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Abstract 

Maintaining availability in the face of failures is a 
critical requirement for Internet services.   Existing 
approaches in cluster-based data storage rely on 
redundancy to survive a small number of failures, 
but the system becomes entirely unavailable if 
more failures occur.   We describe an approach that 
allows a cluster file server to isolate failures so that 
the system can continue to serve most clients.  Our 
approach is complementary to existing 
redundancy-based methods: redundancy can mask 
the first few failures, and failure isolation can take 
over and maintain availability for the majority of 
clients if more failures occur. 
 
The building blocks of our design are self-
contained and load-balanced file servers called 
islands. The main idea underlying island-based 
design is the one-island principle: as many 
operations as possible should involve exactly one 
island. The one-island principle provides failure 
isolation because each island can function 
independently of other islands’ failures. It also 
helps the file system scale with the system and 
workload sizes because communication and 
synchronization across islands are reduced. We 
implemented a prototype island-based file system 
called Archipelago on a cluster of PCs running 
Windows NT 4.0 connected by Ethernet. The 
measurement of micro benchmark shows that 
Archipelago adds little overhead to NTFS and 
Win32 RPC performance; while the measurement 
of operation mixes based on NTFS traces shows a 
speedup of 15.7 on 16 islands. 
 
1. Introduction 
NT clusters are an important tool for large I/O-
intensive applications such as file servers, Web 
servers, and other Internet services.    A wide 
variety of research projects on cluster file systems 
have explored approaches to building cluster file 
systems that provide high availability and 
scalability. 
 
This paper discusses a new approach to 
maximizing availability on a cluster file server.  
We use the percentage of requests that succeed 

despite the failure of one or more servers as the 
availability metric, our goal in this work is 
maximize this percentage. 
 
There are two complementary approaches to 
maximizing availability.  First, we can use 
redundancy to maintain complete availability in the 
face of a small number of failures; second, we can 
try to isolate failures in order to serve as many 
requests as possible even though some cannot be 
served.  These approaches are complementary, 
since we can use redundancy to mask the first few 
failures, and then use isolation to cope with any 
additional failures. 
 
This paper describes an approach to cluster file 
system design that provides failure isolation.  We 
divide the nodes in the system into groups called 
islands.    An island might be a single node, or it 
might be a group of nodes that use redundancy 
within the island to mask failures.  In either case, 
island-based design strives to serve as many client 
requests as possible when one or more islands have 
crashed or are unavailable. 
 
The main idea underlying island-based design is 
the one-island principle: as many file system 
operations as possible should require the 
participation of exactly one island. The one-island 
principle provides good failure isolation because 
each island can function independently of other 
islands’ failures. In other words, the failure of 1 out 
of n islands in an island-based file system renders 
only 1/n data inaccessible. The one-island principle 
allows island-based systems to scale efficiently 
with the system and workload sizes because 
communication and synchronization across islands 
are reduced. 
 
Our motivation of failure isolation is analogous to 
the motivation of fault containment in Hive [26]. 
Hive, an operating system for large-scale shared-
memory multiprocessors, attempts to "contain" a 
failed part so that it does not bring down other 
parts.  
 
The target application of an island-based file 



  

system is the data storage for those Internet 
services that prefer to serve as many clients as 
possible rather than to go entirely offline when 
partial failures are present, that are medium to large 
scale, e.g. tens to hundreds of PC’s connected by 
commodity local area networks such as Ethernet, 
and that expect occasional node failures and 
network partitions. Examples include email, Usenet 
newsgroup, e-commerce, web caching, and so on. 
 
We evaluated the island-based design by statistical 
analysis of the access patterns of existing systems. 
The results show that the partial availability 
provided by island-based file system is useful to 
Internet services because a temporary partial 
failure can be made unnoticeable to the majority of 
clients. In one example, if 1 out of 32 islands is 
down for an hour, we expect that 93.8% clients 
during that hour will not notice the temporary 
partial failure. On average 99.8% operations 
involve a single island and hence do not require 
communication or synchronization across islands. 
 
We implemented a prototype of island-based file 
system called Archipelago on a cluster of PCs 
running Windows NT 4.0 connected by Ethernet. 
The measurement of micro benchmarks shows that 
Archipelago adds little overhead to NTFS and 
Win32 RPC performance; the measurement of 
operation mixes based on NTFS traces shows a 
speedup of 15.7 on 16 islands. 
 
2. Quantified motivation 
To quantitatively motivate the potential advantage 
of island-based design, let us examine the 
temporary or permanent data loss ratios under 

partial failures in existing cluster file systems and 
island-based file systems with the same 
redundancy schemes. 
 
We modeled the data loss ratio in case of partial 
failures in cluster file systems (CFS) built on top of 
virtual storage layers, such as Frangipani [1] and 
xFS [4], under various redundancy schemes. The 
results show that CFS loses a significantly larger 
portion of data than the virtual storage it loses in a 
partial failure because the data in a surviving server 
will be inaccessible if any server containing a piece 
of metadata needed to access the surviving data 
fails. For example, with the loss of 1 out of 32 non-
redundant virtual storage servers or 3.1% non-
redundant virtual storage space, CFS is expected to 
lose 63.8% data in files and directories. The 
detailed analytic models can be found in our 
technical report [14].  
 
We suggest that the temporary or permanent data 
loss of an existing redundant file system can be 
reduced by a failure isolation scheme without 
altering the underlying redundancy scheme. We 
observe that many existing redundant storage 
systems are divided into groups and that data 
redundancy is applied within groups, but not across 
groups. It results either from the nature of the 
redundancy scheme, such as mirroring pairs, or 
from performance optimization, such as RAID-5 
striping groups [4]. By configuring each redundant 
group as an independent file system, we can always 
achieve better availability than by running a single 
file system on top of the whole storage system. We 
change the data loss example above by assuming 
that each of the 32 virtual storage servers is a 
RAID-5 single-parity stripe group of 4 physical 
nodes and that xFS [4] runs on the 128 nodes as a 
single file system. If we run an independent xFS in 
each group, we expect to lose only 3.1% vs. 63.8% 
data when we lose at least 2 nodes in the same 
group. 
 
The challenge is how to evenly, automatically and 
dynamically partition a single large file system into 
a cluster of independent components without 
causing inconsistency across components in the 
face of partial failures. 
 
3. System structure 
Figure 1 gives an overview of an island-based file 
system in a typical configuration. An island 
consists of a server process running on top of a 
local file system. Client applications view the 
island-based file system as a single system and 
access it through local file system switches and 
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Figure 1. Overview of an island-based file system
(IFS). Shaded boxes are islands or servers and
non-shaded boxes are clients. 
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stubs. Islands and clients are connected by 
commodity local area networks such as Ethernet. 
 
Let us examine two important issues in island-
based design, data distribution and metadata 
replication. 
 
3.1 Hash-based data distribution 
We designed a new data distribution strategy for 
island-based file systems: data is distributed to 
islands at directory granularity by hashing the 
pathnames of the directories to island indices. 
 
We choose directory granularity rather than block, 
file or sub tree granularity because most file system 
operations involve a single directory and hence 
satisfy the one-island principle, and directories are 
finer grained than sub trees so as to allow load 
balance.  
 
We choose hashing instead of recursive name 
lookup because hash functions can be computed on 
the client machines without contacting any servers. 
We choose to hash pathnames instead of low-level 
integer identifiers such as inode numbers because 
pathnames are the only information that a client 
can possibly have without contacting any servers, 
and they are independent of internal 
representations of file systems. 
 
Clients determine which island to contact for a 
directory or a file in that directory by hashing the 
full pathname of the directory to an island index in 
two steps: first, hashing the pathname to a bucket 
(an integer) with a universal hash function [7]; 
second, hashing the bucket to an island index with 
an extendible hash table [8]. The universal hash 
function used in an island-based file system is a 
consistent mapping from a variable-length 
character string to a 32-bit integer and has good 
distribution in the output space independently of 
the input space. A universal hash function can 
evenly distribute an arbitrary set of directories to 
buckets; however, it does not have control on the 
workload distribution across directories; therefore, 
an additional level of indirection is necessary to 
handle the hot spots and dynamic load changes. A 
subset of the 32 bits is used as the index to the 
extendible hash table and the table entries are 
island indices. As load imbalance across islands 
increases or islands are permanently added or 
removed during system reconfiguration, the table 
entries are reassigned to islands to rebalance the 
load using a bin-packing algorithm. The 
reassignment is made monotonic, i.e. each island 
either loses data or gains data, but not both. 

Therefore, only a minimal amount of data needs to 
be migrated between islands. 
 
Inside each island, we store directories in a 
skeleton hierarchy. We call the file system running 
inside each island the internal file system. An 
internal file system can be an instance of any 
existing file system such as a local file system, a 
replicated file system or a cluster file system. The 
skeleton hierarchy in an island contains the 
directories hashed to this island index and their 
ancestor directories up to the root, and is stored in 
the unmodified internal file system as a normal 
tree. This way, islands can function independently 
of others’ failures and we can leverage the 
functions of the internal file systems. The 
consequence of storing data in skeleton hierarchies 
is the replication of certain metadata or directory 
attributes. 
 
3.2 Usage-based metadata replication 
Although it might not take much space to replicate 
metadata across islands if it accounts for a small 
portion of the entire system, updates to replicated 
metadata will have to be done in all replicas and 
hence violate one-island principle. Therefore, we 
use a usage-based adaptive replication scheme in 
the island-based design, i.e. we replicate metadata 
that is more frequently used to a higher degree. 
 
To help us explain the usage-based metadata 
replication, we introduce two terms, directory 

Figure 2. Skeleton hierarchy and directory
replication. This is an image of the internal file
system in an island that is the directory owner
of the highlighted directories. Partial directories
are replicas that contain only attributes and
partial contents or no contents. 
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owner and parent owner. The directory owner of a 
directory is the island to which the directory is 
hashed. The parent owner of a file or directory is 
the directory owner of its parent directory. A file 
resides in exactly one island, its parent owner. A 
directory will be replicated in its parent owner, in 
its directory owner and in all the parent owners of 
its descendent directories. Therefore, the 
replication scheme can automatically adapt to the 
usage of the metadata. In particular, the root 
directory is replicated in all islands; files are not 
replicated across islands; intermediate directories 
are replicated to various degrees.  
 
However, only some directory attributes, not the 
directory contents, need to be replicated. Directory 
contents are the lists of names and addresses of sub 
directories and files. Only the directory owner 
keeps a complete copy of the directory contents; 
other replicas have partial contents or no contents. 
Changes to directory contents, e.g. adding or 
removing files, need to be done in the directory 
owner only. Directory attributes include name, 
size, security, time stamps, read-only tag, 
compressed tag, etc.. Changes to directory 
attributes will, however, affect multiple replicas.  
 
We want to replicate only those attributes that are 
needed when a descendent of the directory is 
looked up. We divide directory attributes into two 
categories, static attributes and dynamic attributes, 
based on their access patterns. A static attribute is 
more frequently read than written, and a dynamic 
attribute is more frequently written than read. 
Attributes such as name, security, read-only tag 
and compressed tag are static. Attributes such as 
size and time stamps are dynamic. We replicate the 
static attributes and do not replicate the dynamic 
attributes. We use a read-one-write-all policy to 
maintain consistency of the static attributes; the 
overhead of updates is acceptable since static 
attributes rarely change. We read and write 
dynamic attributes in a single island, the directory 
owner. 
 
Figure 2 gives an illustration of the skeleton 
hierarchy and metadata replication. 
 
3.3 Evaluation 
We evaluated the load balance and storage 
overhead in island-based file systems by statistical 
analysis of the contents of existing systems. 
Detailed measurements and analysis can be found 
in our technical report [14]. We summarize the 
results as follows: 
• Only a small portion of storage is needed for 

replicating directory attributes (0.1% to 0.5% 
per island or 0.3% to 7.7% in total in our 
experiments).  

• Load imbalance (average number of bytes per 
island dividing its standard deviation) resulted 
from the hashing algorithm in island-based file 
systems is low (0.0001 to 0.0279 in our 
experiments) in spite of the unbalanced load 
across directories or hot spots. 

 
4. Protocols and other design issues 
To make the island-based design a viable solution, 
we need to address the issues of rebalance, 
consistency, recovery, etc. in addition to data 
distribution and metadata replication. We use 
standard approaches that are tailored to island-
based file systems, as we will briefly describe 
below. 
 
4.1 Rebalance protocol 
As discussed in the previous section, the hash 
function in data distribution can be changed to 
rebalance the load across islands when load 
imbalance exceeds a threshold or when islands are 
permanently added to or removed during system 
reconfiguration. 
 
We use a two-phase commit protocol [16] in the 
rebalance procedure so that the hash table is 
updated in all islands atomically in the face of 
partial failures. In the first phase, load information 
(number of bytes) is collected from all islands and 
all islands are prepared for the rebalance. In the 
second phase, a new hash table is computed 
according to the load information, and is either 
updated in all islands or aborted if any island is 
inaccessible.  
 
The hash table is replicated in all clients of the file 
system as well as in all islands. The table has an 
entry per directory bucket and the number of 
buckets is a constant factor of the number of 
islands; therefore, the table size is proportional to 
the number of islands. (The universal hash function 
can map multiple directories to the same bucket. 
See Section 3.1.) A client is asked to update its 
hash table when any server detects its out-of-date 
copy using piggy-back information in regular 
operations. 
 
How often the rebalance procedure needs to be 
invoked depends on the load imbalance that can be 
tolerated. We expect that a reasonable threshold 
can be set so that the rebalance procedure is 
invoked at a non-disruptive frequency, e.g. once 



  

every weekend. 
 
A trace-driven study of the online reconfiguration 
of a web server running on an island-based file 
system shows that data migration in the rebalance 
procedure is made transparent to the web server in 
terms of both functionality and performance [14]. 
Therefore, we do not expect the rebalance 
procedure to have a noticeable impact on client 
operations. 
 
4.2 Consistency protocol 
Since certain states, e.g. static directory attributes, 
are replicated across islands, a cross-island 
protocol is necessary to keep the replicas consistent 
in the face of island failures and network partitions. 
Cross-island operations in island-based file systems 
include CreateDir and RemoveDir, which involve 
two islands, SetDirAttr, SymLinkDir and 
DeleteLinkDir, which involve all islands, and 
RenameDir, which involves a variable number of 
islands depending on the directory to be renamed. 
 
The island-based design eases the consistency 
maintenance in two ways. First, the majority of 
operations involve a single island, hence do not 
require a cross-island protocol for consistency. 
Second, all cross-island operations on the same 
object are coordinated by a single island, i.e. the 
directory or parent owner; hence synchronization 
can be done with centralized control per object, 
which eases the protocol design. 
 
The single coordinator property of the protocol 
ensures that no conflicting updates will occur even 
in the face of network partitions, hence largely 
relaxes the synchronization semantics. We 
designed and implemented a protocol that uses 
logical clock synchronization [15], logging [10] 
and two-phase commit [16] for atomicity and 
serialization of cross-island operations. In 
particular, we choose to maintain the following 
invariants in the face of island failures and network 
partitions: 
1. All operations on the same object are 

serialized, i.e. clients observe them in the same 
order in all islands. 

2. All operations by the same client thread are 
serialized, i.e. clients observe them in the same 
order in all islands. 

3. Operations by different clients can be 
serialized if the clients interact with each other 
by accessing the same object(s) in the file 
system. 

4. The ordering relations are transitive, i.e. if 
operation 1 is observed to happen before 2 and 

2 before 3 then 1 is observed to happen before 
3. 

 
4.3 Recovery protocol 
We designed and implemented a fairly standard 
recovery protocol for islands to recover from 
various combinations of failures back to consistent 
state.  
 
Cross-island operations are logged on disk if they 
cannot be committed in all involved islands due to 
island failures or network partitions. A failed or 
disconnected island will exchange logs with other 
islands upon reconnection to those islands. In 
particular, we choose to maintain the following 
invariants in the state transitions of a recovering 
island r: 
1. All logged operations from other islands will 

be committed in r in the ascending order of 
their time stamps. That is, operations serialized 
in real time will be committed in the same 
order as if r had not failed. 

2. No client requests or requests that indirectly 
affect clients’ view of the system state will be 
processed in r until all logged operations have 
been committed in r. That is, the inconsistent 
state of r, if there is any, is made invisible to 
clients. 

 
4.4 Other design issues 
Island-based file systems inherit most functions 
from their internal file systems, such as metadata 
structures, disk space allocation, I/O scheduling, 
server-side caching, locking, local security, 
recovery, etc.; therefore, we are not concerned 
about all the low-level details in file system design 
and implementation. We extended certain 
functions, such as symbolic links and renaming 
directories, to adapt to the island-based 
environment. Interested readers should refer to our 
technical report for more information about the 
design, implementation, and evaluation of our 
prototype [14]. 
 
5. Implementation 
We have implemented a prototype of island-based 
file system called Archipelago on a cluster of 
Pentium II PCs running Windows NT 4.0. NTFS 
[13] is used as the internal file system. NTFS uses 
extensive caching and name indexing for better 
performance and logs metadata changes for local 
recoverability. NTFS can be configured to run on a 
group of disks with parity striping for data 
redundancy. 
 



  

An Archipelago server runs on each machine and 
forms an island. Each client accesses files through 
a local stub, which forwards the request to a server 
through Windows remote procedure call (Win32 
RPC). The server is implemented as a user-level 
process. For expediency, our prototype client is 
implemented as a stub .dll that redirects requests 
for Archipelago files directly to servers, bypassing 
the in-kernel file system drivers. This solution is 
adequate for experimental purposes, although it 
does not provide total seamless integration with 
existing applications. A more complete solution 
would implement a full installable file system 
driver [20]. We believe the performance difference 
in these two solutions to be negligible compared 
with the time to service file system requests in a 
distributed file system. 
 
The server and stub are implemented in C++, and 
consist of 3088 and 5415 lines of code, 
respectively. The server program is linked with the 
stub library for code reuse purpose. In addition, 
there are 24042 lines of automatically generated C 
code for RPC and system call interception.  
 
6. Measurements 
In this section, we present the selected 
measurements to answer the following questions. 
1. How many clients will likely notice a partial 

failure in an island-based system? (Section 
6.1) 

2. What is the overhead of island-based design in 
simple cases? (Section 6.2) 

3. How many operations require cross-island 
communication and synchronization? (Section 
6.3) 

4. How do cross-island operations affect the 
overall scalability of an island-based file 
system? (Section 6.4) 

 
6.1 Impact of partial availability on web 

clients 
The effective availability of an island-based file 
system with partial failures depends on the number 
of distinct directories that clients access because a 
partial failure in the system causes a random set of 
directories to be inaccessible. 
 
We compute the histograms of clients and requests 
by the distinct directories they touched from the 
access logs of the web server running on our site 
[23]. We assume that the island-based file system 
acts only as a content provider to the web server, 
i.e. accesses to control information or executables 
of the web server itself do not count in our 
statistics. We group the HTTP requests into clients 
by the hostnames or IP addresses in the requests, 
and within each client, we group requests into 
directories by the URLs in the requests. We 
compute the histograms from two months’ traces, 
July 1998 (137248 clients and 1304975 requests in 
total) and January 1999 (166804 clients and 
1297428 requests in total), using a time window 
size of an hour. The results, in Figure 3, show that 
the largest portion (48.3%) of clients accessed only 

Figure 3. Histograms of clients and requests by
bins of distinct directories in the web traces. The
numbers read as "48.3% clients accessed 1
distinct directory during every hour" or "17.9%
requests were issued by clients who accessed 2
distinct directories during every hour".
Accesses to more than 24 directories account for
0.4% clients and 19.3% requests in total, and
are omitted in the graph for readability. 
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1 distinct directory during every hour and the 
largest portion (17.9%) of requests were issued by 
clients who accessed 2 distinct directories during 
every hour. Requests are more scattered across bins 
in the histogram because larger bins have more 
accesses and hence more weights. We computed 
the histograms by dividing the traces into other 
time windows ranging from 30 minutes to 8 hours, 
but there was no significant difference across time 
windows. 
 
Given the statistics of distinct directories, we 
compute the expected availability of the island-
based file system for data, clients and requests, 
respectively, shown in Figure 4. Since the majority 
of web clients access a small number of distinct 
directories, the expected availability for this class 
of clients is high in spite of the fact that a partial 
failure in the system causes a random set of 
directories to be inaccessible. For example, if 1 out 
of 32 islands is down for an hour, we expect that 
93.8% clients of the web server during that hour 
will not notice the temporary partial failure. 

 
6.2 Single client performance 
In this section, we present the results of running 
single client micro benchmarks on Archipelago in 
various configurations. The machines used in our 
experiments have Pentium II 300 MHz processors, 
128 MB main memories and 6.4 GB Quantum 
Fireball IDE hard disks for use by Archipelago. 
The PCs are connected by a 3COM SuperStack II 
100Mbps Ethernet hub. The PCs run Windows NT 
Workstation 4.0 and the hard disks for Archipelago 
are formatted in NTFS. 
 
The set of micro benchmarks consists of 9 phases 
and each phase exercises one of the file system 
calls: CreateDir, SetDirAttr, CreateFile, 
SetFileAttr, ReadDir, WriteFile, ReadFile, 
DeleteFile and RemoveDir. The data set for the 
micro benchmarks is an inflated project directory 
that consists of 3600 directories, 3876 files and 
154.4 MB of data in files. The 3876 files are stored 
in 540 directories and the rest of the directories are 
empty. Disk space is pre-allocated for each file in 
the CreateFile phase. The transferred block size in 
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Figure 5. Single client performance. A single
client runs the micro benchmarks in five cases:
directly on NTFS (NTFS), on the local machine
of an Archipelago server (Local), on a remote
machine from the server (Remote), with two
servers (2 Servers), and with the consistency
protocol turned on with two servers
(Consistency), respectively. The y-axis in (a) is
the latency in milliseconds measured at the
client side. Lower columns represent better
performance. The y-axis in (b) is the bandwidth
in MB/s in the WriteFile and ReadFile
operations measured at the client side. Higher
columns represent better performance.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Servers

S
p

ee
d

u
p

Mix 1 measured Mix 1 estimated

Mix 2 measured Mix 2 estimated

Figure 6. Speedup of throughputs of 
randomized operation mixes. The four curves 
are the measured speedup of operation mix 1 
(Table 2), estimated speedup of operation mix 1, 
measured speedup of operation mix 2 (Table 2), 
and estimated speedup of operation mix 2, 
respectively. The speedup is calculated as the 
absolute throughput (requests/sec) divided by 
the throughput of 1 server. The throughput of 1 
server is 75.6 requests/sec in operation mix 1 
and 80.1 requests/sec in operation mix 2, 
respectively. 



  

the WriteFile and ReadFile phases is 64 KB or the 
file size, whichever is smaller. Each test is run 
more than 3 times and the results shown in this 
section are the averages.  
 
We ran the micro benchmarks with a single client 
in five cases: directly on NTFS (NTFS), on the 
local machine of an Archipelago server (Local), on 
a remote machine from the server (Remote), with 
two servers (2 Servers), and with the consistency 
protocol turned on with two servers (Consistency), 
respectively. Figure 5 shows the bandwidth in 
WriteFile and ReadFile and the response times in 
other operations, all measured at the client side. 
 
The difference between the NTFS and Local cases 
is caused by the overhead of computing hash 
functions. This overhead is low compared to the 
operation time itself. The difference between the 
Local and Remote cases is caused by the 
communication overhead (Win32 RPC on TCP/IP 
and 100 Mbps Ethernet) between the client and the 
server, i.e. 0.48 ms latency and 8.67 MB/s 
bandwidth in our experiments. There are two 
causes for the difference between the Remote and 
2-Server cases: the cross-island operations such as 
CreateDir and SetDirAttr involve an additional 
server in the latter case and there was more total 
file system buffer cache in the latter case. The 
difference between the 2-Server and Consistency 
cases is caused by the overhead of the consistency 
protocol. 
 
The results show that island-based design adds 
little overhead to NTFS and Win32 RPC 
performance and that the consistency protocol 
slows down the cross-island operations but does 
not have a noticeable impact on one-island 
operations. 
 
We ran the same micro benchmarks with 1 to 16 
servers and clients. The results, not shown here 
[14], indicate that the one-island operations scale 
linearly with the system and workload sizes. Two-
island operations scale less efficiently and all-
island operations do not scale because the 
consistency protocol requires 2*k uni-cast 
messages per cross-island operation, where k is the 
number of islands involved in the operation. 
Therefore, the overall scalability depends on the 
actual operation breakdown. 
 
6.3 Operation breakdown in NTFS 

traces 
Previous studies of file system traces indicated that 

the cross-island operations are rare [17] [9] [18]. 
However, it is well known that file access patterns 
are highly dependent on the operating systems 
where the traces were taken. Since we implement 
Archipelago on Windows NT as opposed to UNIX, 
in which the Sprite and NFS traces were taken, we 
feel it important to study the file access patterns in 
NTFS. We choose 7 workstations running 
Windows NT 4.0 and collected statistics on 
operations by running a trace program on each 
workstation. The users of the workstations include 
three graduate students, a software engineer, a 
home user and several lab users. The trace 
programs were run for 2 to 7 days and collected 
30,391 to 480,385 total events. The trace program 
forks a thread to wait on each file system related 
event such as FileAdded through the NTFS event 
notification interface ReadDirectoryChangesW 
[19]. We present the events in Table 1 and infer the 
operation breakdown from them.  
 

No. Events Avg. Standard 
Deviation 

1 Total Events 24440
8 

140571 

2 FileAdded 3.34% 1.70% 
3 FileRemoved 2.38% 1.70% 
4 FileRenamed 0.41% 0.31% 
5 DirAdded 0.04% 0.07% 
6 DirRemoved 0.03% 0.07% 
7 DirRenamed 0.00% 0.00% 
8 FileAttrModified 26.8% 10.8% 
9 FileWritten 35.5% 11.3% 
10 FileAccessed 16.3% 8.60% 
11 FileSecurityModified 0.03% 0.04% 
12 DirAttrModified 0.07% 0.07% 
13 DirWritten 1.23% 1.59% 
14 DirAccessed 13.9% 17.8% 
15 DirSecurityModified 0.00% 0.00% 
16 FileLinkModified 0.16% 0.08% 
17 FileLinkRead 0.09% 0.10% 
18 DirLinkModified 0.00% 0.00% 
19 DirLinkRead 0.001

% 
0.002% 

 
Table 1. Percentages of file system events in NTFS 
traces. Row 1 (Total events) shows the total 
number of events in all traces. Rows 2 through 19 
show the percentage of each event. Shaded events 
correspond to cross-island operations in island-
based file systems. The column "Average" shows 
the percentage of each event averaged over all 
traces. The column "Standard Deviation" shows the 
standard deviation of the percentages of each event 



  

in each trace. Events not shown in the table have 
zero percentages. The names "FileLink" and 
"DirLink" refer to symbolic links (shortcuts in NT) 
to files and directories, respectively. 
 
Table 1 shows that, on average, one-island 
operations account for 99.8% of total operations. 
The slow operations in island-based file systems, 
e.g. setting directory attributes, renaming 
directories, creating symbolic links (shortcuts) to 
directories, are rare. 
 
The section below shows how the cross-island 
operations affect the overall scalability of the 
system, given the measured breakdown in this 
section. 
 
6.4 Scalability of operation mixes 
We run a benchmark of randomized operation 
mixes to measure the overall scalability of 
Archipelago. The benchmark is extended from the 
SPEC SFS or LADDIS benchmark [9]. Since 
Archipelago is implemented on top of NTFS, the 
operation mix in our benchmark uses NTFS API 
and is based on the operation breakdown we 
measured in NTFS, as shown in the previous 
section. The experiment environment and 
configuration are the same as in Section 6.2. 
 
We ran the benchmark with 1 to 16 clients and 
servers on 1 to 16 machines. Each client runs on 
the same machine as a server, but accesses random 
files, directories and symbolic links across the 
entire system. The pre-created data set includes 
2000 directories, 2000 files, and 100 symbolic 
links shared by all clients, and the same numbers of 
private objects (directories, files and symbolic 
links) per client. The client repeatedly does an 
operation that is randomly chosen at specified 
frequencies. For each operation, the client 
randomly chooses an object, either from the 
existing shared or private objects, or by generating 
a new name in an existing directory, depending on 
the operation. The WriteFile operation writes a 
random number (chosen from 0 to 1 MB) of bytes 
to the file; both WriteFile and ReadFile operations 
transfer up to 8KB per request so that the operation 
time is comparable to those of other operations. 
Each client maintains its own view of the shared 
objects and its private objects, but does not 
synchronize with other clients on the creation and 
deletion of the shared objects. Therefore, an 
operation on a shared object might fail if it 
conflicts with a previous operation on the same 
object from another client [9]. After the data set is 
pre-created, all clients run the randomized 

operation mix for 10 minutes. The throughput is 
calculated as the total number of successful 
operations by all clients divided by 10 minutes. 
 
We ran the benchmark with two different operation 
mixes. Mix 1 exaggerates the cross-island 
operations and mix 2 is closer to the measured 
breakdown. The mixes cover a number of typical 
operations from each category, i.e. one-island, two-
island and all-island. Note that more WriteFile than 
ReadFile events are recorded in the NTFS traces 
because reads that hit in cache cannot be captured 
by ReadDirectoryChangesW.  
 
We recorded the actual client operations and 
server-to-server RPCs in the benchmarks, and 
estimated the speedups of the overall operation mix 
accordingly. Table 2 shows the recorded operation 
mixes and Figure 6 shows both the measured 
speedups and estimated speedups. Assuming that 
each local operation and RPC takes the same 
amount of time, the estimated speedup with n 
servers is n/(1+overhead_per_operation), where 
the overhead per operation is the total number of 
server-to-server RPCs divided by the total number 
of successful client operations. 
 
 Mix 1 (%) Mix 2 (%) 
CreateDir 0.9297  0.0522 
CreateFile 4.0314  3.5661 
DeleteFile 2.7731  2.4353 
DeleteLinkDir 0.9850  0.0128 
ReadDir 14.4505 15.6528 
ReadFile 14.1343  15.2778 
RemoveDir 0.7543  0.0162 
ResolveLinkDir 1.7205 0.1014 
SetDirAttr 1.0383 0.0713 
SetFileAttr 26.6085 29.2835 
SymLinkDir 1.0089 0.0109 
WriteFile 31.5656 33.5194 
Successful 45360 to 309960 48042 to 

756120 
Total 48042 to 325534 48043 to 

780260 
Throughput 
(requests/sec) 

75.6 to 516.6 80.07 to 
1260.2 

 
Table 2. Operation mixes. Each percentage in this 
table is the number of successful requests on each 
operation divided by the total number of successful 
requests, averaged over 1 to 16 clients and servers. 
The total numbers of requests and throughputs 
grow with the numbers of clients and servers for 
the fixed 10 minutes period; the ranges are shown 
in the last three rows in the table. 



  

 
Operation mix 1 scales at a less than ideal slope 
due to the relatively large number of cross-island 
operations. For example, with 16 servers, the 
average overhead per operation is 0.8. The 
difference between the estimated speedup and 
measured speedup is due to the assumption of 
equal RPC processing times and local operation 
times. Load is well balanced across servers in both 
operation mixes; the largest/average requests per 
server are below 1.1 in all cases. Operation mix 2 
is closer to the measured breakdown, i.e. contains a 
smaller number of cross-island operations; it scales 
nearly ideally in both estimated and measured 
throughputs. 
 
6.5 Implications for larger scale systems 
Given the percentages of one-island (P1), two-
island (P2) and all-island (Pa) operations, where 
P1+P2+Pa=1, we can predict the speedup 
efficiency at large scale with an analytic model. 
Assuming that each local operation and RPC takes 
the same amount of time, the estimated speedup 
efficiency with n servers is 
1/(1+overhead_per_operation), where the 
overhead per operation is the average number of 
server-to-server RPCs per operation and equals  (2-
1)*2*P2+(n-1)*2*Pa. (The factor 2 results from 
the two-phase commit protocol.) Two-island 
operations include CreateDir, RemoveDir, 
ReadFileLink and ReadDirLink; all-island 
operations include SetDirAttr, SetDirSecurity, 
SymLinkDir and RenameDir. Some operations, 
e.g. SetDirSecurity and SymLinkDir, did not show 
up in our statistical experiments; we inferred their 
percentages from other statistics [18]. The resulting 
percentages are P1=99.768%, P2=0.161% and 
Pa=0.071%. From the speedup efficiency model 
above, we predict that the system can scale up to 
702 islands while maintaining the efficiency higher 
than 50%; that is, an island-based file system can 
achieve a higher speedup than 351 with 702 
islands. 
 
While such a large cluster is not currently available 
to us for experiments, our measurement results on 
the small cluster are encouraging and we are 
seeking external resources for further scalability 
tests. 
 
6.6 Discussion 
Although the target applications of an island-based 
file system are Internet services, we use a more 
generic benchmark in the scalability 
measurements. Our purpose of those measurements 

is to learn the impact of cross-island operations on 
the overall scalability of an island-based file 
system, but web access logs only give file-reading 
operations. We do not model in our benchmark the 
self similarity or hot spots in web accesses because 
it is not clear whether the same patterns will 
necessarily show up in disk accesses if web 
requests can be processed with data in the main 
memory cache of web servers or file system 
clients. 
 
7. Related work 
Existing file systems designed for high availability, 
such as Coda [28] and Ficus [29], replicate data 
across servers. Our approach in island-based file 
system, i.e. failure isolation, is complementary to 
the data redundancy approach for high availability. 
Client caching is extensively used in distributed 
file systems like Coda [28], Andrew [5] and Sprite 
[17] to support disconnected operations and to 
reduce traffics to servers. Similar to server 
replication, client caching improves availability by 
data redundancy, i.e. by replicating data in clients. 
It also improves scalability by reducing server load 
so that the same number of servers can serve a 
larger number of clients gracefully. Our scalability 
goal in island-based file system is to achieve 
efficient speedup when servers are added to the 
cluster, which is orthogonal to the goal of client 
caching. We have not implemented client caching 
in Archipelago, but we do not expect the island-
based design to add any difficulty to such 
implementation. 
 
State-of-the-art cluster file systems like Frangipani 
[1] and xFS [4] achieve high reliability and 
scalability by data redundancy. A fast system area 
network such as ATM is typically used in those 
cluster file systems for aggressive communications 
across data replicas. The majority of operations in 
island-based file systems do not require 
communication or synchronization across islands; 
therefore, an island-based file system can scale 
efficiently with commodity networks such as 
Ethernet. The ideal configuration for maximal 
reliability, availability and scalability is to run an 
island-based file system with a file system like 
Frangipani or xFS inside each island. 
 
In terms of failure isolation, cross-node 
communications, locality and leveraging functions 
in local file systems, island-based file systems are 
comparable to distributed file systems like NFS 
[6], JetFS [12] and CIFS [11]. However, those 
systems do not share with island-based file systems 
scalability, load balance, and/or automatic data 



  

partitioning and reconfiguration. 
 
In Teradata [27], two orthogonal hash functions are 
used to map data items to two nodes. In an island-
based file system, each data item is mapped to a 
single island but redundancy might be used inside 
the island. The Teradata approach offers better load 
balance when a single node fails, but the failures of 
two nodes always render a portion of data 
inaccessible. Our approach makes most operations 
involve a single island, isolates failures across 
islands, and does not lose data unless all replicas in 
the same island fail. 
 
A large scale Internet service typically consists of 
three logical tiers: request distribution tier, service-
specific processing tier and data storage tier. The 
Locality-Aware Request Distribution (LARD) [3] 
is a solution to locality and load balance in the 
distribution tier. The Cluster-Based Scalable 
Network Services (SNS) [21] [22] provides a 
programming model for the processing tier. In 
particular, the authors proposed application 
decomposition and orthogonal mechanism for 
graceful degradation during partial failures. Island-
based design addresses failure isolation, locality 
and load balance in the storage tier. While the 
distribution-tier and processing-tier approaches 
suffice for read-mostly access patterns and weak 
consistency requirements, a robust and scalable 
storage tier is necessary for services with read-
write access patterns and strong consistency 
requirements, such as shared calendar services and 
online shopping sites. The combination of the 
approaches in all three tiers can potentially achieve 
high availability and scalability for Internet 
services with a wide range of access patterns and 
consistency requirements. 
 
Commercial web content distributors such as 
Akamai [24] [2] and Sandpiper [25] provide 
geographically distributed replication services to 
read-mostly web contents so that the latency in 
delivering contents to clients can be reduced. We 
are focused on improving the availability and 
scalability of local sites with read-write patterns. 
Their approach and ours are complementary to 
each other in improving the overall availability and 
scalability of Internet services. 
 
Our main contributions are: 
1. We address the availability and scalability 

issues for Internet services in the data storage 
tier. 

2. Our approach to availability and scalability is 
isolating failures and reducing communication. 

3. We achieve failure isolation and reduced 
communication by enforcing a one-island 
principle in hash-based data distribution and 
usage-based metadata replication. 

 
8. Future work and conclusion 
NT farms are a fact of life -- people are already 
using them to provide scalable services.  An 
important question for people who are running all 
those NT farms to understand is how to structure 
the cluster in a way that can both balance loads and 
isolate failures without having to reinvent a 
distributed file system from scratch, which is a 
very difficult endeavor, by leveraging as much as 
possible from the existing NT infrastructure. Our 
experience suggests that this is indeed possible. 
 
We designed an island-based file system as the 
data storage for highly available and scalable 
Internet services. We evaluated the design by 
statistical analysis of the access patterns in existing 
systems. We implemented Archipelago, a 
prototype of the island-based file system, and 
studied the performance of Archipelago in micro 
benchmarks and operation mixes. 
 
We are considering extensions to the hashing of 
directories. Ideally, we would like to have an 
adaptive hashing algorithm that determines the 
height of a sub tree or the granularity of a file to 
hash based on the current state of load balance and 
access patterns. We are also going to improve the 
performance of all-island operations like 
SetDirAttr by replacing the 2*n unicast messages 
and 2*n replies with 2 broadcast or multicast 
messages and 2*n replies, where n is the number of 
islands. 
 
We draw the following conclusions: 
• The failure isolation provided by island-based 

file systems is useful to Internet services 
because a temporary partial failure can be 
made unnoticeable to the majority of clients. 

• An island-based file system can scale well 
with the system and workload sizes because 
the majority of operations do not require 
communication or synchronization across 
islands. 
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