
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Trusted Path Execution for the L inux 2.6 Kernel as a Linux Secur ity Module
Niki A. Rahimi

IBM Corporation

Abstract
The prevention of damage caused to a system via malicious executables is a significant issue in the current state of
security on Linux operating systems. Several approaches are available to solve such a problem at the application
level of a system but very few are actually implemented into the kernel. The Linux Security Module project was
aimed at applying security to the Linux kernel without imposing on the system. It performs this task by creating
modules that could be loaded and unloaded onto the system on the fly and according to how the administrator
would like to lock down their system. The Trusted Path Execution (TPE) project was ported to the Linux kernel as
a Linux Security Module (LSM) to create a barrier against such security issues from occurring. This paper will at-
tempt to explain how Trusted Path Execution is implemented in the Linux kernel as an LSM. It will also describe
how TPE can prevent the running of malicious code on a Linux system via a strategically placed hook in the kernel.
The usage of a pseudo-filesystem approach to creating an access control list for users on the system will also be
discussed. The paper will further explain how TPE is designed and implemented in the kernel. This paper will
show how the access control list is utilized by the module to place checks on the execution of code on the system
along with a check of the path the code is being run in. Further, the origins of the “Trusted Path” concept and its
origination in the OpenBSD operating system will be discussed along with how TPE was introduced to the Linux
security community. The paper will conclude with a synopsis of the contents and future paths and goals of the
project.

1 Introduction

The running of malicious code on a Unix system ei-
ther via an active attacker or unsuspecting local user is
one of the greatest threats to computer security we have
these days. There are and have been several solutions
to this problem. Many of the solutions only solve the
problem at one layer of the system such as the network.
The problem can and should be approached by apply-
ing security at various layers of the system. Much of
the scenarios involving malicious code can be attribut-
ed to malevolent users placing damaging executables in
an unprotected system and running them either remote-
ly or via an unsuspecting local user. Other scenarios
involving these unsuspecting local users occur when
said user has written potentially damaging code them-
selves but are unaware that this is the situation. The in-
nocent user attempts to run this buggy code and finds
that they have caused major damage to their own sys-
tem. The Trusted Path Execution LSM attempts to pre-
vent such occurrences from happening.

The problems that malicious executables can cause
are varied but for the most part the biggest issue is ma-
licious code being placed on the system either inten-
tionally or accidentally. There are several scenarios of
how this can be bad for the system. If you can think of
a good way to hose a system, it could probably be done
with a malicious executable. The problem is greatly
enhanced by systems that are unprepared for such at-
tacks. Of course, where the executable resides and
who is running it will be a major factor in how much

damage it can do. Malicious code can be especially
problematic in unsafe directories of a system where the
parent directory of the malicious executable in question
is world and/or group writeable. The malicious user is
able to run code that when given the privileges of write
can potentially overwrite or damage proper code on the
system.

The Trusted Path Execution module attempts to pre-
vent the problems that malicious code attacks create. It
does so by protecting the system at the point from
which the execution of a file takes place on a given
system. The module patches the Linux kernel in such a
way as to make a quick check of the current user's cre-
dentials and verifies that the executable is not being run
in a vulnerable path on the system. If a situation is
found where the module does not accept the security of
the given situation, a failure will occur within the mod-
ule and an error -EACCES will be returned.

The module utilizes a kernel hook within the Linux
Security Module (LSM) framework in which it makes
acheck at exactly the point of execution on a file in the
system. This check will verify whether the path is, in
TPE's sense, “trusted” and whether the current user at-
tempting to execute the file is also “trusted” . If a situa-
tion is found where both the user and path are consid-
ered untrusted, then execution fails. All other scenarios
will result in the execution being allowed.

The determination of whether the path and user are
trusted is also made by the module. It will check
whether the parent directory of the file attempting to be
executed is root owned and whether it is group and oth-

er writeable. If it is root owned and neither group nor
world writeable, the path is considered trusted. If the
current user attempting to run the code is either root or
is listed in a trusted user access control list, they are
considered trusted. The combination of checking the
user and path for trustworthiness will determine
whether the executable will be allowed to run. If nei-
ther are trusted, execution will be denied by the TPE
module.

The remainder of this paper will attempt to further
explain the problems associated with running malicious
code on a vulnerable system. It will also show how
TPE proposes to solve this problem and will be con-
cluded with a wrap up of the paper in whole and future
thoughts on the subject.

2 Malicious Executables in Untrusted
Paths on a Vulnerable System

Preventing the execution of malicious code is a funda-
mental component of ensuring a Linux system's securi-
ty. The problem seems quite evident but the scenarios
will vary and are rather difficult to anticipate. This is
indeed one of the most important problems a system
administrator will face when contemplating the securi-
ty of their system at a local level. The point at which
security must be applied to a system is another issue to
consider. Protecting at the network layer does not
guarantee those that are on the inside, that is to say nor-
mal users, won't do something to also jeopardize the
system. Bad code is bad code, no mater where it
comes from. Similarly, protecting against specific
types of well known malicious code won't protect
against newly created ones. Of course, having these
protections are important. The more points of vulnera-
bility protected the better.

What is malicious code? It is avery general descrip-
tion of any kind of software that can cause damage to a
system. This software includes viruses, worms, back-
doors, Trojan horses, etc... What exactly can occur?
One of several things, but in general buffer overflows
from faulty code, exploit programs that can override
root access, erasure of core system files, overwrite of
system files and so on. In many cases the system will
be rendered useless. There are several ways malicious
code can be placed in a system. Thus, given the scope
of this definition, the problems created by malicious
code are immenseand should be of high concern to any
system administrator.

Take for example, a computer virus. A computer
virus is generally defined as aprogram or piece of code
that is loaded onto a computer without the knowledge
of the owner/admin and is run against said owner/ad-
min's permission. This is a very broad definition and
accordingly the problems associated with computer
viruses are also very broad. The computer virus is thus
one of the most important security issues these days.

Once a computer virus is detected, the damage is nor-
mally complete and the system administrator may only
have hindsight to their benefit. The administrator is
now capable of preventing the specific virus from oc-
curring again, but is still vulnerable to other viruses
that have yet to be applied to the system. To make the
problem even more difficult to solve, sometimes the
case where malicious code is applied to the system is
performed by a local user. In fact, many situations of
harmful code being run on a system are initiated by a
local user with absolutely no idea that their program is
about to wreak havoc on their own system. In this sce-
nario, the local user has written code that is defective.

What can make this malicious code even more effec-
tive and/or malicious is the location in which it resides
on a system. If the directory under which the code re-
sides in is group or other writeable, we have allowed
for further situations where the code could potentially
overwrite other programs/executables on the system.
When the directory allows for group and/or other
writeable permissions in particular, this is leaving the
code not only especially vulnerable. Unless otherwise
given user-only access, the file will default to receiving
permissions that allow just about anyone else write ac-
cess.

Similarly, if all users on the system are given equal
access to running the code we open the system up to
further attacks. The greater the number of users who
are able to run code, the greater the chance of faulty or
malicious code getting executed. Why should every-
one be given such access, if only a few users actually
need to run executables?

Thus, the problem of malicious code is far-reaching.
It is a problem that is highly difficult to solve. There
are many solutions to preventing such code from enter-
ing a system via the network, but once it gets in the
system and there are no protections for the system it-
self. The code is now able to be run and cause the
damage. The only surefire approach to preventing any
kind of code to get into the system is to simply unplug
it from the network. And what about the problem with
local users? If the system is simply unplugged from
the network, there is still the problem of the innocent
local user with buggy code. Must the administrator
also remove the users? At this point, an unplugged sys-
tems with absolutely no users except administrator
serves very little purpose except for being really, really
secure. This is where security solutions like TPE can
come in and help.

3 How the TPE blocks malicious code from
running on the system

Solving the problems associated with malicious code is
quite difficult. The question of where and how the
code gets implemented is important. Answering this

question is a great challenge. Simply containing a sys-
tem from the network will not solve this problem, ei-
ther. Common users that either want to cause problems
or have no clue of their code's malicious intent will
equally break a system. An approach that is both com-
prehensive and isolated in impact on a system must be
taken. This approach must take in to account the vari-
ous scenarios without making the system obsolete to
normal users. It must also accept the fact that code that
can harm the system will somehow make its way in.
Indeed, it should know that the “bad” code is already in
the system, just waiting to be run. With this in mind,
the solution must find a way to minimize the chances
of this “bad” code from being run without preventing
the “good” code from execution. TPE aims to be ex-
actly this type of solution.

TPE attempts to prevent users from accidentally exe-
cuting malicious code by ensuring that only code in-
stalled by trusted users is permitted to execute. TPE is
a Linux Security Module which enhances the security
of the Linux kernel by monitoring the running of exe-
cutables in “trusted paths” on a system by particular
users. TPE accomplishes this by manipulating a strate-
gically placed hook in the kernel that monitors the exe-
cution of files. It performs a check of the path in which
the executable resides and the user who is attempting to
execute the program. The check of the path will deter-
mine whether it is trusted or not. A “trusted path”, in
the TPE sense of things, is one in which the parent di-
rectory of a file is owned by root and is neither group
nor other writable. The component of the trusted path
that allows for root owned directories is a convenience
to the system administrator as they should be able to
actually run system critical code. As a result, unless
otherwise altered, base Unix directories like /bin and /
usr/bin are considered trusted, but /tmp is not (Phrack
53-08 and 54-06)[2,5].

Why do we trust a “trusted path”? We will consider
such directories as already protected by certain features
in which the environment the executable resides in
does not allow for code to cause major damage. In
what way? Well, we'd like to be able to execute code
as root and hope that root did not allow Joe user either
ownership or execution rights to such code as would be
found in /usr/bin. Thus, /usr/bin is a “safe” environ-
ment for code to beexecuted. On the other hand, if Joe
user happens to have code X in /joedir where either he
has world or group write access, he will be able to run
code X. If code X is faulty, either purposely or not, Joe
has the potential to cause major damage to the system.
As a result, we will consider /joedir an “untrusted
path”.

TPE makes use of a Trusted Users access control list
to define “trusted users”. Users placed on the list are
considered trusted and will be able to run executables
they normally have access to run on the system without
intervention from TPE. Upon attempt to execute, TPE

will check whether the current user attempting to run
an executable is trusted or not. If Joe decides to create
buggy and/or malicious code X in an untrusted path he
does have access to, he will find that he cannot run the
code due to the presence of TPE on the kernel. In this
case, if Joe is a legitimate user on the system, he can
request to be added to the trusted user list, which al-
lows him access no matter where he runs the code.
Thus root has choices in whom to allow privileged exe-
cution rights. This also minimizes the amount of users
who will be able to run executables at a given time.
Root must actively add users to the trusted list (root is
already in the list upon module instantiation). If Joe-
user only needs to login to the system and check his
email, root can choose not to put him on the list. In
this case, root is able to add those users who absolutely
need to run code on the system and thus keep the trust-
ed list to a minimum.

The administrator will pick only those users that crit-
ically need to run code. In addition, the administrator
could choose to allow certain users access at certain
times when, perhaps, the administrator has been able to
review the code that needs to be executed before it is
run. He/she may also decide to revoke execution ac-
cess to those users who have jeopardized the system
before. This gives the super user much more flexibility
in controlling the actions on the system.

There are only four scenarios that can be evaluated,
of course; trusted user/trusted path, trusted user/un-
trusted path, untrusted user/trusted path and finally, un-
trusted user/untrusted path. The first three scenarios
will be allowed execution. In the scenario where an
untrusted user in an untrusted path attempts to run an
executable on a TPE-ified kernel, the operation will be
prevented from occurring. In this case, TPE has suc-
cessfully accomplished its goal of preventing the po-
tential malicious code from doing its damage. The fol-
lowing table describes the scenarios:

User\Path Trusted Untrusted

Trusted Execution
Allowed

Execution
Allowed

Untrusted Execution
Allowed

Execution
not allowed

If malicious code is presented to the system from a
remote machine, there is no way in which TPE can pre-
vent this. Similarly, if an innocent user on the system
accidentally writes buggy code, the module is not go-
ing to be able to do anything about it. What TPE takes
into account the fact that malicious code can get into
the system very easily but once it's on the system, it
does not allow for it to cause the type of damage it
would like.

TPE provides a line of defense to the system. It
takes into account that malicious code will be on the

system in some form or other. It minimizes the entry
points for this code to be run and thus minimizes the
amount of scenarios that could cause an attack from
such programs. The TPE module does not prevent
such situations as a malicious user acquiring the root
password and/or utilizing a suid attack. The module
will not run a firewall or audit the system. TPE is one
of several approaches to containing the system and
making it more secure. It should be used alongside a
good firewall and other beneficial forms of security. It
should not be the only method of hardening a Linux
system.

4 How TPE is implemented

The Trusted Path Execution is implemented into the
kernel as a Linux Security Module [12]. The Linux Se-
curity Module framework [10] is made up of a set of
hooks into the kernel that can be manipulated in vari-
ous ways. Of course, the main purpose of the frame-
work is to manipulate the kernel into becoming more
secure but several of the hooks can beutilized for other
utilitarian purposes as the module needs. The module
must also make use of a sysfs pseudo-filesystem [6]
that allows for user space to system space interaction.
This is a replacement to the common use of command
line/system call user to system interface and will be ex-
plained further below. The module had been previous-
ly created utilizing the sys_security call and had to be
migrated to the new method. Until a new system call
can be made available to the LSM project, the module
will continue to use the pseudo-filesystem approach.

The name of the sysfs pseudo-filesystem that TPE
utilizes is “tpefs”. It represents a file system interface
that presents a file that lists trusted users. A user is
considered “trusted” if their uid is on the list. The
TPE-ified system will verify whether a user is trusted
by reading this list. For convenience, the trusted list
can be manipulated by utilizing userspace write ac-
tions, such as “echo” , to add and remove users from the
list. It can also be utilized to show the list to userspace
via userspace read commands such as “more”. The list
is created in memory upon instantiation of the module.

The core code of the module, tpe.c, relies on two
checks upon the running of an executable in the sys-
tem. Within the module this is accomplished by utiliz-
ing the tpe_bprm_set_security hook, which is always
called upon file execution. The two checks are per-
formed by two functions, TRUSTED_PATH(current
path, current uid) and TRUSTED_USER(current uid).
The TRUSTED_PATH() function verifies whether the
path is root owned and whether it is either group or
world writeable. The TRUSTED_USER() function
verifies whether the user running the executable is list-
ed in the tpe_acl trusted user list. The functions are
called within the module and performed in the tpe
header file, tpe.h.

4.1 The Access Control list and Pseudo-File
system “ tpefs”

The tpe_acl trusted user list is created upon initializa-
tion of the module from acall to the tpe_init() function.
In order to modify the tpe_acl list a sysfs pseudo file
system [11] called “tpefs” is also created by the mod-
ule. Two files are created in the “tpefs” filesystem
which when written to, actually edit the tpe_acl list in
memory. Thus, the filesystem is really not a file system
but a method by which adminstrator can send informa-
tion from user-space to kernel-space. This is why we
call it a “pseudo” filesystem.

By default, root or uid 0 is added to the tpe_acl list
upon initialization of the module. Root is protected
from deletion from the list by a check in the code. Oth-
er users must be added utilizing the “tpefs” file system.
Similarly, removing users from the list is performed
with a “del” file. Both files, “add” and “del” are creat-
ed for the filesystem by default from within the module
code. The two file approach was utilized rather than a
single file in order to keep the code and administration
of the module simple for both the kernel and the user.

It should be noted that the usage of the sysfs pseudo-
filesystem approach as opposed to a normal system call
and command line method was due to the recent drop
of the sys_security system call. There were a few other
modules that were affected by this, including DTE[1]
and SELinux[14]. Both projects are now utilizing the
pseudo-filesystem method, as well. This seems to be
the standard method by which the modules will be ac-
cessing system space from user space.

In order to instantiate the tpefs filesystem, the kernel
must be compiled to include the LSM patch and the
tpe.c module must be chosen to be installed as a mod-
ule. Once both actions are taken, a partition must be
mounted as type sysfs, as follows:
mount -t sysfs sysfs /<mountpoint>

Next, the module must be inserted into the kernel via
the insmod command: insmod tpe.o. At this point, a
subdirectory under the sysfs mount point, <mount-
point>, created above, will be created under the name
tpefs. There will be two files created by the module,
namely add and del. In order to add a user, one simply
needs to perform a write operation on the “add” file in
the following manner:
echo <uid> > <mountpoint>/tpefs/add

In a similar, deleting a user will involve a write to the
“del” file is performed with the following command:
echo <uid> > <mountpoint>/tpefs/del

Notice that utilizing the “echo” command is just a sug-
gestion. Any other write command will work in a simi-
lar manner. Using “echo” is probably the simplest
choice and is the one preferred by our team.

The “add” file may also be utilized to show the list
and a description of this is given further on in this sec-
tion. This is performed by performing a read action

on the “add” file. This will instantiate a copy to be
made of the list in to a user space buffer. This buffer
information is then sent to stdout as a list of uids. The
code is implemented from within the module by the
trustedlistadd_read_file function(struct file * file, char
*buf, size_t count, loff_t *offset) . Upon issuing a
command such as cat <mountpoint>/tpefs/add, the list
of uids will bepresented to stdout. Currently, the max-
imum number of users that can beadded to the TPE ac-
cess control list is limited to 80. As more work is per-
formed on the module, this will be altered to allow for
a greater number of users and/or be made dynamic.

The code only allows for numeric user ids to be
added on the command line at this point. It does return
an error if any non-numeric values are entered. It also
checks whether any other odd combinations are given
as uids and returns an error. If any duplicate ids are at-
tempted to be added , the module will also return with
an error. This is similar for the removal of user ids.
Any errors will be logged in the kernel info log for the
system administrators to be able view. This adds a sort
of auditing feature of the module and is found through-
out the TPE codebase.

In addition to the tpe.c file, the module includes a
header file called tpe.h. This is the only other non-doc-
ument file associated with the module. It contains vari-
ous macro definitions and a few sub-routine functions
for the module. Most importantly, the
TRUSTED_PATH() and TRUSTED_USER() func-
tionality. The tpe_init function is also highly impor-
tant:

Some the lesser involved macros in the tpe.h file in-
clude the TPE_ACL_SIZE value, which sets the size of
the tpe_acl array to 80and the ACK, NACK and DUP
macros which specify return values for the subroutines.
Two important functions to the tpe_acl list are defined
in the file, tpe_verify and tpe_search. The tpe_verify
function will search for the uid that is currently being
attempted to be added to the tpe_acl by the administra-
tor. The result of this function will tell the
TRUSTED_USER() function whether the uid is valid
or not. The tpe_search is utilized by tpe_verify to de-
termine if the uid is already on the list. If the uid is on
the list, an error is returned so that repeat uids are not
added to the list. These macros are all highly important
to the module and are useful in making it more refined
and user-friendly.

A documentation file for tpe called tpe.txt is also
available on the LSM patch. The document is installed
along with the module in the /Documentation/lsm di-
rectory. This document will give the user information
about the module, how to install it and contains guid-
ance for utilizing the tpefs pseudo-filesystem.

5 Evaluation

The actual effects the Trusted Path execution module

makes to the system have been shown to be unintru-
sive, safe and effective. The module does in fact se-
cure the system in the way it says it should. It is com-
patible with the Linux kernel and causes no perfor-
mance issues. To be more accurate, the module has
only been run on 2.5/2.6 Linux kernels and therefore
this information is only pertinent to those particular
kernels.

5.1 Secur ity

The module has been thoroughly tested for functionali-
ty. It does do what it says it should and that is to en-
hance security by blocking execution of files. The four
basic scenarios of trustworthiness were applied to a
system and the results were evaluated. These four sce-
narios were: trusted user/trusted path, trusted user/un-
trusted path, untrusted user/trusted path and untrusted
user/untrusted path. The results of these tests conclud-
ed that execution was allowed to be performed only in
the first threescenarios listed above. It was also shown
that when an untrusted user in an untrusted path at-
tempted to execute a file, it was denied. This was the
crucial point that TPE was indeed applying its security
policy to the kernel.

As an example, let's say user Joe would like to run
executable “buggy” in the /tmp directory. Prior to
loading TPE on the system, so long as Joe has execute
permissions to the file, he will be able to execute “bug-
gy” from within the /tmp directory. Joe then goes on to
wreak havoc on the system, eventually bringing it
down. The administrator is now left with an obsolete
system and must reinstall. If the administrator could
have turned back the clock and installed the Linux Se-
curity Framework on his kernel along with enabling
the TPE module, he/she would have saved themselves
a headache.

If TPE had been installed on this system and the
trusted list was created without Joe's userid added, Joe
would have attempted to run “buggy” and found that
execution would have been denied. Upon Joe running
“./buggy” , TPE's hook in the kernel, tpe_bprm_set_se-
curity hook, is called in. No matter what form of exe-
cution takes place on the system, TPE will always be
called and do the check of the path and user. TPE has
detected that Joe is not a trusted user and that /tmp is
not root owned and neither group or other writeable. In
other words, TPE is checking whether the user and/or
path are “trusted” . Since both user and path or not
trusted, in this case, execution is denied by the module
and -EPERM is returned to stdout. At this point “bug-
gy” was not run and the system is still up. TPE has
saved the day.

Suppose the system administrator wanted Joe to run
“buggy” for some sadistic reason. In order to allow Joe
permission to run his “buggy” executable, the adminis-
trator need only add Joe's userid to the trusted list.

Once Joe is on the list, his attempts to run “buggy” will
be allowed. Perhaps the adminstrator needed to crash
the system.

Consider the scenario of an innocent user seeking
code from outside the system. The TPE module will
not be able to block a user from downloading code
from an external resource, such as an ftp download
web site or outside host. If this code is malicious/bug-
gy, the system has no way of finding this out. But this
does not indicate TPE has failed. Once the code is on
the system, it is not able to perform its malicious intent
because TPE has blocked it from being executed.

It has been shown that via various testing models,
the above scenarios indeed occur with and without the
Trusted Path Execution LSM. These tests would check
kernel kernel log messages for the appropriate logs
from the TPE module. These were all found to be
cleanly applied to the kernel event log and were appro-
priate to the actions taking place during the testing sce-
nario. The tests would also verify that no errors were
being logged by the kernel that were not expected at
the given action of the TPE module within the system.

5.2 Compatibility

The code has been thoroughly reviewed by both the
IBM and LSM communities. As a result of this review
several enhancements have been made to make the
code to make it more effective. We have also modi-
fied the code to make it less capable of becoming bug-
gy. One enhancement that came out of the code re-
view was adding kernel spin locking capabilities to
make the module smp safe. Another important upgrade
for the module was moving from the pcihpfs pseudo-
filesystem approach to the sysfs pseudo-filesystem.
The move to the new sysfs filesystem made for a clean-
er code base. The code was also greatly reduced in
size and much easier to debug as a result. This migra-
tion also reduced the amount potential vulnerable spots
in the code. Thus, once again the code is much less ca-
pable of becoming harmful to the kernel and/or operat-
ing system.

TPE has been implemented as a Linux Security
Module and accepted by the LSM community. There-
fore, it abides by the framework the LSM community
utilizes to attach to the Linux kernel. It has been writ-
ten according to guidelines set by this community. The
LSM community in turn works closely with the Linux
kernel development community. As a result, the mod-
ule also adheres to coding rules and styles as set by the
Linux kernel community. The LSM framework is
scrutinized by the Linux kernel core development team
as well as the lkml mailing list and anyone else inter-
ested in the kernel. Thus, the project has several eyes
scrutinizing it. Most importantly, it is scrutinized by
those especially knowledgeable with the Linux kernel
and system security.

The Trusted Path Execution LSM is still considered
new and experimental and thus should be thoroughly
reviewed as it progresses as a module. It is indeed sim-
ple and small enough that it is not anticipated to be a
great effort to test its value to the kernel. The module
was written with security coding standards being a high
priority and will continue to be modified with this con-
sideration in mind. The module was run through sever-
al tests including system and functional verification.
These are described in more detailed below.

The TPE LSM has been thoroughly system tested.
Basic testing was performed to verify that the module's
implementation in the kernel does not break other pro-
grams and is cleanly applied to memory. As men-
tioned in the Security section above, kernel logs were
verified so that no inappropriate events occurred during
the loading, unloading and run-time actions of the
modules. No testing was performed while other securi-
ty modules were loaded, as TPE was not created to bea
stackable module. If at some point in time, this is not
the case, stackability will also be tested.

The trusted user list that is created in memory was
thoroughly tested. Users were added and removed
from the list while the actual list was monitored. It was
shown that the list was effectively manipulated and ac-
curately reflected the desires of the system administra-
tor as to who should be listed. Invalid values, non-
uids, were attempted to be passed to the list for addi-
tion and deletion. The module appropriately denied ad-
dition of these invalid parameter values. In addition,
uids that were not on the list were attempted to be re-
moved. The module was able to recognize that these
uids were not on the list and acted appropriately with
an error return. Overall, manipulation of the tpe_acl
trusted list was deemed accurate and clean of prob-
lems/bugs.

Memory tests were also conducted on the tpe_acl
list to verify that no overwrite of memory would take
place during actions on the list. Several of the tests
were attempts upon overloading the tpe_acl array with
too large or too many uid values. Checks in the code
prevented this from occurring. As this was the only pa-
rameter the module creates in to memory, it was the
only object that needed this sort of testing.

The LSM project is also constantly under test and
scrutiny. In fact, a fellow IBMer, Trent Jaeger, has cre-
ated a set of projects to verify the LSM project [9].
Trent and his team are working towards verifying that
the LSM framework appropriately implements the se-
curity actions of each module. They have used the
CQUAL static analysis tool to make sure every securi-
ty relevant operation could be controlled by an LSM
hook. They also created a runtime analysis tool, Vali
[3], that finds inconsistencies in operations authorized
by the modules. The discoveries that Trent and his
team found utilizing their analysis tools have led to im-
provements of the LSM along with validation that the

framework can indeed be utilized to secure the system.
Once TPE is instantiated on the system, there are

some limitations to keep in mind. The system is locked
down and simple execution is controlled, thus ordinary
users may find some annoyances to deal with when
wanting to run executables but they don't have access
rights to do so because of the module's presence on the
system. A TPEified system will essentially become
more of a “governed state” , where greater interaction
must occur between the end user and system adminis-
trator(s).

Although we have performed several tests on this
module, it should be noted that this is no guarantee that
all potential bugs/defects have been removed from the
code. It should also be noted that this is still an experi-
mental project and more time and effort will improve
the validity of the code. Further testing is always nec-
essary and shall be performed in the future as new ker-
nel levels are introduced and features are enhanced on
the module itself.

5.3 Per formance

No specific performance testing was completed on the
Trusted Path Execution module. Upon instantiation of
the module, no visible performance impact was made
and thus benchmarking was not deemed necessary.
The module makes use of only one kernel hook and
thus is quite small on its impact into the system. The
usage of the “tpefs” sysfs filesystem is created upon in-
stantiation of the module, as are several other smaller
components of the module. Given that the “tpefs”
codebase is the largest portion of the module, once we
are past insmod'ing the module, there is very little code
that actually augments the kernel. If performance
benchmarking is deemed necessary in the future for
TPE, it will be performed at that time.

6 Related work

The meaning of the “trusted path” has been previously
defined [13] by a much older concept in security.

According to the “Secure Programming for Linux
and Unix HOWTO (see url below), “A trusted path is
simply some mechanism that provides confidence that
the user is communicating with what the user intended
to communicate with, ensuring that attackers can't in-
tercept or modify whatever information is being com-
municated.” This definition applies to a context where
security is to be tested on a particular system and is not
quite associated with the concept of a “trusted path” as
defined in the Trusted Path Execution Loadable Secu-
rity Module project. The original idea presented a sim-
ilar concept in that the original ensured that the login
prompt was legitimate. This is similarly to how the
Trusted Path module ensures that all programs an un-
trusted user executes are legitimately put there by root.

For further information see http://www.dwheeler.com/
secure-programs/Secure-Programs-HOWTO/trusted-
path.html.

The second definition of a “ trusted path” was defined
in a project that the TPE LSM was based on. Trusted
Path Execution project was originally created for
OpenBSD 2.4 as a direct patch to the kernel by Mike
Schiffman. It was described in Phrack 52-06 and later
modified by the Stephanie project [15] for OpenBSD
2.8 and 2.9. The patch was distributed under the two
clause BSD license. The usefulness of this project as
an enhancement to Unix security was recognized by
the Linux Security Module community and subse-
quently suggested as a potential module. There are
several differences between the original BSD patch and
the LSM version. The most notable difference is, of
course, in how they are implemented into the BSD and
Linux kernels, respectively. The Stephanieproject also
brought in a few more checks into the BSD kernel,
such as restricting symbolic links via the Openwall
project from Linux. The Stephanie project also uses an
actual system call to implement a tpe_adm command to
modify the TPE trusted user access control list, where-
as the LSM utilizes the sysfs pseudo-filesystem. De-
spite these major differences in code, the core concept
of the Trusted Path Execution kernel check is the same
in all of the projects mentioned above.

There have been a handful of other Linux Security
Modules that have been implemented into the Linux
kernel prior to the Trusted Path Execution module.
The SELinux LSM is one that is most notable. It
makes use of the Linux Security Module framework to
implement the Flask mandatory access control archi-
tecture model into the kernel. It is an example of a
much larger implementation of the LSM framework.
The project is led by Stephen Smalley and Peter
Loscocco of the National Security Agency. The Do-
main and Type Enforcement (DTE)[7] LSM is another
module of note. Created by fellow IBMER, Serge Hal-
lyn[4], it makes use of a mandatory access control
model that assigns types to files and domains to pro-
cesses and furthers this idea by associating which do-
mains can access which types. Interestingly enough,
both module implementations, SELinux and DTE,
were initially direct Unix kernel patches prior to be-
coming LSMs, much like the Trusted Path Execution
module. Both DTE and SELinux are currently avail-
able via the LSM patch. The SELinux module is also
available directly on the 2.6 kernel along with the
LSM patch.

The Linux Security Module project [8] is continuing
its efforts to create a comprehensive set of security
modules for the Linux kernel. It is maintained regular-
ly and current patches are available for download off of
their main web site. According to it's site maintainers,
LSM “provides a lightweight, general purpose frame-
work for access control” (see lsm.immunix.org). The

project was created as a means of providing security to
the Linux kernel without adding the overhead of direct
patches to the kernel. The user may choose which
module to implement and thus have greater control of
the security of the kernel. The usage of the module ap-
proach makes the task of securing the system much
more flexible and dynamic. There are several modules
to choose from at this point and a couple more have
been added since the introduction of the TPE LSM.
Since the project is fairly new to the kernel, many of
the latest modules are still considered experimental.
There are several well established modules, including
SELinux, DTE and owlsm. These projects are all cur-
rent and actively maintained.

7 Conclusion

The Trusted Path Execution LSM has been designed to
enhance the security of the Linux 2.6 kernel. In its
ability to prevent the running of malicious executables,
the module shows one way that the kernel can be ma-
nipulated in order to protect a system from potential
damage. It is blind to whether the malicious code was
intentionally created or not, and thus covers both sce-
narios. By performing a check into the kernel at the
point of file execution, the module is able to monitor
whether the path the executable resides in is “trusted
“and whether the user is considered trusted. If both the
path and user are “untrusted” , the module will prevent
execution from occurring.

TPE was accepted by the LSM community in May of
2003. The module was submitted under a dual
BSD/GPL license. TPE was integrated into the main-
line LSM BK tree immediately and placed on their of-
ficial patch to the 2.5.70 kernel. The current version of
the TPE module has been available on all LSM kernel
patches since then. It is anticipated to be placed in the
official 2.7 kernel once development commences on
that project. TPE is a fairly new addition to the LSM
lineup.

Further enhancements to the project will be added in
the future to increase the value-add the module can
bring to a system. This may include increased admin-
istrative capabilities and further checks into the filesys-
tem. It is anticipated that the module will be of great
use to many system administrators seeking to improve
the security on Linux.

Bibliography

[1] Lee Badger, Daniel F. Sterne, David L. Sherman,
Kenneth M. Walker, Sheila A. Haghighat. Trusted In-
formation Systems, Inc. A Domain and Type Enforce-
ment UNIX Prototype. 5th USENIX Security Sympo-
sium. June 1995. Salt Lake City, Utah.

[2] Krzysztof G. Baranowski. Linux Trusted Path Exe-
cution Redux. Phrack 53-08. July 1998.

[3] Antony Edwards, Trent Jaeger, Xiaolan Zhang.
Runtime Verification of Authorization Hook Placement
for the Linux Security Modules Framework. ACM
Computer and Communications Security. November
2002. Washington, D.C.

[4] Serge Hallyn, Domain and Type Enforcement for
Linux. http://www.cs.wm.edu/~hallyn/dte.

[5] route| daemon9. Hardening the Linux Kernel (series
2.0.x).Phrack 52-06. January 1998.

[6] William von Hagen. Migrating to Linux kernel 2.6.
LinuxDevices. Com article. February 2004

[7] Kenneth M. Walker, Daniel F. Sterne, M. Lee Bad-
ger, Michael J. Petkac, David L.Shermann, Karen A.
Oostendorp. Confining Root Programs with Domain
and Type Enforcement(DTE). 6th USENIX Security
Symposium. June 1996. San Jose, California.

[8] Chris Wright and Crispin Cowan. Linux Security
Modules: General Security Support for the Linux Ker-
nel. USENIX Security Conference. August 2002. Ot-
tawa, Ontario.

[9] Linux Security Analysis Tools. http://www.re -
search.ibm.com/vali/

[10] Linux Security Modules. http://lsm.immu nix.org

[11] LWN article. Avoiding sysfs surprises. June 2003.

[12] Security modules begin to appear. LWN Article
on TPE. May 2003. http://lwn.net/Articles/31571

[13] Secure Programming for Linux and Unix HOW-
TO. http://www.dwheeler.com/secure-pro grams/Se -
cure-Pro grams-HOWTO/trusted-path.html

[14] SELinux Documentation
http://www.nsa.gov/selin ux/info/docs.cfm

