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Abstract
Disconnection of an SSH shell or a secure application
session due to network outages or travel is a familiar
problem to many Internet users today. In this paper,
we extend the SSH and TLS protocols to support re-
silient connections that can span several sequential TCP
connections. The extensions allow sessions to survive
both changes in IP addresses and long periods of discon-
nection. Our design emphasizes deployability in real-
world environments, and addresses many of the chal-
lenges identified in previous work, including assump-
tions made about network middleboxes such as firewalls
and NATs. We have also implemented the extensions in
the OpenSSH and PureTLS software packages and tested
them in practice.

1 Introduction

An increasing number of Internet hosts are mobile and
equipped with more than one network interface. Simul-
taneously, operation of mobile hosts has become more
continuous: the hosts have long uptimes, and the appli-
cations do not need to be closed when the host enters a
“suspended” state. However, in the today’s Internet, ap-
plications experience this combination of improved con-
nectivity and operation as a less stable networking en-
vironment. This is mainly because transport layer con-
nections break more frequently due to changes in IP ad-
dresses, network failures, and timeouts during discon-
nected or suspended operation.
It is often desirable to hide these disruptions from the

end user. For instance, a user should be able to suspend a
laptop, move to a different location, bring up the laptop,
and continue using the applications that were left open
with minimal inconvenience. In other words, the system
should provide session continuity over the disruptions in
network connectivity (cf. Snoeren’s analysis of the ses-
sion abstraction [23]).

Traditionally, session continuity has been considered
as a part of mobility, and has been handled in the data
link layer (e.g., wireless LAN or GPRS handover mech-
anisms) or in the network layer (e.g., Mobile IP). How-
ever, there are a number of reasons why providing ses-
sion continuity higher in the protocol stack is desirable:
Long disconnection periods: while network-layer

mobility mechanisms can deal with changing IP ad-
dresses, they cannot help the transport layer to overcome
likely timeouts during long disconnections. Moreover,
how exactly should long disconnections be handled of-
ten depends on the application in question.
No network infrastructure: in today’s Internet it

is common that clients are mobile but servers are not.
In this kind of environment, session continuity can be
provided without requiring the deployment of additional
fixed infrastructure (such as Mobile IP home agents).
Applications get upgraded: it is often claimed that

mobility has to be low in the stack to enable it for a large
number of different applications. However, we hypoth-
esize that it is often actually easier to deploy resilient
mechanisms built into applications. After all, the appli-
cations get upgraded all the time and processes for that
exist; but installing and configuring a Mobile IP imple-
mentation is beyond capabilities of most users and sys-
tem administrators.
Limited end-to-end connectivity: mobility mecha-

nisms implemented in the network or transport layer may
not work across various types of middleboxes that are
present in the network. For instance, if a firewall near
a client allows only outbound TCP connections, Mobile
IP does not work. Session continuity mechanisms in-
tegrated into applications make the least number of as-
sumptions about the network between the endpoints.
These arguments suggest that the session layer is the

lowest layer to implement resilient connections that can
span several sequential transport layer (TCP) connec-
tions, and thus, survive not only changes in IP addresses,
but also relatively long periods of disconnection.
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In this paper, we extend two common secure ses-
sion layer protocols to support resilient connections: Se-
cure SHell (SSH) Transport Layer Protocol [28, 29] and
Transport Layer Security (TLS) [3].1 We have imple-
mented these extensions in two open-source software
packages: OpenSSH, the most popular SSH implemen-
tation [16], and PureTLS, a Java TLS library [20].
Our main contributions are as follows. First, we have

developed resiliency extensions for the common TLS
and SSH protocols that largely avoid the deployabil-
ity problems associated with previous proposals. Sec-
ond, we have analyzed the challenges faced when im-
plementing this kind of extensions to legacy software
packages that were not designed with resiliency in mind.
In particular, different styles of handling concurrency
and I/O have large implications for the implementations:
OpenSSH uses asynchronous (select-based) I/O with a
process for each client, while PureTLS uses synchronous
I/O with threads.
The rest of the paper is structured as follows. In Sec-

tion 2, we introduce the SSH and TLS protocols and pre-
vious work on resilient connections. Our design princi-
ples, described in Section 3, attempt to address deploy-
ment challenges we have identified in the existing pro-
posals. In Section 4, we introduce our extensions to the
SSH and TLS protocols. Section 5 describes our proto-
type implementations, which are then evaluated in Sec-
tion 6. Finally, Section 7 summarizes our conclusions
and discusses remaining open issues.

2 Background and related work
The Secure Shell (SSH) is a protocol for secure login
and other network services [28]. It consists of three main
sub-protocols: the SSH transport layer protocol, user au-
thentication protocol, and connection protocol. The SSH
transport layer protocol is the lowest layer, and is respon-
sible for authenticating the server and providing an en-
crypted and integrity-protected channel for the other sub-
protocols. The user authentication protocol authenticates
the client, while the connection protocol multiplexes sev-
eral logical connections (such as interactive terminal ses-
sions, X11 window system forwarding, and TCP/IP port
forwarding) over a single transport layer connection.
Transport Layer Security (TLS) is a session layer pro-

tocol providing encrypted and authenticated communi-
cation session for communication between two applica-
tions [3]. It consists of two major parts: the TLS record
protocol provides a secure communication channel to up-
per layers, and is responsible for encryption and integrity
protection of data. The TLS handshake protocol provides

1Note that despite their names, both protocols are strictly above
the transport layer (TCP) in the protocol stack, and thus calling them
session-layer protocols is more accurate.

the key material and authentication for the TLS record
protocol; this usually involves X.509 certificates and a
key exchange based on RSA encryption. The two re-
maining components of TLS, the alert and change cipher
spec protocols, are beyond the scope of this paper.
The benefits of providing session continuity above the

transport layer have been recognized before; for instance,
Duchamp [4] and Snoeren [24] provide several argu-
ments in its favor. There is a large number of propos-
als that provide resilient connections above the transport
layer but below the application layer protocol: Persistent
connections [32], Mobile TCP socket [18, 19], Mobile-
Socket [15], SLM or Session Layer Mobility [11], Re-
liable sockets [30], Migrate [23], Robust TCP connec-
tions [5], NapletSocket [33], Channel-based connectiv-
ity management [26], and Dharma [13], to mention just
a few examples.
The common part of most of these proposals is a li-

brary placed above the transport layer but below the
sockets API used by the application. The library presents
a single unbroken communication channel to the appli-
cation, hiding transport layer disruptions from the ap-
plications. The library is responsible for the signaling
required to manage the multiple TCP connections, and
also buffers application data so it can be retransmitted
over a new TCP connection if necessary (this is required
since most operating systems do not allow applications
to access the TCP buffers).
However, implementing resilient connections in the

“sockets API” layer has a number of drawbacks.

• The proposals typically use out-of-band signaling: a
separate TCP connection (or UDP-based “session”)
coordinates multiple TCP connections. This can
lead to deployment problems if, e.g., a firewall al-
lows the port used by the application itself, but not
the port used for resiliency signaling. An impor-
tant reason for out-of-band signaling is the lack of
an extension negotiation mechanism in the sockets
API layer; however, such a mechanism is essential
for incremental deployment. While some proposals
(such as Zandy’s reliable sockets [30]) do actually
implement the initial resiliency signaling in-band,
they rely on obscure TCP semantics with question-
able deployability properties. However, even these
solutions change to out-of-band signaling after the
connection setup (e.g., due to TCP’s head-of-line
blocking issues).

• A separate key exchange is required to protect the
signaling messages (if the messages are protected
at all). This introduces additional overhead.

• While a separately delivered dynamically linked li-
brary that “hijacks” the operations of the normal
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socket calls is a good approach for research, it cre-
ates deployment problems if it is does not come
bundled and tested with the software with which it
is to be used. Deploying such separate component
is likely to get less-than-enthusiastic response from,
e.g., corporate IT departments who would have
to deploy and manage this component in mission-
critical environments.

Proposals to implement the session continuity even
higher in the protocol stack than the session layer ex-
ist. If an application protocol connection setup is a light-
weight operation (e.g., HTTP GET), it’s not necessary to
extend any protocol to implement reconnections. An ap-
plication just reconnects and at the same time minimizes
the visibility of the reconnection to its user. For example,
most modern mail user agents operate in this manner.
An application protocol connection setup may con-

sume an considerable amount of resources, however, and
thus, several application protocols have been extended to
provide session continuity. For instance, REX, an SSH-
like remote execution utility [9], the XMOVE extension
to the X Window System [25], the REST extension to
FTP [6], and SIP [22] all allow continuing a session even
if a transport layer connection is disrupted for some rea-
son. These extensions are typically very specific to the
application in question; in contrast, our TLS extensions
would work with any application-layer protocol run over
TLS.
Session continuity for interactive terminal sessions

can also be provided by decoupling the terminal seen by
applications from the remote terminal session, as done
in, for instance, Screen [7] and Bellovin’s Session Tty
Manager [1]. However, these approaches still require the
user to manually establish a new SSH connection and re-
attach the terminal session.
Proposals that operate in the transport layer (e.g.,

Huitema’s Multi-Homed TCP [8]) are beyond the scope
of this paper. As they require modifications to the op-
erating system’s TCP/IP stack, and may not work with
existing middleboxes, we do not consider them easily de-
ployable.

3 Design principles
Based on the existing work, we have set our design prin-
ciples to emphasize deployability.
No network changes: no extra requirements for the

network or middleboxes between two communicating
hosts should be set. As an example, the extensions must
not require any additional configuration in firewalls.
Incremental deployment: the extensions should pro-

vide functionality once both connection end-points sup-
port it. The extensions should also interoperate with

legacy end-points without the extensions.
Limited end-point changes: the extensions should

require only modifications in TLS and SSH implemen-
tations, but no operating system changes or additional
software components. The latter includes, e.g., dynamic
libraries interposed between the application and the op-
erating system.
In terms of functionality, our design principles were:
Disconnections may last long: the extension should

deal gracefully with long periods of disconnection. The
maximum supported disconnection period is a local pol-
icy issue, and not a protocol issue. Thus, the protocol ex-
tensions should not limit the duration of disconnections.
No handover optimization: the extensions are not

optimized for fast handovers. This is mainly because
we believe the default disconnection to be relatively long
(from tens of seconds to hours).
In addition to the protocol extensions, there are cer-

tain implementation aspects to be considered. Server
side concurrency is the most important one. The mech-
anisms used to implement concurrency often depend on
the operating system and programming language used.
Obviously, our extensions should not prevent typical
server implementation strategies such as “a process for
each client” (either forked on demand or beforehand), “a
thread for each client”, or select-style asynchronous I/O.

4 Protocol extensions
In this section we describe the extensions made to the
SSH and TLS protocols. Since the extensions have much
in common, we present the shared features first, followed
by the SSH and TLS specific details.

4.1 Common features
In-band signaling: deployability concerns in practice
mandate the use of in-band signaling. In other words,
information required by the extensions is sent as part of
normal SSH and TLS messages, and all TCP connections
are initiated by the client. This ensures that resilient con-
nections do not introduce any additional requirements for
the network between the client and the server.
Extension negotiation: incremental deployment re-

quires interoperability with endpoints that do not support
these extensions, and thus, their use has to be negotiated.
Fortunately, both SSH and TLS have mechanisms for ne-
gotiating protocol features when the connection is set up.
Securing signaling: when the client creates a new

TCP connection to the server, it has to somehow indicate
that it wants to continue a previous session, and prove
that it is indeed the same client as previously. Thus, we
need a way to identify an existing session (any public and
unique information exchanged during the session setup
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will do) and way to authenticate the signaling. Since both
SSH and TLS establish session keys between the client
and the server, the authentication is relatively easy to do.
Buffer management: both SSH and TLS operate over

TCP, which provides a reliable lossless connection chan-
nel. However, when the TCP connection breaks, the TCP
socket buffers may contain data that was not yet received
by the other endpoint, and thus, the data has to be retrans-
mitted when a new TCP connection is created. Since op-
erating systems typically do not allow access to the TCP
buffers, separate buffers have to be maintained in the ap-
plication.
Previously, two different approaches have been used

for managing these buffers: either data is removed from
the buffer only when an explicit session layer acknowl-
edgement is received (e.g., MobileSocket by Okoshi
et al. [15]), or the buffer size is limited to the size of
TCP buffers (e.g., Zandy’s reliable sockets [31]). We
chose the former approach: the endpoints send acknowl-
edgements regularly (say, after receiving 64 kB from
the peer). While the nodes may know their own TCP
buffer sizes, the network may also contain transport
layer proxies that buffer data: for instance, TLS is of-
ten run through web proxies using the “CONNECT”
method [12]. Thus, while explicit acknowledgements
add some overhead, only they ensure that the extensions
work properly in existing network environments. This
corresponds to the “end-to-end argument” by Saltzer et
al. [21]: since parts of TCP may be implemented by the
communication system itself, end-to-end reliability can
be correctly implemented only above TCP.
Closing: SSH and TLS connections are both tightly

bound to an underlying TCP connection. The resiliency
extensions render the situation more complex: if the TCP
connection breaks, the server should wait for the client
to reconnect again. Thus, the protocol should have an
explicit “close” message to be used when the endpoints
actually want to close the session permanently. Fortu-
nately, both the SSH transport layer protocol and TLS
have this kind of messages. However, we discovered that
OpenSSH did not actually send the close message, since
previously there was no need to differentiate between a
gracefully closed session and a broken TCP connection.

4.2 Extending SSH
Resilient connections for SSH could be implemented ei-
ther in the SSH transport layer protocol or the connec-
tion protocol. In the end, we decided to implement our
extension in the SSH transport layer protocol, since this
seemed to be simpler, and had more in common with the
TLS extensions described in the next section.
The SSH protocol suite is extensible: in the transport

layer protocol, the client and the server negotiate the al-
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Figure 1: Reconnecting an existing SSH session.

gorithms that will be used during the session. However,
while the algorithms are negotiable, the negotiation does
fix algorithm categories. Thus, we had to re-use an exist-
ing category to negotiate the resiliency support: the client
and the server announce their support for this extension
by including a Key EXchange (KEX) algorithm named
“resilient” as the least-preferred algorithm. If both end-
points supports this extension, they enable buffering of
data and sending of explicit acknowledgements. The ac-
knowledgement is a new SSH message type that contains
the sequence number of the next expected record.
Modeling the resiliency extension as a special key ex-

change algorithm also simplifies things when the client
wants to reconnect; i.e., continue the same session over a
different TCP connection. The exchange is shown in Fig-
ure 1. The client indicates that it wants to continue a ses-
sion by listing “resilient” as the only supported key ex-
change algorithm. The client then sends a message con-
taining a session identifier and a Message Authentication
Code (MAC); the server responds with its own MAC.
The MACs prove that the parties are still the same as in
the original connection, and are calculated over the VER-
SION and KEXINIT messages (which include nonces to
prevent replays). TheMAC is calculated using a separate
key used only for the KEXRECONNECT messages, and
is derived during the initial handshake at the same time
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Figure 2: Reconnection procedure in TLS.

as the encryption and integrity protection keys.
After this, the endpoints take the cryptographic keys

into use, send a “synchronize” message indicating where
the previous connection was broken, and retransmit lost
data from the buffers.
The SSH transport layer supports payload compres-

sion. While the transport layer protocol implements
the compression, compression is done before encryption.
Thus, the compression belongs to the topmost part of the
transport layer. We decided to hide the connection dis-
ruptions from the compression engine to maintain the
compression engine’s state intact. Re-establishing the
compression state would only decrease the compression
performance during reconnections.

4.3 Extending TLS
The resiliency extension to TLS is negotiated us-
ing the TLS extension mechanism [2] in ClientHello/
ServerHello messages. Similarly as in the SSH case, if
both endpoints support this extension, they start buffer-
ing data and sending acknowledgement messages. In the
TLS case, the acknowledgement messages contain the
number of application data bytes received instead of the
TLS record sequence numbers. We chose this approach
since the reconnection handshake is based on the abbre-
viated TLS handshake which resets the sequence num-
bers back to zero.
The reconnection exchange is shown in Figure 2. The

client indicates that it wants to continue an existing

connection by including a connection identifier in the
ClientHello message. The ClientHello/ServerHello mes-
sages are followed by an abbreviated handshake (based
on the normal TLS session resumption handshake)which
verifies that the parties have remained the same and es-
tablishes fresh session keys.
After this, the endpoints tell how much data needs to

be retransmitted, and retransmit the lost data, if any.
It is important to note that while the cryptographic

handshake re-uses an existing TLS feature called “ses-
sion resumption”, there is an important difference. TLS
session resumption is a feature of the TLS handshake
protocol which caches the results of expensive public-
key operations. It is a performance optimization and is
independent of the actual data transfer (the TLS record
protocol). Thus, it does not enable a client to continue an
existing connection that was for some reason broken.

4.4 Security analysis

Making SSH and TLS sessions resilient to disconnec-
tions could introduce new security vulnerabilities. How-
ever, we believe that the extensions presented in this pa-
per provide the same level of security as the situation
when new SSH and TLS sessions are initiated to handle
disconnections. In this section, we provide a high-level
analysis of our protocol extensions. A complete security
analysis of our protocol is beyond the scope of this paper.
In our extensions, all messages are authenticated using

shared keys created during the initial SSH or TLS proto-
col exchange. Thus, an attacker cannot spoof or modify
the reconnect messages. Replay attacks are not possi-
ble, since the first SSH and TLS key exchange messages
include fresh nonces that are covered by a MAC later
during the handshake.
Since the extensions require the endpoints to buffer

data that has not been acknowledged, the amount of re-
sources needed by a single SSH or TLS session is in-
creased. Thus, the work required for a denial of service
attack against a server (by creating a large number of ses-
sions) may be less than in normal SSH or TLS. However,
in most cases the buffers are likely to represent only a
small share of the resources, and thus, denial of service
resistance is not significantly changed.

5 Implementation considerations

In this section, we analyze the implications of resilient
connections for SSH/TLS client and server side imple-
mentations.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 333



5.1 When to reconnect and which interface
to use?

Resiliency against connection disruptions brings a new
challenge to client and server side implementations of
both protocols. On the client side, the challenge is to de-
termine when to start the reconnection procedure. Some
options include the following:

1. A manual request; e.g., a user could click a “recon-
nect now” button in the application user interface.

2. Automatically when the device is brought up from
a “suspended” power management state.

3. Whenever the current TCP connection is broken.

4. Whenever a more preferred network interface is
available.

5. Probably several more options exist.

In addition to deciding when to reconnect, there may
be multiple interfaces available: which of these should
be used to establish the connection?
To ensure easy deployability, the solution should de-

pend only on tools and APIs commonly available on the
deployment environment and not require any additional
software on the client machine.
Therefore, we decided to simply rely on the operat-

ing system’s source address selection. In other words,
we leave it to the operating system to decide which lo-
cal interface should be used when a TCP connection is
established, and initiate reconnection when the operating
system’s decision changes, or the current TCP connec-
tion is broken.
This raises the question of how to notice that the

OS’s source address selection policy has changed.
In Windows, the Winsock API has a feature
(“SIO_ROUTING_INTERFACE_CHANGE” socket
option; see [14]) that allows the application to be notified
of changes. BSD-based Unixes have “PF_ROUTE”
routing sockets [27] and Linux has Netlink sockets [10]
that also allow monitoring of routing table changes.
In the end, we implemented two different approaches.

For OpenSSH, we used a routing socket to monitor rout-
ing table changes. In PureTLS, we settled for polling the
OS in regular intervals to see if the preferred interface
has changed. The polling can be done, for instance, by
creating a “connection-mode” UDP socket, and reading
the local address using the getsockname() API call (note
that no UDP packets are actually sent). The approach
was preferable in Java, since it avoided the need to have
native and platform-specific code.
On the server side, a certain level of uncertainty is im-

minent too. For a server, the challenge is to determine

the time to discard a session that waits for its client to
reconnect. The difference to the client side is that the
server must make the decision completely without the
help of a user. Our vision is that the time a server is will-
ing to keep resources allocated for a session without a
connected client is a local policy issue. Different users
may have different timeouts as well as servers with dif-
ferent loads may have different timeouts. For instance,
one could assume a shared server is willing to maintain
sessions shorter period of time than a server solely used
by a single user. For the prototype implementations, we
implemented a configurable server-wide timeout.

5.2 Server side concurrency
A common server design strategy is to create a new pro-
cess or thread for each new client connection. While this
often simplifies the server design, in this context concur-
rency becomes a complicating factor, since it results in
a situation where the client’s original session and recon-
nection request are handled by two different processes or
threads.
A server designer has two options to choose from: ei-

ther the new process finds the corresponding old process
and passes the new TCP connection to the old process,
or the other way around. Regardless of the choice, the
server must maintain a table mapping sessions to pro-
cesses for inter-process (or inter-thread) communication.
In our implementations, the new process passes the new
connection to the old process. Before passing the con-
nection, the new process validates reconnection attempts.
The validation requires contacting the old process, as
the new process has no other access to the session keys.
Once the new process has passed the connection to the
old process, it exits.
Two reasons made us to choose the new process/thread

to pass its state to the old process/thread. First, the new
process has simply less state to pass: in practice, passing
a file descriptor of a transport connection and sequence
numbers to synchronize is sufficient. Second, besides the
amount of state, the new process has state information
that is easier to transfer. The old process can have such
state that is impossible to pass across process bound-
aries. As an example, consider a TLS server process
that creates child processes. In majority of platforms,
it is impossible to pass child processes from a process to
another—which would be a requirement if the old pro-
cess passed its state to the new process.
In a multi-threaded server, implementing state pass-

ing is straightforward. However, if a server is imple-
mented using concurrent processes, the above indicates
that the server requires certain Inter-Process Communi-
cation (IPC) facilities:

1. An inter-processmessage channel to validate recon-
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nection requests using keys stored in the old pro-
cess.

2. An inter-process message channel to pass sequence
numbers for synchronization.

3. A file descriptor passing mechanism to transfer a
transport connection (socket) from the new process
to the old process.

The required IPC facilities are realistic on most mod-
ern platforms, but they have often platform-specific fea-
tures. Therefore, while the resiliency extensions are un-
likely to prevent porting a server implementation to an-
other platform, IPC mechanisms may add an extra twist
to the porting process.

5.3 Atomic reconnections
Reconnection attempts must be atomic: the protocol
state machine of an old connection must not become cor-
rupted if an attempt fails. As discussed above, we de-
signed the server implementations in a way that the new
process transfers its state to the old process only after a
reconnection request is determined to be valid. The ap-
proach has a positive side effect: the server side recon-
nection handling becomes atomic from the old process’
point of view. If a reconnection request is invalid, the old
process sees nothing.
Client implementations required similar atomic recon-

nection attempts: either a reconnection attempt succeeds
or no state is affected. Unfortunately, implementing this
in a general case can be challenging, as we learned in
a hard way. A normal client implementation can mod-
ify global variables and data structures while connect-
ing, and if connecting fails, it simply exits. Being a
perfectly valid approach without resiliency extensions,
this becomes challenging when the client implementa-
tion should behave in a deterministic manner in the case
of connection failures.
Our observation was that it is tempting to modify a

client implementation to behave as a multi-process or
multi-threaded server: a fresh client process or thread at-
tempts to reconnect and only once it succeeds, it passes
its state to the old process or thread. In this way,
the client implementation may dirty the new process or
thread state but the attempt still remains atomic from
the old process’ point of view. As we implemented our
clients in this way, we found out an unfortunate side ef-
fect: clients implemented in aprocess model require sim-
ilar IPC facilities as the servers do. Our OpenSSH client
was implemented as a multi-process and PureTLS client
as multi-threaded client.

SSH2 daemon process

Privileged client 
process

Privileged client 
process

KEX process KEX processUser process

Figure 3: OpenSSH separates privileged processes
(above dashed line) and less privileged processes (below
dashed line). Grey boxes depict the processes processing
a reconnection request.

5.4 Interface to higher layers
SSH transport layer protocol and TLS are not useful
alone; they are always used together with some higher
layer protocol. TLS is used with many different applica-
tions, while in the SSH case, the higher layer protocols
are the SSH connection and user authentication proto-
cols.
In general, we would like to change the interface of-

fered by TLS and SSH transport layer protocol as little as
possible. However, some changes and/or enhancements
may be desirable. For instance, in the TLS case, some
applications may be interested in knowing when a con-
nection is no longer working, when a reconnection has
happened, or even initiating reconnection.
Another set of issues arises from the fact that the IP

addresses and port numbers used by the TCP connec-
tions may change when reconnecting. If the application
uses these values for some other purpose than just send-
ing packets, it may want to know when they change. For
instance, OpenSSH can be configured to allow connec-
tions only from certain IP addresses. Similarly, a Java
application can retrieve the addresses using Socket ob-
ject methods such as getInetAddr(), and use them for,
e.g., access control. Thus, it would be useful to have
callbacks that allow the application logic to be notified
when the addresses change.
These changes in the higher layer interfaces may re-

quire small modifications to OpenSSH and applications
that use PureTLS. However, we have not yet imple-
mented or further explored these modifications in the
current versions of our prototypes.

5.5 OpenSSH
OpenSSH implements privilege separation to limit the
effects of possible programming errors [17]. In the privi-
lege separation, a privileged server daemon process uses
less privileged processes to interface with clients. Less
privileged processes then communicate with the privi-
leged process through a monitor that protects the priv-
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ileged process. Figure 3 depicts how OpenSSH forks
(straight arrows) a separate process to do the key ex-
change and user authentication. Once the KEX process
is done, the OpenSSH server forks yet another process to
actually serve the client. Only the last process runs under
the user’s identity.
The OpenSSH privilege separation requires state seri-

alization and passing across process boundaries: differ-
ent processes perform the key exchange and the actual
connection serving. After the key exchange, the KEX
process serializes its key material together with informa-
tion about the agreed algorithms and passes the state to
its privileged parent process. The parent process then
forks the actual connection serving process and passes
the state further there.
It turned out that for both the OpenSSH server and

client implementations, privilege separation facilities
based on Unix socket pairs were enough to provide the
required IPC facilities once they were extended to pass
file descriptors. No additional authentication between
processes was necessary either; the Unix socket pairs are
invisible beyond a process and its child processes. On
the server side, facilities provide atomic reconnections
and the transfer of a new connection to an old process.
On the client side, they only guarantee atomic reconnec-
tions as discussed earlier.
On the server side, we decided to transform the main

daemon process into a message broker as it was the only
common factor between all processes. The curved arrow
in Figure 3 depicts how a connection together with syn-
chronization information actually travels through several
processes via the main daemon process, from the new
process eventually to the old process.

5.6 PureTLS

In PureTLS, most of the implementation complexity
comes from the requirement to keep the objects visible
to the application (such as Socket, InputStream and Out-
putStream instances) unchanged over reconnections.
For Socket, this required creating an additional layer

of indirection: a new Socket instance that forwards the
method calls to the “real” underlying socket. Fortu-
nately, PureTLS already contained this kind of indirec-
tion layer, and only small modifications were needed to
allow changing of the underlying socket on-the-fly.

6 Evaluation

In this section we present measurement results of recon-
nection transactions for both protocols and discuss the
complexity of implementations. In this paper, we did
not focus on the performance optimizations. Instead, the
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Figure 4: SSH processes involved in reconnecting a ses-
sion.

main purpose of our evaluation is to show that our pro-
totypes work and their performance is adequate for the
intended use (relatively long disconnections).

6.1 Measurements
One of our main assumptions behind the design princi-
ples was that typical connection disruptions last a rel-
atively long time. Therefore, we constructed one such
scenario: a user manually switches from Wireless LAN
to wired Ethernet. While the access to Internet from both
networks goes through different NAT boxes, the user still
expects his connections to survive from a changing IP
address and NAT box. We conducted a set of measure-
ments to validate the hypothesis and measure the actual
expected length of typical reconnections.
In our scenario, the user downloads a large file from

a remote server, either over SFTP or TLS. First, a user’s
laptop is attached to a wireless access point, but then the
user decides to connect it to a fixed LAN to access re-
mote services not available through the restricted pub-
lic WLAN. Switching the access point requires, besides
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Figure 5: Progress of an SFTP transfer before, during, and after reconnection.

plugging an Ethernet cable, also turning off the WLAN
interface; otherwise the laptop operating system keeps
the WLAN interface as its primary interface.
We expect that typical disconnections would last sig-

nificantly longer than the couple of seconds in these mea-
surements. For example, we have used the extensions to
keep SSH sessions alive while a suspended laptop is car-
ried from the office to home.
OpenSSH measurements
In the OpenSSH tests, the remote download server was

on the Internet and the round-trip time to the server was
10 ms through both WLAN and LAN. The SFTP client
run on Mac OS X 10.4, while the SSH server was run on
Linux.
As described in Section 5.1, the client can start recon-

nection not only when the TCP connection breaks, but
also when the preferred source address has changed. Our
OpenSSH extension uses a separate process to monitor
the routing tables of the operating system. Once this pro-
cess realizes that the route to the server has changed, it
sends a signal to other processes that handle the actual
reconnection.
Figure 4 represents the reconnection from a process

viewpoint. On the client and server sides, temporary pro-
cesses (cn and sn, respectively) handle the reconnection
and old processes (co and so) receive the new transport
connection only when it is time to resend lost packets.
The main daemon process (sd) only brokers messages be-
tween processes. In the figure, arrows titled as ’v’ depict
the inter-process validation messaging, while ’p’ arrows
depict the actual state passing.
Figure 5 shows the number of bytes an SFTP client has

received as a function of time. The test user turned off the
WLAN interface at time zero. The user quickly plugged
a wired LAN cable in; finding the cable and inserting it
to the laptop took less than three seconds. While it did
not take that long to request an IP address (in the fig-
ure interface is up once it has an IP address), the graph
illustrates how long it actually took before the network

attachment was completely over from the SFTP point of
view. Before the SFTP client receives a signal from the
routing table monitoring daemon, 5 seconds has passed
since the wired LAN interface came up. The actual re-
connection then takes only about 200 ms before the file
download continues.
PureTLS measurements
In the PureTLS tests, the client run on Linux and the

server on Windows XP; the round-trip time to the server
was around 1 ms.
Figure 6 shows the number of bytes received as a func-

tion of time. In this case, the network disruption lasted
5.5 seconds, and recovering from it took about 0.5 sec-
onds. The differences compared to the OpenSSH case
are explained mainly by how the reconnection is trig-
gered (see Section 5.1).
Acknowledgment overhead
Figures 5 and 6 show only the downlink traffic and do

not contain the additional network traffic caused by the
session layer acknowledgements. However, this traffic
is tolerable, and does not necessarily generate additional
IP packets since the SSH/TLS ACKs can fit in the same
packets as TCP ACKs.
Our OpenSSH acknowledgment implementation was

suboptimal, since it acknowledges every received SSH
transport layer message. While a single SSH ACK pay-
load consumed only 5 bytes of space (packet type and 32-
bit sequence number), the minimum cipher block sizes
and MAC together increased the total size of ACK mes-
sages; a single ACK, with default OpenSSH configu-
ration, consumed 32 bytes in total. Despite this sub-
optimal implementation, the extra traffic caused by the
ACKs was more than acceptable, since the SSH transport
layer messages can be up to 32 kilobytes: the ACK traf-
fic amounted to less than 0.6% of the whole bandwidth.
The PureTLS implementation does not acknowledge all
records, but instead attempts to send ACKs at the same
time as application data; the overhead figures were com-
parable to the OpenSSH case.
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6.2 Implementation complexity
In-band resiliency signaling helps deployment, but it has
an obvious extra cost: server and client applications must
be modified. Next, we will briefly discuss the required
implementation effort in the light of experiences from
OpenSSH and PureTLS.
Our OpenSSH extension required about 2,200 lines

of code. Over half of this code is related to passing
state information and socket handles between the dif-
ferent processes. On the other hand, implementing ex-
plicit acknowledgments and buffering required relatively
little effort, since much of existing OpenSSH functions
were reusable as such. The OpenSSH implementation
required roughly a man month of efficient work time,
which included one complete refactoring.
The PureTLS extension was slightly simpler (about

1,000 lines of code) since Java’s inter-thread communi-
cation facilities were much easier to use.

7 Conclusions
True session continuity in today’s Internet requires not
only handovers, but also gracefully handling long peri-
ods of disconnected operation. The contribution of our
paper is three-fold. First, we have identified design prin-
ciples that emphasize deployability and address some of
the challeges in previous work. Second, following these
principles, we have extended the SSH and TLS protocols
to support resilient connections. Third, we have analyzed
implementation issues faced when adding the functional-
ity into two existing software packages.
Our three design principles are as follows: mecha-

nisms for providing session continuity (a) should not
place additional requirements for the network, (b) must
allow incremental deployment, both providing benefits to
early adopters and interoperating with legacy endpoints,

and (c) should not require changes in operating system
or third party libraries.
Our experience with the SSH and TLS extensions in-

dicates that these design principles mandate certain pro-
tocol features, the most important one being in-band sig-
naling. Furthermore, the protocol needs to support ex-
tension negotiation and explicit close messages, and has
to be extendedwith explicit acknowledgements for trans-
ferred data.
The required extensions to the TLS and SSH proto-

cols were relatively simple. In our case, we embedded
the resiliency negotiation into the initial connection setup
messages in a backwards compatible manner. In addi-
tion, both protocols execute mutual authentication while
reconnecting simply by proving the possession of the
shared secret of a suspended session.
In the implementations, handling the server side con-

currency was clearly the most challenging part. The pro-
cess (or thread) that is handling the reconnection request
must find the corresponding old process, since only the
old process can validate the request. After a success-
ful validation, the new process must pass the connec-
tion state and the TCP socket to the old process. This
translates into inter-process or inter-thread communica-
tion mechanisms. Moreover, while dividing functional-
ities between the new and old processes, we found out
that a new process should prepare a reconnection attempt
and only alter the state of the old process after the re-
connection attempt has succeeded. This simplified the
implementations considerably.
While our paper has focused on addressing deploy-

ment challenges, deployability remains a difficult con-
cept. Much of existing work on mobility has focused on
issues easy to measure and compare, such as handover
performance. Deployability in general, as well as ap-
proaches to compare it, have received less attention, and
clearly, more work is needed to better understand how
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different protocol design choices affect deployability.
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