

Archipelago: An Island-Based File System
For Highly Available And Scalable Internet Services

Minwen Ji, Edward W. Felten, Randolph Wang, and Jaswinder Pal Singh

Department of Computer Science, Princeton University
{mji, felten, rywang, jps}@cs.princeton.edu

Abstract

Maintaining availability in the face of failures is a
critical requirement for Internet services. Existing
approaches in cluster-based data storage rely on
redundancy to survive a small number of failures,
but the system becomes entirely unavailable if
more failures occur. We describe an approach that
allows a cluster file server to isolate failures so that
the system can continue to serve most clients. Our
approach is complementary to existing
redundancy-based methods: redundancy can mask
the first few failures, and failure isolation can take
over and maintain availability for the majority of
clients if more failures occur.

The building blocks of our design are self-
contained and load-balanced file servers called
islands. The main idea underlying island-based
design is the one-island principle: as many
operations as possible should involve exactly one
island. The one-island principle provides failure
isolation because each island can function
independently of other islands’ failures. It also
helps the file system scale with the system and
workload sizes because communication and
synchronization across islands are reduced. We
implemented a prototype island-based file system
called Archipelago on a cluster of PCs running
Windows NT 4.0 connected by Ethernet. The
measurement of micro benchmark shows that
Archipelago adds little overhead to NTFS and
Win32 RPC performance; while the measurement
of operation mixes based on NTFS traces shows a
speedup of 15.7 on 16 islands.

1. Introduction
NT clusters are an important tool for large I/O-
intensive applications such as file servers, Web
servers, and other Internet services. A wide
variety of research projects on cluster file systems
have explored approaches to building cluster file
systems that provide high availability and
scalability.

This paper discusses a new approach to
maximizing availability on a cluster file server.
We use the percentage of requests that succeed

despite the failure of one or more servers as the
availability metric, our goal in this work is
maximize this percentage.

There are two complementary approaches to
maximizing availability. First, we can use
redundancy to maintain complete availability in the
face of a small number of failures; second, we can
try to isolate failures in order to serve as many
requests as possible even though some cannot be
served. These approaches are complementary,
since we can use redundancy to mask the first few
failures, and then use isolation to cope with any
additional failures.

This paper describes an approach to cluster file
system design that provides failure isolation. We
divide the nodes in the system into groups called
islands. An island might be a single node, or it
might be a group of nodes that use redundancy
within the island to mask failures. In either case,
island-based design strives to serve as many client
requests as possible when one or more islands have
crashed or are unavailable.

The main idea underlying island-based design is
the one-island principle: as many file system
operations as possible should require the
participation of exactly one island. The one-island
principle provides good failure isolation because
each island can function independently of other
islands’ failures. In other words, the failure of 1 out
of n islands in an island-based file system renders
only 1/n data inaccessible. The one-island principle
allows island-based systems to scale efficiently
with the system and workload sizes because
communication and synchronization across islands
are reduced.

Our motivation of failure isolation is analogous to
the motivation of fault containment in Hive [26].
Hive, an operating system for large-scale shared-
memory multiprocessors, attempts to "contain" a
failed part so that it does not bring down other
parts.

The target application of an island-based file

system is the data storage for those Internet
services that prefer to serve as many clients as
possible rather than to go entirely offline when
partial failures are present, that are medium to large
scale, e.g. tens to hundreds of PC’s connected by
commodity local area networks such as Ethernet,
and that expect occasional node failures and
network partitions. Examples include email, Usenet
newsgroup, e-commerce, web caching, and so on.

We evaluated the island-based design by statistical
analysis of the access patterns of existing systems.
The results show that the partial availability
provided by island-based file system is useful to
Internet services because a temporary partial
failure can be made unnoticeable to the majority of
clients. In one example, if 1 out of 32 islands is
down for an hour, we expect that 93.8% clients
during that hour will not notice the temporary
partial failure. On average 99.8% operations
involve a single island and hence do not require
communication or synchronization across islands.

We implemented a prototype of island-based file
system called Archipelago on a cluster of PCs
running Windows NT 4.0 connected by Ethernet.
The measurement of micro benchmarks shows that
Archipelago adds little overhead to NTFS and
Win32 RPC performance; the measurement of
operation mixes based on NTFS traces shows a
speedup of 15.7 on 16 islands.

2. Quantified motivation
To quantitatively motivate the potential advantage
of island-based design, let us examine the
temporary or permanent data loss ratios under

partial failures in existing cluster file systems and
island-based file systems with the same
redundancy schemes.

We modeled the data loss ratio in case of partial
failures in cluster file systems (CFS) built on top of
virtual storage layers, such as Frangipani [1] and
xFS [4], under various redundancy schemes. The
results show that CFS loses a significantly larger
portion of data than the virtual storage it loses in a
partial failure because the data in a surviving server
will be inaccessible if any server containing a piece
of metadata needed to access the surviving data
fails. For example, with the loss of 1 out of 32 non-
redundant virtual storage servers or 3.1% non-
redundant virtual storage space, CFS is expected to
lose 63.8% data in files and directories. The
detailed analytic models can be found in our
technical report [14].

We suggest that the temporary or permanent data
loss of an existing redundant file system can be
reduced by a failure isolation scheme without
altering the underlying redundancy scheme. We
observe that many existing redundant storage
systems are divided into groups and that data
redundancy is applied within groups, but not across
groups. It results either from the nature of the
redundancy scheme, such as mirroring pairs, or
from performance optimization, such as RAID-5
striping groups [4]. By configuring each redundant
group as an independent file system, we can always
achieve better availability than by running a single
file system on top of the whole storage system. We
change the data loss example above by assuming
that each of the 32 virtual storage servers is a
RAID-5 single-parity stripe group of 4 physical
nodes and that xFS [4] runs on the 128 nodes as a
single file system. If we run an independent xFS in
each group, we expect to lose only 3.1% vs. 63.8%
data when we lose at least 2 nodes in the same
group.

The challenge is how to evenly, automatically and
dynamically partition a single large file system into
a cluster of independent components without
causing inconsistency across components in the
face of partial failures.

3. System structure
Figure 1 gives an overview of an island-based file
system in a typical configuration. An island
consists of a server process running on top of a
local file system. Client applications view the
island-based file system as a single system and
access it through local file system switches and

IFS

NTFS

RAID

IFS

NFS

IFS

Replicated
FS

IFS

Cluster FS

Virtual
Disks

Commodity Networks

Figure 1. Overview of an island-based file system
(IFS). Shaded boxes are islands or servers and
non-shaded boxes are clients.

Applications

FS Switch

Client Stub

Applications

FS Switch

Client Stub

Applications

FS Switch

Client Stub

Applications

FS Switch

Client Stub

stubs. Islands and clients are connected by
commodity local area networks such as Ethernet.

Let us examine two important issues in island-
based design, data distribution and metadata
replication.

3.1 Hash-based data distribution
We designed a new data distribution strategy for
island-based file systems: data is distributed to
islands at directory granularity by hashing the
pathnames of the directories to island indices.

We choose directory granularity rather than block,
file or sub tree granularity because most file system
operations involve a single directory and hence
satisfy the one-island principle, and directories are
finer grained than sub trees so as to allow load
balance.

We choose hashing instead of recursive name
lookup because hash functions can be computed on
the client machines without contacting any servers.
We choose to hash pathnames instead of low-level
integer identifiers such as inode numbers because
pathnames are the only information that a client
can possibly have without contacting any servers,
and they are independent of internal
representations of file systems.

Clients determine which island to contact for a
directory or a file in that directory by hashing the
full pathname of the directory to an island index in
two steps: first, hashing the pathname to a bucket
(an integer) with a universal hash function [7];
second, hashing the bucket to an island index with
an extendible hash table [8]. The universal hash
function used in an island-based file system is a
consistent mapping from a variable-length
character string to a 32-bit integer and has good
distribution in the output space independently of
the input space. A universal hash function can
evenly distribute an arbitrary set of directories to
buckets; however, it does not have control on the
workload distribution across directories; therefore,
an additional level of indirection is necessary to
handle the hot spots and dynamic load changes. A
subset of the 32 bits is used as the index to the
extendible hash table and the table entries are
island indices. As load imbalance across islands
increases or islands are permanently added or
removed during system reconfiguration, the table
entries are reassigned to islands to rebalance the
load using a bin-packing algorithm. The
reassignment is made monotonic, i.e. each island
either loses data or gains data, but not both.

Therefore, only a minimal amount of data needs to
be migrated between islands.

Inside each island, we store directories in a
skeleton hierarchy. We call the file system running
inside each island the internal file system. An
internal file system can be an instance of any
existing file system such as a local file system, a
replicated file system or a cluster file system. The
skeleton hierarchy in an island contains the
directories hashed to this island index and their
ancestor directories up to the root, and is stored in
the unmodified internal file system as a normal
tree. This way, islands can function independently
of others’ failures and we can leverage the
functions of the internal file systems. The
consequence of storing data in skeleton hierarchies
is the replication of certain metadata or directory
attributes.

3.2 Usage-based metadata replication
Although it might not take much space to replicate
metadata across islands if it accounts for a small
portion of the entire system, updates to replicated
metadata will have to be done in all replicas and
hence violate one-island principle. Therefore, we
use a usage-based adaptive replication scheme in
the island-based design, i.e. we replicate metadata
that is more frequently used to a higher degree.

To help us explain the usage-based metadata
replication, we introduce two terms, directory

Figure 2. Skeleton hierarchy and directory
replication. This is an image of the internal file
system in an island that is the directory owner
of the highlighted directories. Partial directories
are replicas that contain only attributes and
partial contents or no contents.

/

u var

adm

 Directory
Partial
directory

bob

log

mail

courses

 File

gpa 126 a b

sm lq

owner and parent owner. The directory owner of a
directory is the island to which the directory is
hashed. The parent owner of a file or directory is
the directory owner of its parent directory. A file
resides in exactly one island, its parent owner. A
directory will be replicated in its parent owner, in
its directory owner and in all the parent owners of
its descendent directories. Therefore, the
replication scheme can automatically adapt to the
usage of the metadata. In particular, the root
directory is replicated in all islands; files are not
replicated across islands; intermediate directories
are replicated to various degrees.

However, only some directory attributes, not the
directory contents, need to be replicated. Directory
contents are the lists of names and addresses of sub
directories and files. Only the directory owner
keeps a complete copy of the directory contents;
other replicas have partial contents or no contents.
Changes to directory contents, e.g. adding or
removing files, need to be done in the directory
owner only. Directory attributes include name,
size, security, time stamps, read-only tag,
compressed tag, etc.. Changes to directory
attributes will, however, affect multiple replicas.

We want to replicate only those attributes that are
needed when a descendent of the directory is
looked up. We divide directory attributes into two
categories, static attributes and dynamic attributes,
based on their access patterns. A static attribute is
more frequently read than written, and a dynamic
attribute is more frequently written than read.
Attributes such as name, security, read-only tag
and compressed tag are static. Attributes such as
size and time stamps are dynamic. We replicate the
static attributes and do not replicate the dynamic
attributes. We use a read-one-write-all policy to
maintain consistency of the static attributes; the
overhead of updates is acceptable since static
attributes rarely change. We read and write
dynamic attributes in a single island, the directory
owner.

Figure 2 gives an illustration of the skeleton
hierarchy and metadata replication.

3.3 Evaluation
We evaluated the load balance and storage
overhead in island-based file systems by statistical
analysis of the contents of existing systems.
Detailed measurements and analysis can be found
in our technical report [14]. We summarize the
results as follows:
• Only a small portion of storage is needed for

replicating directory attributes (0.1% to 0.5%
per island or 0.3% to 7.7% in total in our
experiments).

• Load imbalance (average number of bytes per
island dividing its standard deviation) resulted
from the hashing algorithm in island-based file
systems is low (0.0001 to 0.0279 in our
experiments) in spite of the unbalanced load
across directories or hot spots.

4. Protocols and other design issues
To make the island-based design a viable solution,
we need to address the issues of rebalance,
consistency, recovery, etc. in addition to data
distribution and metadata replication. We use
standard approaches that are tailored to island-
based file systems, as we will briefly describe
below.

4.1 Rebalance protocol
As discussed in the previous section, the hash
function in data distribution can be changed to
rebalance the load across islands when load
imbalance exceeds a threshold or when islands are
permanently added to or removed during system
reconfiguration.

We use a two-phase commit protocol [16] in the
rebalance procedure so that the hash table is
updated in all islands atomically in the face of
partial failures. In the first phase, load information
(number of bytes) is collected from all islands and
all islands are prepared for the rebalance. In the
second phase, a new hash table is computed
according to the load information, and is either
updated in all islands or aborted if any island is
inaccessible.

The hash table is replicated in all clients of the file
system as well as in all islands. The table has an
entry per directory bucket and the number of
buckets is a constant factor of the number of
islands; therefore, the table size is proportional to
the number of islands. (The universal hash function
can map multiple directories to the same bucket.
See Section 3.1.) A client is asked to update its
hash table when any server detects its out-of-date
copy using piggy-back information in regular
operations.

How often the rebalance procedure needs to be
invoked depends on the load imbalance that can be
tolerated. We expect that a reasonable threshold
can be set so that the rebalance procedure is
invoked at a non-disruptive frequency, e.g. once

every weekend.

A trace-driven study of the online reconfiguration
of a web server running on an island-based file
system shows that data migration in the rebalance
procedure is made transparent to the web server in
terms of both functionality and performance [14].
Therefore, we do not expect the rebalance
procedure to have a noticeable impact on client
operations.

4.2 Consistency protocol
Since certain states, e.g. static directory attributes,
are replicated across islands, a cross-island
protocol is necessary to keep the replicas consistent
in the face of island failures and network partitions.
Cross-island operations in island-based file systems
include CreateDir and RemoveDir, which involve
two islands, SetDirAttr, SymLinkDir and
DeleteLinkDir, which involve all islands, and
RenameDir, which involves a variable number of
islands depending on the directory to be renamed.

The island-based design eases the consistency
maintenance in two ways. First, the majority of
operations involve a single island, hence do not
require a cross-island protocol for consistency.
Second, all cross-island operations on the same
object are coordinated by a single island, i.e. the
directory or parent owner; hence synchronization
can be done with centralized control per object,
which eases the protocol design.

The single coordinator property of the protocol
ensures that no conflicting updates will occur even
in the face of network partitions, hence largely
relaxes the synchronization semantics. We
designed and implemented a protocol that uses
logical clock synchronization [15], logging [10]
and two-phase commit [16] for atomicity and
serialization of cross-island operations. In
particular, we choose to maintain the following
invariants in the face of island failures and network
partitions:
1. All operations on the same object are

serialized, i.e. clients observe them in the same
order in all islands.

2. All operations by the same client thread are
serialized, i.e. clients observe them in the same
order in all islands.

3. Operations by different clients can be
serialized if the clients interact with each other
by accessing the same object(s) in the file
system.

4. The ordering relations are transitive, i.e. if
operation 1 is observed to happen before 2 and

2 before 3 then 1 is observed to happen before
3.

4.3 Recovery protocol
We designed and implemented a fairly standard
recovery protocol for islands to recover from
various combinations of failures back to consistent
state.

Cross-island operations are logged on disk if they
cannot be committed in all involved islands due to
island failures or network partitions. A failed or
disconnected island will exchange logs with other
islands upon reconnection to those islands. In
particular, we choose to maintain the following
invariants in the state transitions of a recovering
island r:
1. All logged operations from other islands will

be committed in r in the ascending order of
their time stamps. That is, operations serialized
in real time will be committed in the same
order as if r had not failed.

2. No client requests or requests that indirectly
affect clients’ view of the system state will be
processed in r until all logged operations have
been committed in r. That is, the inconsistent
state of r, if there is any, is made invisible to
clients.

4.4 Other design issues
Island-based file systems inherit most functions
from their internal file systems, such as metadata
structures, disk space allocation, I/O scheduling,
server-side caching, locking, local security,
recovery, etc.; therefore, we are not concerned
about all the low-level details in file system design
and implementation. We extended certain
functions, such as symbolic links and renaming
directories, to adapt to the island-based
environment. Interested readers should refer to our
technical report for more information about the
design, implementation, and evaluation of our
prototype [14].

5. Implementation
We have implemented a prototype of island-based
file system called Archipelago on a cluster of
Pentium II PCs running Windows NT 4.0. NTFS
[13] is used as the internal file system. NTFS uses
extensive caching and name indexing for better
performance and logs metadata changes for local
recoverability. NTFS can be configured to run on a
group of disks with parity striping for data
redundancy.

An Archipelago server runs on each machine and
forms an island. Each client accesses files through
a local stub, which forwards the request to a server
through Windows remote procedure call (Win32
RPC). The server is implemented as a user-level
process. For expediency, our prototype client is
implemented as a stub .dll that redirects requests
for Archipelago files directly to servers, bypassing
the in-kernel file system drivers. This solution is
adequate for experimental purposes, although it
does not provide total seamless integration with
existing applications. A more complete solution
would implement a full installable file system
driver [20]. We believe the performance difference
in these two solutions to be negligible compared
with the time to service file system requests in a
distributed file system.

The server and stub are implemented in C++, and
consist of 3088 and 5415 lines of code,
respectively. The server program is linked with the
stub library for code reuse purpose. In addition,
there are 24042 lines of automatically generated C
code for RPC and system call interception.

6. Measurements
In this section, we present the selected
measurements to answer the following questions.
1. How many clients will likely notice a partial

failure in an island-based system? (Section
6.1)

2. What is the overhead of island-based design in
simple cases? (Section 6.2)

3. How many operations require cross-island
communication and synchronization? (Section
6.3)

4. How do cross-island operations affect the
overall scalability of an island-based file
system? (Section 6.4)

6.1 Impact of partial availability on web

clients
The effective availability of an island-based file
system with partial failures depends on the number
of distinct directories that clients access because a
partial failure in the system causes a random set of
directories to be inaccessible.

We compute the histograms of clients and requests
by the distinct directories they touched from the
access logs of the web server running on our site
[23]. We assume that the island-based file system
acts only as a content provider to the web server,
i.e. accesses to control information or executables
of the web server itself do not count in our
statistics. We group the HTTP requests into clients
by the hostnames or IP addresses in the requests,
and within each client, we group requests into
directories by the URLs in the requests. We
compute the histograms from two months’ traces,
July 1998 (137248 clients and 1304975 requests in
total) and January 1999 (166804 clients and
1297428 requests in total), using a time window
size of an hour. The results, in Figure 3, show that
the largest portion (48.3%) of clients accessed only

Figure 3. Histograms of clients and requests by
bins of distinct directories in the web traces. The
numbers read as "48.3% clients accessed 1
distinct directory during every hour" or "17.9%
requests were issued by clients who accessed 2
distinct directories during every hour".
Accesses to more than 24 directories account for
0.4% clients and 19.3% requests in total, and
are omitted in the graph for readability.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 5 9 13 17 21

Bins of Distinct Directories

P
o

rt
io

n
s

in
 B

in
s

Clients

Requests

Figure 4. Expected availability for data, clients
and requests in the web traces with the failure
of 1 out of n islands. The x axis is the number n
of islands. The y axis is the expected availability,
i.e. (1-1/n) for data and ∑ −⋅ inip)/11()(for

clients and requests, where i is the bin of distinct
directories and p(i) is the portion of clients or
requests in the bin i.

0

0.2

0.4

0.6

0.8

1

1 17 33 49 65 81 97 113

Islands

E
xp

ec
te

d
 A

va
ila

b
ili

ty

Data

Clients

Requests

1 distinct directory during every hour and the
largest portion (17.9%) of requests were issued by
clients who accessed 2 distinct directories during
every hour. Requests are more scattered across bins
in the histogram because larger bins have more
accesses and hence more weights. We computed
the histograms by dividing the traces into other
time windows ranging from 30 minutes to 8 hours,
but there was no significant difference across time
windows.

Given the statistics of distinct directories, we
compute the expected availability of the island-
based file system for data, clients and requests,
respectively, shown in Figure 4. Since the majority
of web clients access a small number of distinct
directories, the expected availability for this class
of clients is high in spite of the fact that a partial
failure in the system causes a random set of
directories to be inaccessible. For example, if 1 out
of 32 islands is down for an hour, we expect that
93.8% clients of the web server during that hour
will not notice the temporary partial failure.

6.2 Single client performance
In this section, we present the results of running
single client micro benchmarks on Archipelago in
various configurations. The machines used in our
experiments have Pentium II 300 MHz processors,
128 MB main memories and 6.4 GB Quantum
Fireball IDE hard disks for use by Archipelago.
The PCs are connected by a 3COM SuperStack II
100Mbps Ethernet hub. The PCs run Windows NT
Workstation 4.0 and the hard disks for Archipelago
are formatted in NTFS.

The set of micro benchmarks consists of 9 phases
and each phase exercises one of the file system
calls: CreateDir, SetDirAttr, CreateFile,
SetFileAttr, ReadDir, WriteFile, ReadFile,
DeleteFile and RemoveDir. The data set for the
micro benchmarks is an inflated project directory
that consists of 3600 directories, 3876 files and
154.4 MB of data in files. The 3876 files are stored
in 540 directories and the rest of the directories are
empty. Disk space is pre-allocated for each file in
the CreateFile phase. The transferred block size in

0

1

2

3

4

C
re

at
eD

ir

S
et

D
ir

A
tt

r

C
re

at
eF

ile

S
et

F
ile

A
tt

r

R
ea

d
D

ir

D
el

et
eF

ile

R
em

o
ve

D
ir

Operations (a)

L
at

en
cy

 (
m

s)

NTFS Local Remote 2 Servers Consistency

0

1

2

3

4

5

W
ri

te
F

ile

R
ea

d
F

ile

Operations (b)
B

an
d

w
id

th
 (

M
B

/s
)

Figure 5. Single client performance. A single
client runs the micro benchmarks in five cases:
directly on NTFS (NTFS), on the local machine
of an Archipelago server (Local), on a remote
machine from the server (Remote), with two
servers (2 Servers), and with the consistency
protocol turned on with two servers
(Consistency), respectively. The y-axis in (a) is
the latency in milliseconds measured at the
client side. Lower columns represent better
performance. The y-axis in (b) is the bandwidth
in MB/s in the WriteFile and ReadFile
operations measured at the client side. Higher
columns represent better performance.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Servers

S
p

ee
d

u
p

Mix 1 measured Mix 1 estimated

Mix 2 measured Mix 2 estimated

Figure 6. Speedup of throughputs of
randomized operation mixes. The four curves
are the measured speedup of operation mix 1
(Table 2), estimated speedup of operation mix 1,
measured speedup of operation mix 2 (Table 2),
and estimated speedup of operation mix 2,
respectively. The speedup is calculated as the
absolute throughput (requests/sec) divided by
the throughput of 1 server. The throughput of 1
server is 75.6 requests/sec in operation mix 1
and 80.1 requests/sec in operation mix 2,
respectively.

the WriteFile and ReadFile phases is 64 KB or the
file size, whichever is smaller. Each test is run
more than 3 times and the results shown in this
section are the averages.

We ran the micro benchmarks with a single client
in five cases: directly on NTFS (NTFS), on the
local machine of an Archipelago server (Local), on
a remote machine from the server (Remote), with
two servers (2 Servers), and with the consistency
protocol turned on with two servers (Consistency),
respectively. Figure 5 shows the bandwidth in
WriteFile and ReadFile and the response times in
other operations, all measured at the client side.

The difference between the NTFS and Local cases
is caused by the overhead of computing hash
functions. This overhead is low compared to the
operation time itself. The difference between the
Local and Remote cases is caused by the
communication overhead (Win32 RPC on TCP/IP
and 100 Mbps Ethernet) between the client and the
server, i.e. 0.48 ms latency and 8.67 MB/s
bandwidth in our experiments. There are two
causes for the difference between the Remote and
2-Server cases: the cross-island operations such as
CreateDir and SetDirAttr involve an additional
server in the latter case and there was more total
file system buffer cache in the latter case. The
difference between the 2-Server and Consistency
cases is caused by the overhead of the consistency
protocol.

The results show that island-based design adds
little overhead to NTFS and Win32 RPC
performance and that the consistency protocol
slows down the cross-island operations but does
not have a noticeable impact on one-island
operations.

We ran the same micro benchmarks with 1 to 16
servers and clients. The results, not shown here
[14], indicate that the one-island operations scale
linearly with the system and workload sizes. Two-
island operations scale less efficiently and all-
island operations do not scale because the
consistency protocol requires 2*k uni-cast
messages per cross-island operation, where k is the
number of islands involved in the operation.
Therefore, the overall scalability depends on the
actual operation breakdown.

6.3 Operation breakdown in NTFS

traces
Previous studies of file system traces indicated that

the cross-island operations are rare [17] [9] [18].
However, it is well known that file access patterns
are highly dependent on the operating systems
where the traces were taken. Since we implement
Archipelago on Windows NT as opposed to UNIX,
in which the Sprite and NFS traces were taken, we
feel it important to study the file access patterns in
NTFS. We choose 7 workstations running
Windows NT 4.0 and collected statistics on
operations by running a trace program on each
workstation. The users of the workstations include
three graduate students, a software engineer, a
home user and several lab users. The trace
programs were run for 2 to 7 days and collected
30,391 to 480,385 total events. The trace program
forks a thread to wait on each file system related
event such as FileAdded through the NTFS event
notification interface ReadDirectoryChangesW
[19]. We present the events in Table 1 and infer the
operation breakdown from them.

No. Events Avg. Standard
Deviation

1 Total Events 24440
8

140571

2 FileAdded 3.34% 1.70%
3 FileRemoved 2.38% 1.70%
4 FileRenamed 0.41% 0.31%
5 DirAdded 0.04% 0.07%
6 DirRemoved 0.03% 0.07%
7 DirRenamed 0.00% 0.00%
8 FileAttrModified 26.8% 10.8%
9 FileWritten 35.5% 11.3%
10 FileAccessed 16.3% 8.60%
11 FileSecurityModified 0.03% 0.04%
12 DirAttrModified 0.07% 0.07%
13 DirWritten 1.23% 1.59%
14 DirAccessed 13.9% 17.8%
15 DirSecurityModified 0.00% 0.00%
16 FileLinkModified 0.16% 0.08%
17 FileLinkRead 0.09% 0.10%
18 DirLinkModified 0.00% 0.00%
19 DirLinkRead 0.001

%
0.002%

Table 1. Percentages of file system events in NTFS
traces. Row 1 (Total events) shows the total
number of events in all traces. Rows 2 through 19
show the percentage of each event. Shaded events
correspond to cross-island operations in island-
based file systems. The column "Average" shows
the percentage of each event averaged over all
traces. The column "Standard Deviation" shows the
standard deviation of the percentages of each event

in each trace. Events not shown in the table have
zero percentages. The names "FileLink" and
"DirLink" refer to symbolic links (shortcuts in NT)
to files and directories, respectively.

Table 1 shows that, on average, one-island
operations account for 99.8% of total operations.
The slow operations in island-based file systems,
e.g. setting directory attributes, renaming
directories, creating symbolic links (shortcuts) to
directories, are rare.

The section below shows how the cross-island
operations affect the overall scalability of the
system, given the measured breakdown in this
section.

6.4 Scalability of operation mixes
We run a benchmark of randomized operation
mixes to measure the overall scalability of
Archipelago. The benchmark is extended from the
SPEC SFS or LADDIS benchmark [9]. Since
Archipelago is implemented on top of NTFS, the
operation mix in our benchmark uses NTFS API
and is based on the operation breakdown we
measured in NTFS, as shown in the previous
section. The experiment environment and
configuration are the same as in Section 6.2.

We ran the benchmark with 1 to 16 clients and
servers on 1 to 16 machines. Each client runs on
the same machine as a server, but accesses random
files, directories and symbolic links across the
entire system. The pre-created data set includes
2000 directories, 2000 files, and 100 symbolic
links shared by all clients, and the same numbers of
private objects (directories, files and symbolic
links) per client. The client repeatedly does an
operation that is randomly chosen at specified
frequencies. For each operation, the client
randomly chooses an object, either from the
existing shared or private objects, or by generating
a new name in an existing directory, depending on
the operation. The WriteFile operation writes a
random number (chosen from 0 to 1 MB) of bytes
to the file; both WriteFile and ReadFile operations
transfer up to 8KB per request so that the operation
time is comparable to those of other operations.
Each client maintains its own view of the shared
objects and its private objects, but does not
synchronize with other clients on the creation and
deletion of the shared objects. Therefore, an
operation on a shared object might fail if it
conflicts with a previous operation on the same
object from another client [9]. After the data set is
pre-created, all clients run the randomized

operation mix for 10 minutes. The throughput is
calculated as the total number of successful
operations by all clients divided by 10 minutes.

We ran the benchmark with two different operation
mixes. Mix 1 exaggerates the cross-island
operations and mix 2 is closer to the measured
breakdown. The mixes cover a number of typical
operations from each category, i.e. one-island, two-
island and all-island. Note that more WriteFile than
ReadFile events are recorded in the NTFS traces
because reads that hit in cache cannot be captured
by ReadDirectoryChangesW.

We recorded the actual client operations and
server-to-server RPCs in the benchmarks, and
estimated the speedups of the overall operation mix
accordingly. Table 2 shows the recorded operation
mixes and Figure 6 shows both the measured
speedups and estimated speedups. Assuming that
each local operation and RPC takes the same
amount of time, the estimated speedup with n
servers is n/(1+overhead_per_operation), where
the overhead per operation is the total number of
server-to-server RPCs divided by the total number
of successful client operations.

 Mix 1 (%) Mix 2 (%)
CreateDir 0.9297 0.0522
CreateFile 4.0314 3.5661
DeleteFile 2.7731 2.4353
DeleteLinkDir 0.9850 0.0128
ReadDir 14.4505 15.6528
ReadFile 14.1343 15.2778
RemoveDir 0.7543 0.0162
ResolveLinkDir 1.7205 0.1014
SetDirAttr 1.0383 0.0713
SetFileAttr 26.6085 29.2835
SymLinkDir 1.0089 0.0109
WriteFile 31.5656 33.5194
Successful 45360 to 309960 48042 to

756120
Total 48042 to 325534 48043 to

780260
Throughput
(requests/sec)

75.6 to 516.6 80.07 to
1260.2

Table 2. Operation mixes. Each percentage in this
table is the number of successful requests on each
operation divided by the total number of successful
requests, averaged over 1 to 16 clients and servers.
The total numbers of requests and throughputs
grow with the numbers of clients and servers for
the fixed 10 minutes period; the ranges are shown
in the last three rows in the table.

Operation mix 1 scales at a less than ideal slope
due to the relatively large number of cross-island
operations. For example, with 16 servers, the
average overhead per operation is 0.8. The
difference between the estimated speedup and
measured speedup is due to the assumption of
equal RPC processing times and local operation
times. Load is well balanced across servers in both
operation mixes; the largest/average requests per
server are below 1.1 in all cases. Operation mix 2
is closer to the measured breakdown, i.e. contains a
smaller number of cross-island operations; it scales
nearly ideally in both estimated and measured
throughputs.

6.5 Implications for larger scale systems
Given the percentages of one-island (P1), two-
island (P2) and all-island (Pa) operations, where
P1+P2+Pa=1, we can predict the speedup
efficiency at large scale with an analytic model.
Assuming that each local operation and RPC takes
the same amount of time, the estimated speedup
efficiency with n servers is
1/(1+overhead_per_operation), where the
overhead per operation is the average number of
server-to-server RPCs per operation and equals (2-
1)*2*P2+(n-1)*2*Pa. (The factor 2 results from
the two-phase commit protocol.) Two-island
operations include CreateDir, RemoveDir,
ReadFileLink and ReadDirLink; all-island
operations include SetDirAttr, SetDirSecurity,
SymLinkDir and RenameDir. Some operations,
e.g. SetDirSecurity and SymLinkDir, did not show
up in our statistical experiments; we inferred their
percentages from other statistics [18]. The resulting
percentages are P1=99.768%, P2=0.161% and
Pa=0.071%. From the speedup efficiency model
above, we predict that the system can scale up to
702 islands while maintaining the efficiency higher
than 50%; that is, an island-based file system can
achieve a higher speedup than 351 with 702
islands.

While such a large cluster is not currently available
to us for experiments, our measurement results on
the small cluster are encouraging and we are
seeking external resources for further scalability
tests.

6.6 Discussion
Although the target applications of an island-based
file system are Internet services, we use a more
generic benchmark in the scalability
measurements. Our purpose of those measurements

is to learn the impact of cross-island operations on
the overall scalability of an island-based file
system, but web access logs only give file-reading
operations. We do not model in our benchmark the
self similarity or hot spots in web accesses because
it is not clear whether the same patterns will
necessarily show up in disk accesses if web
requests can be processed with data in the main
memory cache of web servers or file system
clients.

7. Related work
Existing file systems designed for high availability,
such as Coda [28] and Ficus [29], replicate data
across servers. Our approach in island-based file
system, i.e. failure isolation, is complementary to
the data redundancy approach for high availability.
Client caching is extensively used in distributed
file systems like Coda [28], Andrew [5] and Sprite
[17] to support disconnected operations and to
reduce traffics to servers. Similar to server
replication, client caching improves availability by
data redundancy, i.e. by replicating data in clients.
It also improves scalability by reducing server load
so that the same number of servers can serve a
larger number of clients gracefully. Our scalability
goal in island-based file system is to achieve
efficient speedup when servers are added to the
cluster, which is orthogonal to the goal of client
caching. We have not implemented client caching
in Archipelago, but we do not expect the island-
based design to add any difficulty to such
implementation.

State-of-the-art cluster file systems like Frangipani
[1] and xFS [4] achieve high reliability and
scalability by data redundancy. A fast system area
network such as ATM is typically used in those
cluster file systems for aggressive communications
across data replicas. The majority of operations in
island-based file systems do not require
communication or synchronization across islands;
therefore, an island-based file system can scale
efficiently with commodity networks such as
Ethernet. The ideal configuration for maximal
reliability, availability and scalability is to run an
island-based file system with a file system like
Frangipani or xFS inside each island.

In terms of failure isolation, cross-node
communications, locality and leveraging functions
in local file systems, island-based file systems are
comparable to distributed file systems like NFS
[6], JetFS [12] and CIFS [11]. However, those
systems do not share with island-based file systems
scalability, load balance, and/or automatic data

partitioning and reconfiguration.

In Teradata [27], two orthogonal hash functions are
used to map data items to two nodes. In an island-
based file system, each data item is mapped to a
single island but redundancy might be used inside
the island. The Teradata approach offers better load
balance when a single node fails, but the failures of
two nodes always render a portion of data
inaccessible. Our approach makes most operations
involve a single island, isolates failures across
islands, and does not lose data unless all replicas in
the same island fail.

A large scale Internet service typically consists of
three logical tiers: request distribution tier, service-
specific processing tier and data storage tier. The
Locality-Aware Request Distribution (LARD) [3]
is a solution to locality and load balance in the
distribution tier. The Cluster-Based Scalable
Network Services (SNS) [21] [22] provides a
programming model for the processing tier. In
particular, the authors proposed application
decomposition and orthogonal mechanism for
graceful degradation during partial failures. Island-
based design addresses failure isolation, locality
and load balance in the storage tier. While the
distribution-tier and processing-tier approaches
suffice for read-mostly access patterns and weak
consistency requirements, a robust and scalable
storage tier is necessary for services with read-
write access patterns and strong consistency
requirements, such as shared calendar services and
online shopping sites. The combination of the
approaches in all three tiers can potentially achieve
high availability and scalability for Internet
services with a wide range of access patterns and
consistency requirements.

Commercial web content distributors such as
Akamai [24] [2] and Sandpiper [25] provide
geographically distributed replication services to
read-mostly web contents so that the latency in
delivering contents to clients can be reduced. We
are focused on improving the availability and
scalability of local sites with read-write patterns.
Their approach and ours are complementary to
each other in improving the overall availability and
scalability of Internet services.

Our main contributions are:
1. We address the availability and scalability

issues for Internet services in the data storage
tier.

2. Our approach to availability and scalability is
isolating failures and reducing communication.

3. We achieve failure isolation and reduced
communication by enforcing a one-island
principle in hash-based data distribution and
usage-based metadata replication.

8. Future work and conclusion
NT farms are a fact of life -- people are already
using them to provide scalable services. An
important question for people who are running all
those NT farms to understand is how to structure
the cluster in a way that can both balance loads and
isolate failures without having to reinvent a
distributed file system from scratch, which is a
very difficult endeavor, by leveraging as much as
possible from the existing NT infrastructure. Our
experience suggests that this is indeed possible.

We designed an island-based file system as the
data storage for highly available and scalable
Internet services. We evaluated the design by
statistical analysis of the access patterns in existing
systems. We implemented Archipelago, a
prototype of the island-based file system, and
studied the performance of Archipelago in micro
benchmarks and operation mixes.

We are considering extensions to the hashing of
directories. Ideally, we would like to have an
adaptive hashing algorithm that determines the
height of a sub tree or the granularity of a file to
hash based on the current state of load balance and
access patterns. We are also going to improve the
performance of all-island operations like
SetDirAttr by replacing the 2*n unicast messages
and 2*n replies with 2 broadcast or multicast
messages and 2*n replies, where n is the number of
islands.

We draw the following conclusions:
• The failure isolation provided by island-based

file systems is useful to Internet services
because a temporary partial failure can be
made unnoticeable to the majority of clients.

• An island-based file system can scale well
with the system and workload sizes because
the majority of operations do not require
communication or synchronization across
islands.

9. Acknowledgments
We would like to thank the anonymous reviewers
and our shepherd, David C. Steere, for their
valuable comments and suggestions. A number of
theoreticians including Sanjeev Arora, Yaoyun Shi
and Amit Chakrabarti helped us with the

mathematic modeling parts in the project.

References
[1] C. A. Thekkath, T. Mann, and E. K. Lee,

"Frangipani: A Scalable Distributed File System",
in Proceedings of the 16th ACM Symposium on
Operating Systems Principles, Octobor 1997.

[2] D. Karger, E. Lehman, T. Leighton, M. Levine, D.
Lewin, and R. Panigrahy, "Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web", in
Proceedings of the 29th ACM Symposium on
Theory of Computing, May 1997.

[3] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, and E. Nahum,
"Locality-Aware Request Distribution in Cluster-
Based Network Servers", in Proceedings of the 8th
International Conference on Architectural Support
for Programming Languages and Operating
Systems, October 1998.

[4] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang,
"Serverless Network File Systems", in Proceedings
of the 15th ACM Symposium on Operating Systems
and Principles, December 1995.

[5] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West, "Scale and Performance in A
Distributed File System", in ACM Transactions on
Computer Systems, Vol. 6, No. 1, February 1988.

[6] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon, "Design and Implementation of the
Sun Network File System", in Proceedings of
USENIX Summer Technical Conference, Summer
1985.

[7] J. L. Carter, and M. N. Wegman, "Universal Classes
of Hash Functions", in Journal of Computer and
System Sciences 18, 1979.

[8] R. Fagin, J. Nievergelt, N. Pippenger, and H. R.
Strong, "Extendible Hashing - A Fast Access
Method for Dynamic Files", in ACM Transactions
on Database Systems, Vol. 4 No. 3, 1979.

[9] B. E. Keith, and M. Wittle, "LADDIS: the Next
Generation in NFS File Server Benchmarking", in
Proceedings of USENIX Summer Technical
Conference, June 1993.

[10] R. Hagmann, "Reimplementing the Cedar File
System Using Logging and Group Commit", in
Proceedings of the 11th ACM Symposium on
Operating System Principles, November 1987.

[11] Microsoft, the Common Internet File System
(CIFS) specification reference, 1996.

[12] B. Gronvall, A. Westerlund, and S. Pink, "The
Design of a Multicast-based Distributed File
System", in Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation,
February 1999.

[13] H. Custer, "Inside the Windows NT File System",
Microsoft Press, 1994.

[14] M. Ji, and E. W. Felten, "Design and
Implementation of an Island-Based File System",
Technical Report 610-99, Department of Computer

Science, October 1999.
[15] L. Lamport, "Time, Clocks, and the Ordering of

Events in a Distributed System", in
Communications of the ACM, July 1978.

[16] J. Gray, "Notes on Database Operating Systems", in
Operating Systems: An Advanced Course, 1978.

[17] K. W. Shirriff, and J. K. Ousterhout, "A Trace-
Driven Analysis of Name and Attribute Caching in
A Distributed System", in Proceedings of USENIX
Technical Conference, 1992.

[18] D. Roselli, and T. E. Anderson, "Characteristics of
File System Workloads", Technical Report
UCB//CSD-98-1029, 1998, and personal
communications, April 1999.

[19] Microsoft Corporation, "Platform SDK: Windows
Base Services: Files and I/O", in MSDN Library
Visual Studio 6.0, 1998.

[20] Microsoft Corporation, "Windows NT IFS Kit",
Early Release, March 1997.

[21] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier, "Cluster-Based Scalable Network
Services", in Proceedings of the 16th ACM
Symposium on Operating Systems Principles,
Octobor 1997.

[22] A. Fox, and E. A. Brewer, "Harvest, Yield, and
Scalable Tolerant Systems", in Proceedings of
HotOS-VII, March 1999.

[23] http://www.cs.princeton.edu
[24] http://www.akamai.com
[25] http://www.sandpiper.com
[26] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D.

Teodosiu, and A. Gupta, "Hive: Fault Containment
for Shared-Memory Multiprocessors", in
Proceedings of the 15th ACM Symposium on
Operating Systems and Principles, December 1995.

[27] DBC/1012 database computer system manual
release 2.0. Technical Report Document No. C10-
0001-02, Teradata Corporation, Nov 1985.

[28] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, D. C. Steere, "Coda: A
Highly Available File System for a Distributed
Workstation Environment", in IEEE Transactions
on Computers 39(4), April 1990.

[29] G. J. Popek, R. G. Guy, T. W. Page Jr., J. S.
Heidemann, "Replication in Ficus Distributed File
Systems", in Workshop on the Management of
Replicated Data, November 1990.

