Fragmentation Considered Vulnerable

Yossi Gilad & Amir Herzberg
Computer Science Department, Bar Ilan University

Overview

- IP fragmentation recap
- □ `Easy case' fragment miss-association attacks
- Fragmentation attacks in tunnels
- Conclusions

IP Fragmentation - Recap

- Today: attacks on IP fragmentation
 - Blind (spoofing only) attacker
 - Interception and DoS attacks.
- The Internet is a diverse network
 - Different Maximal Transmission Units (MTUs) on different links/nets
- What if |long-pkt|>MTU?

IP Fragmentation - Recap

- Solution 1: Path MTU discovery (PMTUd)
 - Discard oversized pkt, inform sender (via ICMP)
 - Requires connection
- Solution 2: IP fragmentation
 - 'Break' long pkt into fragments (|frag|<MTU)
 - □ Fragment at: any node (IPv4) / only src (IPv6)
 - Defragment: only at destination
 - According to: source, destination, protocol & frag ID

'Fragmentation considered Harmful'

- IP fragmentation is conceptually easy, but...
 - Wasteful/harmful [KentMogul87]
 - Complexities: may arrive late or out of order, overlap
 - How much storage? How long keep fragments in cache?
- But: still often used
 - PMTUd often fails (for UDP, no ICMP feedback,...)
 - Fragmentation is common in UDP and tunneled traffic [Shannon02]

'Fragmentation considered Harmful'

- Implementation vulnerabilities:
 - Memory allocation DoS attacks: TearDrop, Rose...
 - Tiny fragment evasion of firewalls
- Specification vulnerabilities:
 - Fragment cache overflow attack [KPS03]
 - Zalewski (2003) notes that fragmented TCP traffic can be vulnerable to (blind) TCP injections
 - Fragment mis-association attack [M04,rfc4963]

Fragment Misassociation Attack

What if...

- Frag mis-association has low drop rate
- What if attacker can find the `next' ID?
 - Trivial to `kill' packet (DoS)
 - Can also `inject' a fragment
 - Need to fix checksum
 - Checksum can be disabled for UDP
- How is the IP ID chosen (by the sender)?
 - Usually a counter this is specifically recommended by IPv6 specification
 - Two main approaches:
 - Global counter (Windows)
 - Per-destination counter (Linux)

Sometimes, ID Exposing Is Easy

- When the sender uses a global identifier
 - Just by observing any packet from the sender
- When the attacker has a zombie behind the NAT with the destination
 - Can also intercept fragments!
 - Rewrite transport layer header

Sometimes, ID Exposing Is Easy

Intercepting fragments

Fragment Interception: Results

Results for IP tables based NAT

Other Cases?

- Can similar attacks apply when sender uses per-destination IP-IDs?
 - Easy: if there is NAT (shown before)
- What if there is no NAT?
- Yes!
 - For a tunnel scenario

ID Exposing Attack

- Alice and Bob are connected via a tunnel
- Main difference from NAT scenario:
 - Packets `on the Internet' have a different IP header
 - Adversarial agent, PuZo, can not `see' the `Internet' ID
- Improved motivation: fragmentation is common in tunnels
- In talk: Zombie (to receive raw IP packet)
 - □ In paper: Puppet (running in sandbox)

ID Exposing Attack

- Use packet loss as a side channel to identify the current ID within the tunnel
- We assume no benign traffic or packet loss
 - Full version shows how to deal with those

ID Exposing Attack – Basic Version

ID Exposing Attack – Basic Version

5	G'	W _A	G	W _B PuZo
	TCP, ID = 1113	MF = 1, DF =	0, ESP, ID = 2223	TCP, ID = 1113
		MF = 0, DF =	0, ESP, ID = 2223	
	•	•	•	-
		:	:	
	TCP, ID = 1110	MF = 1, DF =	0, ESP, ID = 2220	TCP, ID = 1110
		MF = 0, DF =	0, ESP, ID = 2220	
		Feedbac	k: 1110 – 1112 =	$= -2 \ (mod \ 2^{16})$
	ne		pute: 1 = 2221 (<i>mod</i> 2	2 ¹⁶)

ID Exposing Attack - Meet in the Middle

- But... if n is the number of possible identifiers, this attack requires to send O(n) packets.
 - \square 2¹⁶ for IPv4, for 2³² IPv6
- Revise with meet in the middle technique

ID Exposing Attack - Meet in the Middle

- Send \sqrt{n} fragments \rightarrow lay \sqrt{n} traps
- Narrow the search space to \sqrt{n}
 - □ Detect loss → assume `ID hit' (frag. mis-association)
- Exhaustive search over all remaining IDs
- Reduced number of packets to $O(\sqrt{n})$
 - □ Also feasible for IPv6 (n = 2^{32})

Continual Deny & Expose

- Mal has the current ID
 - Goal: deny fragmented traffic
- Main Difficulty: maintain synchronization with current IP ID
 - Incremented for every packet (regardless of arrival/loss)

Continual Deny & Expose

- Basic idea: use PuZo to `monitor' IP ID progress
 - Send two sequences of spoofed fragments with consecutive IDs
 - Small `gap' of unset IDs between them
 - PuZo makes a periodic request for data
 - \square Response arrives \rightarrow ID within the gap
 - Send the next sequence

Continual Deny & Expose - Results

- Success depends on the number of forged fragment attacker can `cache in'
 - Usually 64 or no limitation (except cache size, 6500+)

Conclusions

- Fix IP ID
 - Add appropriate defenses to network firewalls, IDS/IPS
- Need to improve specification of networking protocols
 - Need to develop validation techniques
- Further motivation for [Gont11]

Questions?