much of 
the performance benefit of the underlying SAN 
architecture.  In low-level network tests, WSDLite 
achieves an average of 70% of the native SAN 
performance.  In this paper we describe the design of 
WSDLite, and present results comparing the 
performance of both parallel applications and low-level 
benchmarks using WSDLite, WSDP, TCP, and a native 
SAN programming library API as the network 
programming layer.   

1. Introduction 

System area networks (SANs) are characterized by 
high bandwidth; low latency (on the order of 10µsec or 
less for zero-length messages); a switched network 
environment; reliable transport service implemented 
directly in hardware; no kernel intervention to send and 
receive messages; and little or no copying on either the 
sending or receiving side.  SANs may be used for 
enterprise applications such as databases, web servers, 
reservation systems, and small to medium scale parallel 
computing environments.   

 
System area networks have not yet enjoyed wide 

adoption, in part because of the difficulty associated 
with writing applications to take advantage of network 
programming libraries that generally ship with SAN 
hardware. In order to provide low latency, zero or 
single-copy messaging between nodes in a SAN, 
programmers must address a variety of buffer 
management and flow control issues not typically 
associated with TCP/IP-style network programming.  
These issues stem primarily from the use of DMA 
between the network interface card and the host 
memory, a process that allows system area networks to 
provide orders-of-magnitude lower latencies and lower 
processor utilizations than previous network 
architectures and protocols.  Addressing these 
requirements can represent a significant burden, not 
only to programmers developing new applications, but 
also to those who wish to obtain the benefits of system 
area networks for the many millions of lines of existing 
network application code. 

 
To address these concerns, Microsoft, working with 

SAN implementers, has developed an alternative that 
will allow network applications to obtain many of the 
performance benefits associated with system area 
networks while retaining the familiar programming 
interface of Berkeley-style sockets in the WinSock2 
API.  This technology, called Windows Sockets Direct 



Path (WSDP) [4], fits immediately below the network 
application and routes network communication calls to 
either the standard TCP/IP protocol stack or to the 
WinSock SAN Provider stack, which utilizes the SAN’s 
native network communication mechanism to achieve 
low latency, high throughput messaging.  One of the 
principal benefits of WSDP is that existing WinSock2-
compliant applications do not have to be rewritten, or 
even recompiled.  Currently, WSDP is restricted to use 
with the Data Center version of the Windows 2000 
operating system.  

 
WSDP necessarily implements the entire WinSock2 

API, and as a result, incurs overhead costs associated 
with providing full functionality.  In the beta version of 
WSDP that we have examined, this overhead is quite 
substantial.  While we expect release versions of WSDP 
software to exhibit better performance than the current 
beta version, we also believe that there are attractive 
design alternatives for those applications that do not 
require full WinSock2 functionality.  This paper 
explores one such alternative. 

 
We have implemented WSDLite, a protocol layer 

that implements a subset of the WinSock2 API on top 
of the raw programming interface provided by the 
GigaNet cLAN implementation of the  Virtual Interface 
Architecture (VIA) [3].  The VI Architecture is the 
proposed standard for user-level networks developed by 
Microsoft, Compaq, and Intel. The cLAN architecture 
provides 9µsec latency for zero-byte messages in our 
system area network environment when using the VI 
Programming Library (VIPL) API.  WSDLite, similar 
to WSDP, allows programs written to use TCP/IP to 
obtain the performance benefits associated with an 
underlying network architecture that supports VIA.  We 
make use of the Detours [9] binary rewriting software 
package to intercept the TCP calls implemented by 
WSDLite and route them to the WSDLite 
implementation of these functions, while forwarding 
TCP calls not implemented within WSDLite to the 
standard WinSock2 protocol stack. Detours allows us to 
run Winsock2-compilaint applications without 
recompilation. Unlike WSDP, however, WSDLite only 
implements a subset (approximately 10%) of WinSock2 
functions. The functions implemented were chosen 
based upon their common use in a variety of software 
available at our site.  A lighter-weight protocol layer 
such as WSDLite can provide substantial performance 
benefit relative to full-functioned protocol layers for 
applications that do not need the full TCP/IP 
functionality provided by WSDP.  Additionally, 
WSDLite can be used on any Windows NT or 
Windows 2000 system for which VIA support is 
available; it is not restricted to Windows 2000 Data 
Center.  We have successfully tested WSDLite on 

clusters comprised of Windows NT 4.0 workstations 
and servers, Windows 2000 Professional Workstations, 
and Windows 2000 Data Center Servers.  Simple 
network latency tests show WSDLite to be an average 
of 59% faster than the beta WSDP implementation 
across all message sizes up to 32 Kbytes. 

 
We examine the performance of WSDLite using 

several network benchmark programs. First, we 
compare the performance of a series of low-level 
benchmarks with (1) TCP/IP using WinSock only, (2) 
TCP/IP using WSDP, (3) TCP/IP using WSDLite, and 
(4) a version written to use the native VIPL API.  For 
each of the low-level benchmarks, we report roundtrip 
latency and network throughput.  We also report 
processor utilization, as well as throughput per CPU 
second, which brings into focus the tradeoff between 
network and application performance.  We next 
examine the overhead associated with the use of the 
Detours [9] library to provide Winsock2 transparency.  
Finally, we use the same four network layer 
implementations as the messaging layer for the Brazos 
Parallel Programming Library. By running a set of 
parallel applications utilizing Brazos, we can evaluate 
the performance of each network alternative on real 
applications.   

 
The rest of this paper is organized as follows.  

Section 2 provides a brief overview of the Virtual 
Interface Architecture in order to provide the context 
for the discussion of Windows Sockets Direct Path in 
Section 3.  Section 4 describes the design and 
implementation of  WSDLite.  In Section 5 we report 
the results of our experimental comparison of WSDLite 
and WSDP.  Related work is described in Section 6.  
We conclude and discuss future work in Section 7. 

2. Overview of the VI Architecture  

Although Windows Sockets Direct Path is designed 
to work with a variety of system area network 
architectures, we are only aware of current WSDP 
support in the context of the Virtual Interface 
Architecture.  In this section, we present an overview of 
the VI Architecture as implemented on the GigaNet 
cLAN GNN1000 network interface card. 

 
Figure 1 depicts the organization of the Virtual 

Interface Architecture.  The VI Architecture is 
comprised of four basic components: Virtual Interfaces, 
Completion Queues, VI Providers, and VI Consumers. 
The VI Provider consists of the VI Network Adapter 
and a Kernel Agent device driver. The VI Consumer is 
composed of an application program and an operating 
system communication facility such as MPI or sockets, 
although some “VI -aware” applications communicate 



directly with the VI Provider API. After connection 
setup by the Kernel Agent, all network actions occur 
without kernel intervention.  This results in 
significantly lower latencies than network protocols 
such as TCP/IP.  Traps into kernel mode are only 
required for creation/destruction of VI’s, VI connection 
setup and teardown, interrupt processing, registration of 
system memory used by the VI NIC, and error 
handling. VI Consumers access the Kernel Agent using 
standard operating system mechanisms.  

A VI consists of a Send Queue and a Receive 
Queue. VI Consumers post requests (Descriptors) on 
these queues to send or receive data.  Descriptors 
contain all of the information that the VI Provider needs 
to process the request, including pointers to data 
buffers. VI Providers asynchronously process the 
posted Descriptors and mark them when completed. VI 
Consumers remove completed Descriptors from the 
Send and Receive Queues and reuse them for 
subsequent requests.  Both the Send and Receive 
Queues have an associated “Doorbell” that is used to 
notify the VI network adapter that a new Descriptor has 
been posted to either the Send or Receive Queue. The 
Doorbell is directly implemented on the VI Network 
Adapter and no kernel intervention is required to 
perform this signaling.  The Completion Queue allows 
the VI Consumer to combine the notification of 
Descriptor completions of multiple VI’s without 
requiring an interrupt or kernel call.  

2.1. Memory Registration 

In order to eliminate the copying between kernel 
and user buffers that accounts for a large portion of the 

overhead associated with traditional network protocol 
stacks, the VI Architecture requires the VI Consumer to 
register all send and receive memory buffers with the 
VI Provider.  This registration process locks down the 
appropriate pages in memory, which allows for direct 
DMA operations into user memory by the VI hardware, 
without the possibility of an intervening page fault.   
After locking the buffer memory pages in physical 
memory, the virtual to physical mapping and an opaque 
handle for each memory region registered are provided 

to the VI Adapter.  Memory registration allows the VI 
Consumer to reuse registered memory buffers, thereby 
avoiding duplication of locking and translation 
operations.  Memory registration also takes page-
locking overhead out of the performance-critical data 
transfer path.  

2.2. Data Transfer Modes 

The VI Architecture provides two different modes 
of data transfer: traditional send and receive semantics, 
and direct reads and writes to and from the memory of 
remote machines.  Remote data reads and writes 
provide a mechanism for a process to send data to 
another node or retrieve data from another node, 
without any action on the part of the remote node (other 
than VI connection).  The send/receive model of the VI 
Architecture follows the common approach to 
transferring data between two endpoints, except that all 
send and receive operations complete asynchronously.  
The VI Consumers on both the sending and receiving 
nodes specify the location of the data. On the sending 
side, the sending process specifies the memory regions 
that contain the data to be sent. On the receiving side, 
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Figure 1. Block Diagram of the Virtual Interface Architecture 



the receiving process specifies the memory regions 
where the data will be placed.  The VI Consumer at the 
receiving end must post a Descriptor to the Receive 
Queue of a VI before the data is sent. The VI Consumer 
at the sending end can then post the message to the 
corresponding VI’s Send Queue.  

 
Remote DMA transfers occur using the same 

descriptors used in send/receive style communication, 
with the memory handle and virtual address of the 
remote memory specified in a second data segment of 
the descriptor.  VIA-compliant implementations are 
required to support remote write, but remote read 
capability is an optional feature of the VIA 
Specification.  The GigaNet cLAN architecture only 
provides for remote writes. 

 

3. Windows Sockets Direct Path 

Windows Sockets Direct Path (WSDP) allows 
programs written for TCP/IP to transparently realize the 
performance advantages of user-level networks such as 
VIA.  Programs developed to the WinSock2 API do not 

have to be rewritten to take advantage of changes in 
underlying network architecture to a SAN, nor is 
recompilation of these programs necessary.  This 
enables legacy network code to work “out of the box” 
and enjoy at least some benefit of the low message 
latency associated with SANs.  Although WSDP is 
designed to work with a variety of low-latency SAN 
architectures, we restrict our discussion here to how 
WSDP interacts with the cLAN VIA architecture 
described in Section 2.   

WSDP removes many of the pedantic tasks that 
must be addressed by programs that directly access the 
VIPL API.  These include memory registration, certain 
aspects of buffer management, and the effort required 
to port and recompile a sockets-compliant application 
to use the VIPL API.  In the following sections we 
describe the basic technology associated with WSDP as 
well as some programming considerations that must be 
addressed to use WSDP effectively. 

 
Figure 2 depicts a block diagram of the WSDP 

architecture. The key component of the WSDP 
architecture is the software switch, which is responsible 
for routing network operations initiated by WinSock2 
API calls to either the standard TCP/IP protocol stack, 
or to the vendor-supplied SAN WS Provider. In 
addition to providing access to both of these pathways 
to the network on an operation-by-operation basis, the 
switch provides several important functions through the 
use of a lightweight session executed on top of the SAN 
provider.  This session provides OOB (out of band) 
support, flow control, and support for the select 
operation.  None of these mechanisms are traditionally 
provided by a typical SAN architecture.  There are 

several operations that require the support of the 
TCP/IP protocol stack (i.e., do not use WSDP), 
including: 

 
• Connections to remote subnets. 
• Socket creation. 
• Raw sockets and UDP sockets - Because SANs 

support connection-oriented reliable 
communication, all connectionless and 
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uncontrolled communication must be handled by 
the TCP/IP protocol stack.  This limits the 
applicability of WSDP to those applications that 
(a) use TCP, and (b) do not make use of group 
communication.  

 
In addition to these restrictions on the use of WSDP, 

system calls are required to complete most overlapped 
I/O calls, increasing the latency of these calls due to 
induced operating system overhead. 

 
The switch component is also responsible for taking 

care of several programming details that usually must 
be addressed by the programmer writing directly to the 
programming library supplied with SANs.  A brief 
discussion of these details follows: 

 
• Buffer regis tration – As discussed in Section 2.1, 

buffer space used for messaging must be 
registered with a SAN provider in order to allow 
direct DMA into and out of host memory by the 
NIC. However, there is no provision for this 
functionality in the WinSock2 specification, as the 
operating system handles message buffering 
through copying in a standard WinSock 
environment.  Therefore, the switch component is 
responsible for ensuring that all buffer regions 
used for communication are registered with the 
SAN provider prior to use.  

 
• Buffer placement – Another issue relating to the 

management of buffers in a system area network 
requires there to be a buffer posted to a network 
endpoint prior to receipt of an incoming message.  
This is again related to the use of DMA between 
the network interface card and the host memory 
and the lack of flow control associated with SAN 
NICs.  The switch software pre-posts small 
buffers to each connection opened through the 
WS SAN Provider in order to handle incoming 
messages.  

 
• Support for RDMA – Most system area network 

include support for remote memory operations, 
allowing a host node to directly write and/or read 
data directly from a remote node’s address space.  
No such API exists in the WinSock2 
specification. WSDP makes use of the remote 
write capability of the cLAN architecture in a 
manner similar to that of WSDLite, as discussed 
in the next section. 

 

4. WSDLite 

WSDLite implements approximately 10% of the 
WinSock2 API.  The following functions are currently 
implemented by WSDLite: WSAStartup(), 
WSACleanup() , WSASocket() , socket() , connect(), 
listen(), accept(), bind(), send() , WSASend(), recv(), 
WSARecv() , select(), closesocket(), and 
WSAGetLastError().  
 

When an application calls a function supported by 
WSDLite, the function call is intercepted by the 
Detours [9] runtime library and redirected to the version 
of the function implemented by WSDLite. In order to 
leverage functionality existing in the WinSock TCP/IP 
protocol stack that is not directly related to messaging 
performance (such as connection procedures and name 
resolution), some of the WSDLite functions make calls 
to their WinSock counterparts from within the 
WSDLite library.  For instance, during connection 
procedures, the WSDLite implementation of bind() 
calls the WinSock2 version of bind() internally to 
check for errors such as two sockets being bound to the 
same port.  In fact, WSDLite duplicates the entire 
connection process internally on the default TCP/IP 
protocol stack in order to catch such errors, greatly 
reducing the code size of the WSDLite implementation.  

 

4.1. Sending Data in WSDLite  

When a message is to be sent on a connected pair of 
sockets, the WSDLite implementation of WSASend()  
or send() first must register the buffer containing the 
data to be sent, if it is not already registered with the 
cLAN NIC.   

 

Memory Registration Issues 
Registering memory is an expensive operation for 

two reasons.  First, registering and deregistering 
memory on each network access would add 
unacceptable latency to network operations, especially 
for small messages. We measured the cost of 
registering memory for buffer sizes up to 32 Kbytes, 
and found that it takes roughly 15 µsec to register and 
deregister a region of memory with the VI Provider, 
regardless of buffer size.  This time increases linearly 
with buffer size after the size exceeds the 64K segment 
size used by the NT virtual memory manager.  To 
address this issue, WSDLite maintains a hash table of 
address ranges that have been used as messaging 
buffers previously, and this table is consulted before a 
message can be sent.  There are three possible outcomes 
from the initial hash table lookup: 



 
1. The address has previously been registered, 

and the size registered is equal or larger than 
the size of the buffer currently posted.  No 
other action is required. 

2. The address has been previously registered, 
but the size of the region registered does not 
encompass the entire buffer currently posted.  
The currently registered region must be 
deregistered with the NIC and the new region 
registered.   

3. The address has not been previously 
registered, and WSDLite must register the 
entire buffer. 

 
To reduce the amount of registering that must be 

performed by WSDLite, it is important for application 
programmers to reuse buffers as much as possible. 

 
The second source of overhead associated with 

memory registration results from the fact that a part of 
the memory registration process involves pinning 
messaging buffers into physical memory, which may 
reduce the resources available for applications. To 
address this problem, WSDLite employs a simple 
garbage collection scheme based on timestamps to 
reclaim unused message buffer space before the amount 
of pinned RAM impacts application performance.   

Choosing the Correct Send Semantic 
We have found that minimum latency for messages 

may be obtained in one of two ways, depending on the 
size of the message.  For small messages, the best 
performance is achieved by copying data out of 
temporary receive buffers into the application buffers 
posted by the corresponding receive operation. For 
larger messages, lower latency can be achieved by 
taking advantage of VIA’s RDMA capability.  When a 
large message is to be sent, the sending process first 
sends a setup message to the receiver.  This message 
contains the length of the message to be sent.  The 
receiver registers the memory region to be received into 
(if it is not already available), and then returns the 
virtual address and memory region handle to the 
sending process.  The sending process then remote-
writes the data directly into the address space of the 
receiving process, and sends a completion message 
containing the size of the message written to the 
receiver when the operation has completed.   

 
The message size at which WSDLite switches from 

memory copying to RDMA depends on the speed of the 
host processors, the efficiency of the memory 
hierarchy, and the latency of network operations.   
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Figure 3. Bandwidth Crossover Point 

 
The crossover point can be clearly seen in Figure 3, 

which shows the sustainable bandwidth of WSDLite 
when copying is always used regardless of message size 
(labeled memcpy() ), and when RDMA is always used.  
In the case of our system, the crossover point occurs 
between 8K and 16K. More precise measure ments 
pinpoint it at 11.9 Kbytes.  In general, if copying a 
memory region of size n takes less time than the two 
additional small messages necessary for the RDMA 
transfer, memory copying will achieve better 
performance.  Because this value is likely to be 
different on different machines, WSDLite attempts to 
automatically determine the optimum value for this 
cutoff the very first time a socket is created.  When the 
first socket on a machine is created, a small test is run 
that measures the time to copy regions of memory of 
varying sizes.  When a connection is first made to a 
remote machine, a test to determine the latency of 
message sizes corresponding to the setup and 
acknowledgement messages required for RDMA 
transfer is also run.  The cutoff point for this  particular 
machine can then be determined, and this value is 
stored in a registry entry that is consulted each time an 
application makes a connection through WSDLite to a 
specific remote machine. This step only occurs once 
during the connection to a remote machine.  Subsequent 
network programs that connect to the remote machine 
can simply retrieve the cutoff value from the registry 
based on the remote machine to which the connection is 
being made. The registry value may be deleted by an 
administrator at any time to force a recalculation of this 
parameter, or overridden manually.  



4.2. Choice of WSDLite Functions  

Finally, we conclude this section with a brief 
discussion on the functions that we chose to implement 
in WSDLite.  We implemented only those calls that 
provide the network functionality required by our suite 
of network programs used for this evaluation. We 
believe these to be representative of a larger class of 
network applications that only use basic TCP 
functionality.  By keeping the number of functions 
small, and the implementation thin, we are able to 
realize a high percentage of the performance available 
from the SAN. Many other WinSock2 functions could 
easily be added to the WSDLite implementation by 
using our initial functions as a starting point.  The 
downside to our strictly user-level approach is that a 
different version of WSDLite must be used for each 
SAN network programming library.  However, 
precisely because we have kept the number of functions 
both small and basic, this is not a difficult thing to do.  
The approach taken by WSDP, on the other hand, is one 
of providing full functionality regardless of the 
underlying SAN network.  This implies that 1) many 
functions, whose implementations may not easily map 
to the SAN programming API, will have high overhead; 
and 2) another level of indirection must exist between 
the switch software provided by Microsoft and the 
hardware vendor-provided SAN layer.  These two 
observations necessitate an implementation with higher 
overhead than a simple user-level library such as 
WSDLite. Therefore, WSDLite is proposed as a 
performance alternative to WSDP in certain situations, 
not a replacement for applications requiring full TCP 
functionality.  

5. Experimental Results 

In this section we begin by describing our 
experimental platform. We then present results 
comparing several important low-level network 
performance measurements run under WSDP, 
WSDLite, TCP, and VIPL on two uniprocessor nodes.  
Next, we discuss these same measurements when SMP 
nodes are used. Finally, we conclude the section with 
results showing the performance of four scientific 
parallel applications using the four network layer 
alternatives when run on a larger cluster of SMP 
servers. 

5.1. SAN Configuration 

All experiments were performed using a cluster of 
Compaq Proliant 6400 servers running the Beta 2 
release of Windows 2000 Data Center Server, build 
2195.  Each machine contains one to four 500 Mhz 
Pentium-III processors, 512 Mbytes of SDRAM, and 

dual 64-bit PCI busses running at 66 Mhz.  The 
interconnection network is implemented with a single 
GigaNet GNN1000 NIC in each machine connected via 
a GNX5000 switch. The switch cut-through latency is 
580 ns.  The unidirectional latency for a zero-byte 
message on this system is 9 µsec, and the peak 
sustainable bandwidth that we have observed is 102 
Mbytes/sec. 

5.2. Low Level Results  

In this section we compare the performance of a 
message ping-pong test that simply sends messages 
between two nodes in the cluster.  Each node waits for a 
reply before sending the next message.  We compare 
the performance of this test when using WSDLite, the 
TCP/IP protocol stack shipped with Windows 2000, 
WSDP, and the same test written directly to the VIPL 
API.  Note that the first three tests are the same 
executable; no modifications were necessary when 
using WSDLite or WSDP to take advantage of the 
underlying VI hardware.  We examine the performance 
of each of these schemes for message sizes up to 
32Kbytes with respect to roundtrip latency, peak 
sustainable bandwidth, processor utilization, and 
Mbytes/CPU-second.  Finally, we look at the overhead 
associated with using the Detours [9] package to 
provide transparent access to WSDLite through the 
WinSock2 API. Results in this section have been 
obtained with a single processor in each of the two 
machines being used. The results of making the same 
measurements with four processors in each machine is 
discussed in Section 5.3. 

 
Figures 4 and 5 show the performance of our ping-

pong test as measured by roundtrip latency and peak 
sustainable bandwidth for message sizes from 1 byte to 
32 Kbytes. With a single processor in each system, we 
see that the latency of WSDLite is on average only 
19.2% higher than that of native VIPL across all 
message sizes.  The differences between WSDLite and 
VIPL stem from the extra overhead on each network 
call of traversing through the TCP-to-VIPL translation 
layer, the overhead associated with trapping WinSock2 
calls using Detours, and the buffer management and 
flow control that WSDLite must implement. 

 
As expected, TCP performs poorly on latency and 

peak bandwidth measurements with respect to either 
WSDLite or VIPL.  WSDP performs similarly to TCP, 
but actually has higher latency at all message sizes and 
averages 28.8% higher than TCP. The performance of 
WSDP lags that of WSDLite by an average of 67.9% 
for all message sizes. This performance advantage of 
WSDLite is slightly higher at smaller message sizes, 



with a 69.5% improvement for single-byte messages 
and a 59.1% improvement for 32Kbyte messages. 
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Figure 4. Roundtrip Latency 
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Figure 5. Peak Sustainable Bandwidth 

Figure 5 shows that the bandwidth of TCP and 
WSDP peak at a maximum of around 30-35 
Mbytes /sec, whereas VIPL achieves nearly 80 
Mbytes/sec, and WSDLite around 72 Mbytes/sec. The 
performance of WSDLite is restricted below the 16 
Kbyte message size from additional copying out of the 
pre-posted receive buffers, and from the extra setup and 
acknowledgement messages necessary to implement the 
RDMA transfer at 16 and 32 Kbyte message sizes.  
However, these overheads still allow WSDLite to 
perform within 22% of VIPL. The significantly higher 
overheads of WSDP caused by multiple software 

layering and polling between these layers results in 
performance that is worse than just using TCP directly, 
regardless of message size. 

 
Figure 6 shows the average processor utilization for 

the uniprocessor execution of our ping benchmark.  For 
small messages, VIPL has a much higher processor 
utilization than either of the other three 
implementations, resulting from a time compression 
effect due to the small amount of time the message 
requires “on the wire”, and the small fixed costs due to 
the low overhead of the network protocol.  WSDLite 
and TCP display similar utilizations at small message 
sizes due to their higher fixed-cost overhead relative to 
VIPL.  WSDP shows the lowest overall utilization for 
message sizes less than 1K.  All implementations that 
use VI in some layer (WSDP, WSDLite, and VIPL) 
show low processor utilizations at large message sizes 
due to the fact that large messages require relatively 
long DMA times to transfer the message to the NIC 
hardware, during which time the processor is idle.  
TCP, on the other hand, buffers and copies messages 
internally, keeping the utilization high throughout the 
entire range of message sizes.   
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Figure 6. Processor Utilization 

The data presented in Figure 6 is misleading, 
seeming to indicate that WSDP is the most efficient 
protocol because the processor utilization is lower at 
smaller message sizes, and the VI Architecture was 
designed to maximize the performance of small 
messages [4].  By dividing the peak bandwidth 
achieved (as presented in Figure 5) by the processor 
utilization necessary to sustain this bandwidth (as 
shown in Figure 6), we can track the relative efficiency 
of a particular network protocol or architecture and find 



out how much processing time is required to send a 
fixed amount of data.  Figure 7 shows this measurement 
for the ping test using TCP, WSDP, WSDLite, and 
VIPL, and is expressed in Mbytes/CPU-second.  With 
only a single processor, TCP and WSDP perform 
particularly poorly using this metric at small message 
sizes. The relatively low processor utilization displayed 
by WSDP in Figure 6 is offset by the extremely low 
network throughput shown in Figure 5, causing 
WSDP’s performance to nearly mirror that of TCP for 
message sizes below 8Kbytes.  
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Figure 7. Messaging Efficiency 

WSDLite and VIPL, on the other hand, more than 
make up for the additional processor utilization 
required with improved bandwidth. Both protocols 
perform similarly at small message sizes because of the 
low overhead imposed by the runtime system. This 
results in a higher amount of data transferred per 
processor cycle than either WSDP or TCP.  As message 
size increases and the fixed “wire time” becomes a 
larger portion of the overall network time, the 
Mbytes/CPU-seconds metric for all protocols increases 
as the processor overhead becomes less of a factor in 
overall performance.  For very large messages, the 
performance of the three architectures that utilize VIA 
begin to converge, whereas the high processor 
utilization causes the TCP performance to flatten out 
between 8 and 32 Kbytes. 

 

5.3. SMP Performance  

In order to evaluate the performance benefits of 
running each implementation in an SMP environment, 
we repopulated each of the two machines used in the 

experiments with four 500 MHz P-III processors. The 
performance difference between these results and those 
presented in Section 5.2 stem from the level of 
concurrency exploited by the runtime system, as well as 
the overhead associated with managing threads residing 
on different processors. Table 1 shows the thread 
counts present in each process during the execution of 
the test. Note that the thread counts did not change 
when moving from a uniprocessor to a 4-way SMP. 

 
 

 # Threads Thread Breakdown 

TCP/IP 2 1 user thread 
1 Winsock thread 

WSDP 7 
1 user thread 

6 WSDP threads 

WSDLite 3 
1 user thread 

1 Winsock thread 
1 VIPL thread 

VIPL 2 
1 user thread 
1 VIPL thread 

Table 1. Thread Usage 
 
From the thread counts shown in Table 1, we would 

expect WSDP to exploit concurrency and thus show an 
improved performance with multiple processors.  The 
other three architectures do not use concurrency in an 
attempt to reduce overhead.  With respect to peak 
bandwidth, we found that WSDP does indeed perform 
better with SMP nodes by an average of 17% across all 
message sizes.  The largest improvement occurred at 
16K messages (48%).  Because neither WSDLite nor 
VIPL use concurrency within the runtime system, the 
performance of these two implementations remains 
nearly constant regardless of the number of processors 
available (average improvement of 4.5% and .6%, 
respectively).  However, the throughput of WSDLite 
remains an average of 67% better than that of WSDP 
across all message sizes. 

5.4. Overhead Associated with Detours  

Finally, we examine the performance impact of 
using Detours to eliminate the necessity of recompiling 
a WinSock2 application to use the WSDLite library.  
Detours instruments x86 binaries and inserts jump calls 
to trap targeted Win32 functions.  We have configured 
Detours to trap all of the calls implemented in the 
WSDLite library and redirect them to the WSDLite 
implementation of the functions.  Using this redirection, 
as opposed to recompiling the program and linking 
directly with the WSDLite library, incurs a 3 µsec 
overhead per roundtrip message. It may be possible to 
reduce this further through more direct interception 
methods.  



5.5. Application Results  

In this section we examine the performance of 
WSDP, WSDLite, TCP, and VIPL when each is used as 
the underlying network layer for the Brazos Parallel 
Programming Environment [12]. Brazos provides 
transparent shared memory and message passing 
support across a network of SMP machines running 
Windows 2000/NT.  Brazos was originally developed 
for use with UDP on WinSock, delivering superior 
performance to distributed shared memory applications.  
Support for VI was later added. For the purposes of this 
study, we converted Brazos to run using TCP sockets 
and present results for four shared memory scientific 
applications running on two quad Compaq Proliant 
6400 servers. The four applications include Ilink, a 
genetic linkage program used to trace genes through 
family histories; Barnes Hut, an n-body problem solver 
from the SPLASH-2 benchmark suite [15]; LU 
decomposition, also from SPLASH-2; and FFT-3D, 
used to solve fast Fourier transforms in three 
dimensions, from the NAS parallel benchmark suite [1]. 
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Figure 8. Parallel Application Performance 
 
Figure 8 shows the performance of these four 

applications on WSDLite, WSDP, and VIPL in terms of 
the execution time normalized to that of the execution 
time when run on TCP.   For three of the four 
applications (FFT-3D, Barnes Hut, and Ilink), WSDLite 
performs within 2% of the VIPL performance, 
demonstrating the low overhead associated with the 
WSDLite runtime protocol layer.  For LU, the 
performance of WSDLite suffers slightly due to send 
throttling in the WSDLite protocol, causing some send 

operations to stall waiting for available buffers to be re-
posted on the receiving node.  

 
For these experiments, WSDP performs particularly 

poorly relative to TCP.  We believe this performance 
degradation to be the result of processor contention due 
to the high number of threads used in the WSDP 
protocol stack (see Table 1).  Threading in WSDP is 
used to boost concurrency between the software layers 
that make up the protocol stack.  Synchronization and 
polling between these layers apparently results in 
processor starvation for computation threads, leading to 
a potentially large increase in parallel execution time. 
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Figure 9. Processor Utilization for LU 

 
Ilink and LU exhibit this effect to a larger degree 

because the computation-to-communication ratio of 
these applications is higher than that of FFT-3D or 
Barnes Hut. Therefore the contention for available 
processing resources is higher in these two applications, 
and the extra threads in WSDP exacerbate the problem.  
Figure 9 shows the average processor utilization of the 
four processors on one node when LU is run using 
WSDLite and WSDP. Data is shown for the first 30 
seconds of the program’s execution time, which 
represents the entire program execution under 
WSDLite.  As indicated, the processor utilization for 
WSDLite remains high throughout the program’s 
execution, resulting in a high parallel speedup for this 
application.  When using WSDP, the processor 
utilization varies widely during the course of execution 
as the computation threads compete with the threads 
that implement WSDP.  The resulting context switching 
reduces the effective processor utilization to the varying 



levels shown in Figure 9, and results in a 60% increase 
in overall execution time.     

6. Related Work 

Previous work in this area can be divided roughly 
into two categories: new protocol and network interface 
designs, and attempts to deliver the improvements of 
these new network protocols and interfaces to 
applications.  Our work falls into the second category, 
thus we concentrate on related work in this area. 

 
Windows Sockets Direct Path (WSDP) [4] attempts 

to deliver the performance of user-level network 
interfaces (VIA in our case) transparently to TCP/IP 
networked applications written for the WinSock2 API.  
The approach taken by WSDLite differs from WSDP in 
two significant ways.  First, WSDLite only implements 
a subset of the full WinSock2 API, albeit a useful 
subset that suffices for many networked applications.   
Second, our technique is not directly transparent.  
Although we do not require access to source code nor 
recompilation, we have to modify the applicable 
binaries using Detours in order for WinSock2 calls to 
be redirected.  This is achieved by simply running the 
desired executable with a program called withdll, which 
injects the WSDLite DLL into the executable and 
rewrites the binary file to cause the redirect to the 
WSDLite implementation of WinSock2 functions.  

 
VIA derives from a large body of related work in 

user-level communication, with the basic operation 
coming out of the U-Net research by von Eicken et al. 
[7].  As part of the U-Net research, a proof-of-concept 
implementation of TCP/IP was developed that delivered 
close to the raw performance of U-Net to TCP- and 
UDP-based applications.  The results of this 
implementation, presented by the authors in [7], were 
partially what led us to investigate a performance 
alternative to the beta version of WSDP that we initially 
examined.  VIA draws from several other research 
projects including application device channels [5], 
which provide the model for virtual interfaces to the 
network; and Virtual Memory Mapped Communication 
(VMMC) [6] and Active Messages (AM) [8], which 
provide the model for remote memory operations used 
in VIA.  Other projects with similar goals to WSDLite 
and WSDP include Fast Sockets [11], which like 
WSDLite offers increased communication performance 
by collapsing protocol layers, using simple buffer 
management strategies, and by using “receive posting” 
to bypass data copying.  Thekkath et al. proposed 
separating network control and data flow, and 
employed unused processor opcodes to implement 
remote memory operations [13].  Fast Messages [10] 
allow direct user-level access to the network interface, 

but do not support simultaneous use by multiple 
applications. The HP Hamlyn network implements 
user-level sends and receives in hardware [2].  
ParaStation [14] provides unprotected user-level access 
to the network interface.  With Active Messages [8], 
each message contains the address of a user-level 
handler that is executed upon message arrival with the 
message body as an argument.  This allows the 
programmer and compiler to overlap communication 
and computation, thereby hiding latency.  

7. Conclusions and Future Work 

For those applications that use only the WSDLite 
subset of TCP functionality, we have demonstrated that 
WSDLite offers significant performance advantages 
relative to WSDP. However, this result must be 
qualified in several ways. First, we are using a beta 
implementation of WSDP. We expect the performance 
of subsequent versions of WSDP to improve. Second, 
some users may consider the modification of 
application binaries required by WSDLite in order to 
achieve transparency to be too aggressive for comfort. 
Third, while it is relatively easy to add additional 
functionality to WSDLite, certain aspects of Winsock2 
functionality would likely be difficult to implement 
without incurring additionally overhead. In spite of 
these acknowledged limitations, WSDLite provides a 
useful tool for many applications. 

 
We will continue to update our results as new 

versions of WSDP and the cLAN Winsock provider 
become available. We also intend to experiment with 
additional network applications. We are currently 
evaluating FTP and a web-based client/server database 
application for this purpose.  
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