
; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 95

2008 USENIX Annual Technical Conference
Boston, MA
June 22–27, 2008

virtualization

Summarized by John Krautheim (kraut1@umbc.edu)

n	 Decoupling Dynamic Program Analysis from Execution
in Virtual Environments
Jim Chow, Tal Garfinkel, and Peter M. Chen, VMware

Awarded Best Paper!

Jim Chow described a novel method for software testing
and debugging using a virtual machine (VM) as record-
ing and replay device. The concept is not new, but the
technique presented provides a new tool for the arsenal
of software developers and testers.

Jim points out that one of the main reasons for devel-
oping such a tool is the lack of automated methods in
software development. The team at VMware wanted to
make Dynamic Program Analysis (DPA) more accessible.
DPA is ability to take a running computer program, stop
it, and inspect its state. This technique is very useful for
the programmer; however, existing tools for DPA have a
very high overhead from context swapping, instrumenta-
tion, and analysis, which results in a slowdown on the
order of one hundred times. Therefore, the VMware team
looked for a way to improve this analysis technique with-
out the slowdown from overhead. The solution the team
came up with was to decouple the analysis and execution
by parallelizing the problem with virtual machines. This
allows the target system to run freely in one VM while
the analysis system records and regenerates events on a
separate VM. The hypervisor is used to record all inputs
to the VM under analysis and can start the analysis
machine from the same state and replay instructions. The
analysis system regenerates all the data needed, removing
the overhead from the target system. Since the overhead
of recording is very efficient with virtual machines, the
target system can run at roughly native speed.

To demonstrate the technique, the team developed the
Aftersight system. Aftersight is built on the VMware vir-
tual machine monitor and thus it inherits many proper-
ties of VMs that can be leveraged to solve the problem.
The Aftersight system provides isolation of the target and
analysis system so that the analysis is self-contained and
communication bottlenecks are eliminated. Through par-
allelism, the analysis and the target can run separately,
on multiple cores if available. This allows analysis to go
faster, and multiple analyses may be performed at the
same time. An added side benefit of this parallel play-
back and recording is that ex-post-facto analysis can be
performed on behavior not known at the time of record-
ing, providing the ability to examine events not foreseen

conference reports

thaNks tO Our summarIzers

2008 USENIX Annual Technical
Conference . .95
Tom Clegg
John Krautheim
Varun Marupadi
Kiran-Kumar Muniswamy-Reddy
Matthew Sacks
Zoe Sebepou
Christopher Stewart
Ward Vandewege

Third Workshop on Hot Topics in Autonomic
Computing (HotAC III) . .112
Alva Couch

Findings from the First Annual File and
Storage Systems Benchmarking
Workshop . 113
Darrell D.E. Long
Ethan L. Miller
Avishay Traeger
Erez Zadok

96 ; LO G I N : VO L . 33, N O. 5

at execution time. The team has used Aftersight to debug
VMware’s own ESX Server, the Linux kernel, and the Putty
secure shell client, finding previously undiscovered bugs in
all three.

The Aftersight system relies on the concepts of heteroge-
neous replay and parallel analysis. Heterogeneous replay
is the ability to record and replay events at the same time,
thus increasing the speed and timeliness of analysis. Paral-
lel analysis allows analysis and system execution simul-
taneously, further increasing the timeliness of the results.
Implementing heterogeneous replay and parallel analysis
presents several technical challenges. First, keeping tar-
get and analysis systems in sync with each other without
slowing the target system down is difficult. The analysis is
typically slower than the target system, and there are times
when the target system must be blocked because of resource
allocation issues. This limitation can be overcome by addi-
tional buffering in the target system and further refinement
and tuning of the analysis system to speed it up. However,
there are situations where the analysis system just cannot
keep up, so additional techniques such as forward caching
and buffering can be applied. Also, the addition of more
processing cores in the system can help offload the analysis
task through further parallelization.

This talk gave several compelling reasons for using dynamic
program analysis and showed how decoupling the execution
and analysis environments can significantly improve pro-
ductivity and effectiveness. The Aftersight system appears
to have many useful applications in the development, test,
and security worlds. The audience was greatly intrigued
and several questions arose on the difference between the
decoupled approach and existing parallel environments.
The difference is at what level the recording and playing
occur. Jim stated that recording at the OS level incurs more
overhead than recording at the hypervisor level.

n	 Protection Strategies for Direct Access to Virtualized I/O
Devices
Paul Willmann, Scott Rixner, and Alan L. Cox, Rice University

Paul Willmann, now with VMware, presented performance
and safety measures of several strategies for access control
to I/O devices from within virtualized environments. Direct
access to I/O devices is required in many datacenter ap-
plications where high throughput performance is needed;
however, access to these devices needs to be controlled to
protect from an untrusted virtual machine (VM) tamper-
ing with or using devices it does not have permission or
privilege to use.

Wallmann presented implementations of protection strate-
gies in both hardware and software, with surprising results.
Hardware implementations utilize an Input Output Memory
Map Unit (IOMMU) to implement single-use mappings,
shared mappings, persistent mappings, and direct mapping
strategies. The software strategy is an implementation of
the single-use mapping that requires the guest OS’s drivers

to register with the virtual machine monitor (VMM) before
access is granted to the device. Both hardware and software
implementations have advantages and disadvantages that
are evaluated in the paper.

The different strategies were evaluated based on perfor-
mance and protection capability in inter-guest and intra-
guest protection categories. Three types of invalid accesses
were evaluated for each strategy and for each category: bad
address, invalid use, and bad device. The results showed
that hardware implementations worked very well and ef-
ficiently for intra-guest protections, but it did not perform
well for inter-guest protection. The software implementation
performed well in all inter-guest protections except for the
bad device case. Additionally, the software method provides
additional protection in the intra-guest invalid use case.

With all the strategies showing very good overall protec-
tion, the biggest differentiator among the various strategies
becomes performance-related. Several benchmarks were
run against the strategies, including a TCP stream, a VoIP
server, and a Web server. The benchmark also tested against
various levels of mapping reuse. The results showed that the
single-use strategy had the highest inter-guest overhead, at
6%–26% of CPU workload; however, significant mapping
reuse can greatly reduce that overhead. Persistent map-
pings showed the highest performance, at only 2%–13%
overhead with nearly 100% reuse. The software implemen-
tation showed better performance than two of the hard-
ware strategies (single-use and shared), with 3%–15% CPU
overhead. The direct-mapped hardware strategy was the
best performer, although it had limited intra-guest protec-
tion capability.

The surprising result is that the software protection strate-
gies utilized in this paper provide performance comparable
to or better than the hardware IOMMU results while still
maintaining strict inter-guest and intra-guest protection.

n	 Bridging the Gap between Software and Hardware Tech-
niques for I/O Virtualization
Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman,
HP Labs; Ian Pratt, University of Cambridge

Jose Renato Santos’s talk was on improving I/O performance
in virtual machines through combining hardware and
software techniques. In a virtualized environment, physical
devices need to be multiplexed so that each guest virtual
machine (VM) can use the device. This multiplexing can be
handled in software and hardware, each with its advantages
and disadvantages. Software incurs a significant overhead
in managing the device; however, the driver is simplified by
providing a transparent interface as I/O access is handled
by the host OS using a device-specific driver and the guest
can use a standard virtual device driver independent of
the hardware. The hardware approach is more complicated
since the transparency is reduced, requiring each guest VM
to have a device-specific driver; however, the performance
is usually much better.

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 97

The HP Labs research team wanted to reduce the perfor-
mance gap between driver domain model and direct I/O
while maintaining transparency. To do so, they analyzed
the Xen device driver model, focusing on the networking
receive path, and compared the same workload with a direct
I/O approach. They focused on several areas to improve the
performance of the Xen driver. First, they reduced the data
copy cost by keeping all copies between guest and driver
domains on the same CPU to increase cache hits. Next,
they avoided extra data copies by using dedicated NIC
receive queues. Finally, they reduced the cost of the grant
mechanisms, the second highest cost in Xen, by maintain-
ing grants and mappings across multiple accesses. The team
was able to reduce the receive path execution costs for a
conventional NIC by 56%. For devices with multiple hard-
ware receive costs, they were able to achieve performance
near direct hardware I/O while maintaining the benefits of
the Xen driver model. This is a significant improvement in
performance over the original driver domain model in Xen.

By keeping the new multi-queue completely hidden from
the guest and encapsulated in the driver domain, migration
to the new driver is completely transparent to the guest. The
team has stated that the new mechanisms will be updated
in the Xen Netchannel2 in approximately 2–3 months. The
next improvement they plan to make will be to look at
high-bandwidth (i.e., 10 GigE and multiple guests) improve-
ment in the Xen driver.

invited talk

n	 Free and Open Source as Viewed by a Processor Developer
Peter Kronowitt, Intel

Summarized by Ward Vandewege (ward@gnu.org)

Peter Kronowitt’s talk grew from an internal Intel presenta-
tion. He works in the Software Solutions Group, which opti-
mizes software—all sorts of software, ranging from embed-
ded to server. The purpose of the optimization is to ensure
that when the product reaches the marketplace, there is a
complete hardware and software solution.

The traditional software-enabling model at Intel goes
something like this. Intel works with over 12,000 software
companies. Most of these are proprietary, so Intel has to
sign nondisclosure agreements (NDAs). Then engineers are
assigned; they need time to get the work done, and then
Intel has to wait for the market to generate demand in order
to get to a mutually beneficial state for Intel and its partners.

Open source development is very different. Intel feeds
software into the kernel. That software then gets picked
up by community distributions such as Debian, Fedora,
and OpenSuse, and those in turn feed into the products of
Linux companies such as Canonical, RedHat, and Novell.
This is a much more efficient model.

Intel has learned to work more effectively with kernel de-
velopers: In 2001, Alan Cox, a core kernel developer, gave

direct feedback that Intel required many NDAs and was se-
cretive about its hardware, making it very difficult to work
with. Fast forward to 2007 when Alan Cox said that Intel
is one of the most cooperative hardware vendors, providing
good docs, errata, and software such as graphics drivers. In
those six years, Intel has learned and relearned a lot of stuff.

Linux is estimated to be one-third of the market based on
server shipments today. But tracking open source software
(OSS) is very difficult. This is a problem—if Intel can’t tell
what software customers are using, it cannot put its re-
sources in the right place to make sure the hardware works
perfectly. Intel needs to know what software customers are
using and deploying in order to be able to offer a “complete
solution.” Also, OSS is growing three times as fast as propri-
etary software.

Intel has been growing its open source involvement over
the years, starting in 1990 when Linus Torvalds booted
Linux on Intel Architecture for the first time. He was able
to do that because Intel had released detailed specifications
for the Intel Architecture. Since 2003, Intel has become
more visibly active as a contributor to OSS. The following
paragraphs highlight some examples of how Intel has been
working with the OSS community over the years.

The PC BIOS had not changed for over 20 years. Intel
launched the Tiano project to replace it. This was done in
partnership with CollabNet, establishing the extensible
framework interface (EFI) dev kit. From this, Intel learned
how open source can drive industry change.

In 2003 Intel joined other vendors in a virtualization
research project called Xen at Cambridge University in the
UK. In 2004 Intel started contributing a large amount of
code to the open-source project. Today a large ecosystem
exists around virtualization, and Intel has been contribut-
ing to many projects in that space. Xen helped catalyze Intel
feature adoption by vendors of virtualization products.

The telecom industry was a highly proprietary, vertically
integrated industry that overinvested during the dot-com
era. Intel was a founding partner of the Open Source De-
velopment Labs (OSDL), contributing to the kernel and the
Carrier Grade Linux (CGL) specification. When the dot-com
bubble burst, the carriers needed to cut costs, and Intel’s
involvement with CGL helped the Intel Architecture break
into the telco industry.

In the late 1990s, Merced, the Itanium platform, solidified
numerous operating system porting commitments. Intel
worked with many OS vendors and indirectly contributed
to the Linux kernel. Linux and Itanium helped Intel gain
access to the RISC market.

Initially, Intel made Linux kernel contributions via proxy.
This meant that Intel was not very visible as a community
member. After long, difficult internal negotiations on open
sourcing drivers, Intel started contributing code directly to
the kernel. This direct participation in the community has
accelerated Intel technology adoption.

98 ; LO G I N : VO L . 33, N O. 5

Influencing Java was . . . challenging. Intel, like numerous
other industry players, requested that Sun open source Java.
Eventually, Intel participated in the launch of the Harmony
project with other industry players, including IBM. Har-
mony was a clean-room OSS Java implementation. Eventu-
ally, this encouraged Sun to release an OpenJDK.

More recently, Intel has been working on Moblin, an opti-
mized software stack for Atom-based clients. This software
stack is aimed at mobile Internet devices, netbooks, cars,
etc. See http://moblin.org for more information. Intel also
launched LessWatts.org, an Intel open source project to
make Linux greener.

disk stor age

Summarized by Christopher Stewart
(stewart@cs.rochester.edu)

n	 Idle Read After Write—IRAW
Alma Riska and Erik Riedel, Seagate Research

When users issue writes to a disk, they assume their exact
data has been stored. However, mechanical anomalies can
cause the data actually stored on disk to deviate from the
user’s original data (a.k.a. data corruption). Worse, such
corruption can be silent, causing the user to wrongly believe
their data was correctly written to the disk. Alma Riska
presented Idle Read After Write (IRAW), a low-overhead
approach to detecting silent data corruption. IRAW issues a
disk read for recently written data during periods when the
disk is idle. The data returned by the read is compared to a
cached copy of the actual data the user intended to write to
the disk; if the two differ, appropriate recovery actions are
taken (e.g., retry).

Compared to a standard disk, IRAW improves reliability
by validating writes soon after they occur. An alternative is
to validate each write immediately after it happens (RAW).
RAW improves reliability, but it degrades performance by
placing an additional disk operation on the critical path
of every write. In comparison, IRAW delays the valida-
tion until the disk is idle, and therefore it hides the cost
of the additional read from the end user. IRAW therefore
requires enough idle time for the additional disk operations
to complete. Alma presented empirical evidence from five
disk traces, all of which had more than enough idle time to
perform the delayed reads.

Empirical results using IRAW show that it indeed has low
overhead. One experiment showed that the performance of
an IRAW-enabled disk almost matched that of a standard
disk for a Web server application. Further, IRAW may not
degrade other performance-enhancing disk operations. For
instance, many applications can benefit by enabling IRAW
and idle wait simultaneously. Finally, Alma showed that the
footprint of IRAW in the disk cache was not too large for
today’s disks.

Adam Leventhal from Sun Microsystems asked whether
IRAW could be applied at the filesystem level. Alma said
that it is possible, but the file system will probably be less
effective at identifying true idle time on the disk. Geoph
Keuning from Harvey Mudd College asked whether it was
even important to be concerned with the amount of cache
space dedicated to IRAW, since volatile memory is getting
cheaper. Alma said that one design goal was to make IRAW
practical for today’s disks, which meant keeping the foot-
print below 4–6 MB.

n	 Design Tradeoffs for SSD Performance
Nitin Agrawal, University of Wisconsin—Madison; Vijayan
Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and
Rina Panigrahy, Microsoft Research, Silicon Valley

Solid-state disks (SSDs) can perform certain I/O operations
an order of magnitude faster than rotating disks. They have
the potential to revolutionize storage systems. However,
little is known about the limitations of their architecture.
Nitin Agrawal discussed several inherent challenges for
SSD devices and proposes solutions. The analysis is based
on a detailed understanding of the architecture of SSD
devices. For instance, a write to an SSD block requires that
the block’s contents be erased and rewritten. Further, SSD
blocks can only be erased a certain number of times. Such
architectural properties affect the performance and reliabil-
ity of SSDs.

The granularity of writes affects the performance of SSDs.
Specifically, workloads that perform writes to random loca-
tions on disk perform orders of magnitude worse than those
that perform random reads. Empirical evidence showed a
difference of 130 random writes per second compared to al-
most 20,000 random reads per second. Nitin demonstrated
that properly mapping logical pages to physical blocks can
improve the performance of random writes. A second per-
formance challenge faced by SSDs is bandwidth bottlenecks.
Striping and interleaving are good solutions to mitigate
the bandwidth bottleneck by distributing I/O for logical
blocks across multiple channels. Intuitively, this solution
exploits the potential for parallelism in storage access pat-
terns. Finally, SSD blocks wear down after a certain number
of erasures and rewrites. To maximize the lifetime of the
device, Nitin proposed a novel wear-leveling algorithm that
increases the usable lifetime of an SSD by delaying expiry of
any single block.

Jason Flinn from the University of Michigan asked Nitin
about the benefit of wear-leveling, given that the whole
device will wear out eventually anyway. Nitin said that
wear-leveling reduces the long-term cost of SSDs, since the
failure of individual blocks could force a company to pur-
chase a new device when only a small portion of its capac-
ity is unusable. Sean Rhea noted that wear-leveling is most
beneficial for applications that frequently write to only a few
pages but access many pages for reading (i.e., small hot set
and large cold set). Nitin agreed.

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 99

n	 Context-Aware Mechanisms for Reducing Interactive
 Delays of Energy Management in Disks
Igor Crk and Chris Gniady, University of Arizona

Igor began by saying that most disks now support differ-
ent power modes for energy conservation. The disk can be
powered down during idle times to consume less energy
and then spun up to an operational power mode when I/O
requests arrive. In today’s interactive systems, the additional
latency for I/O requests that interrupt idle periods (i.e., the
time for a disk spin-up) is typically seen by the end user
(who then gets miffed and maligns the system as slow and
unresponsive). Igor presented a mechanism to hide spin-up
latency from end users by preemptively changing the disk
to full-power mode before I/O requests happen. The key is
to identify end-user GUI events that signal that a disk I/O is
imminent. When such events happen during an idle period,
the disk can be moved to an operational power mode in an-
ticipation of the impending request. For instance, a mouse
click on a “file open” button may be a good signal that an
I/O request is imminent and the disk should preemptively
be spun up.

Compared to today’s default policy (no preemptive spin-up),
the proposed solution can hide spin-up delays from the end
user. Further, by considering the context of the GUI event,
the proposed solution can achieve better energy conserva-
tion than a naive solution that preemptively spins up after
every mouse click. Context information was collected by
intercepting calls to the X windows server. Specifically, each
X windows event updated a table that tracked the number
of times that the event occurred in a particular context and
the number of times it was followed by I/O. After data was
collected for a long period of time, the event contexts that
were most likely to be followed by disk I/O were tagged
as good predictors. Empirical results show that preemp-
tive action based on the identified predictors does hide the
latency of disk spin-up from end users, while conserving
more energy than a naive approach that does not consider
the context of the event. Further, Igor mentioned that the
proposed system allows users to trade off the latency they
see for more energy conservation by adjusting the threshold
at which an event qualifies as a predictor.

Yu Chen from Fermilab asked whether they were able to
accurately predict disk requests for systems that had a large
file system cache. Igor noted that the difference between file
system requests and disk I/O was a significant challenge. In
the current implementation, they identify the GUI events
likely to cause file system requests and apply a heuristic to
predict disk requests. Christopher Stewart from the Univer-
sity of Rochester noted that user satisfaction, as measured
by Mallik et al. at ASPLOS 2008, could guide the setting of
the threshold that determines when an event qualifies as a
predictor. Igor agreed that the combination of the two works
could be beneficial. However, he noted that GUI events can
predict I/O well in advance, so a combination of the tech-
niques may significantly affect performance.

net work

Summarized by Matthew Sacks
(matthew@matthewsacks.com)

n	 Optimizing TCP Receive Performance
Aravind Menon and Willy Zwaenepoel, EPFL

Aravind Menon demonstrated the ability to improve TCP
performance by focusing on the receive side of the TCP
protocol. Menon argued that receive-side optimizations are
missing, contributing to lesser performance of the TCP pro-
tocol. Linux was used as the demonstration OS for his con-
cepts, although the same principles can be applied to any
operating system. Menon shows that there are two types of
overhead: per-byte optimizations and per-packet optimiza-
tions. Per-packet overhead costs are the primary overhead
contributor on newer CPUs, whereas on older processors
the issue was with per-byte overhead.

Menon presented two types of performance improvements
in his talk: receive aggregation and TCP acknowledgment
offload. Receive aggregation aggregates multiple incoming
network packets into a single host packet accounting for
a 45%–86% increase in performance. Receive aggregation
requires that the packet must be the same TCP connection,
must be in sequence, and must have identical flags and
options. Receive aggregation works best when receiving at
a high rate of transfer. To implement this method in Linux
the network driver must allocate raw packets rather than
sk_buffs.

For acknowledgment offloading, the normal method of gen-
erating ACK packets, by a one-to-one mapping, is replaced
by a template to generate the ACK packets, which in turn
avoids buffer management costs. This must be done at the
device-driver layer. Nonprotocol overhead has the greatest
impact on TCP performance such as buffer management,
and, specifically for the Linux driver, it also processes MAC-
level analysis of each packet.

n	 ConfiDNS: Leveraging Scale and History to Detect
 Compromise
Lindsey Poole and Vivek S. Pai, Princeton University

Lindsey Poole presented a new project called ConfiDNS,
which is based on the CoDNS cooperative DNS resolver
system. CoDNS is a wrapper for local DNS resolution that
allows faster lookups and high availability for DNS lookups.
CoDNS utilizes PlanetLab for ensuring high availability as a
distributed service.

ConfiDNS takes the CoDNS project and addresses the secu-
rity vulnerabilities in CoDNS, which is susceptible to con-
tamination from a single resolver being propagated through-
out the entire system. The way ConfiDNS works is that
when the local resolver fails, it forwards the request to peer
nodes on the PlanetLab network (a feature that was present
in CoDNS). ConfiDNS preserves a history of lookups and
the client can specify policies for DNS lookups.

100 ; LO G I N : VO L . 33, N O. 5

Another problem encountered with CoDNS is DNS lookups
served by global content distribution networks, which may
return multiple IPs from different locations for the same
hostname. ConfiDNS addresses this problem by implement-
ing a peer agreement algorithm that compares results from
multiple resolutions from different geographic locations and
then returns a result.

ConfiDNS proves that you can improve DNS resolution
performance without compromising security. DNS attacks
on the local system are much easier to carry out. ConfiDNS
protects against attacks such as cache poisoning or spoof-
ing, and it improves performance at the same time.

n	 Large-scale Virtualization in the Emulab Network Testbed
Mike Hibler, Robert Ricci, Leigh Stoller, and Jonathon Duerig,
University of Utah; Shashi Guruprasad, Cisco Systems; Tim
Stack, VMware; Kirk Webb, Morgan Stanley; Jay Lepreau, Uni-
versity of Utah

Emulab, a network testbed at the University of Utah, allows
researchers and engineers the ability to specify a network
topology including server systems to which you have root
access. One of the difficulties that the Emulab maintainers
experienced was a limitation in the amount of hardware
available to them; therefore, a virtual solution for the net-
work and systems was needed to power the Emulab testbed.
One of the requirements of the virtual solution was that
the virtual environment needed to retain the same fidelity
of experiments running on the testbed so that the results
would not be affected. At first FreeBSD jails were used to
address this; however, jails alone were found to fall short in
addressing the issue of network virtualization, so the Emu-
lab team designed a more robust virtualization platform
that expanded on the FreeBSD jail’s limitations.

The team at Emulab implemented a robust network virtu-
alization solution by developing a virtual network interface
device, which is a hybrid encapsulating device and bridg-
ing device. The “veth” interface allows creation of unbound
numbers of Ethernet interfaces, which then communicate
transparently through the switch fabric. Veth devices can
be bridged together or with physical interfaces to create
intra-node and inter-node topologies. In addition to virtual
network interfaces, the Emulab team also had to implement
virtual routing tables that are bound to each jail and virtual
interface based on the Scendaratio and Risso implementa-
tion, which implements multiple IP routing tables to sup-
port multiple VPNs. Also, for the virtual nodes themselves,
the Emulab team designed a resource-packing methodology
called “assign” which “packs” virtual hosts, routers, and
links into as few physical nodes as possible without over-
loading the physical nodes. This method allows up to a 74:1
compression ration of virtual nodes/networks to physical
hosts.

The research done on the Emulab testbed in addressing
these scaling issues with virtual networks and nodes has
enabled the team to scale efficiently while keeping the

same fidelity as strictly physical hardware by using virtual
interfaces and resource packing. The efficiencies achieved
in the Emulab virtualization implementation now allow ex-
periments to be executed on up to 1000 nodes, permitting
powerful simulations without impact onm the fidelity of the
experiments.

invited talk

n	 Millicomputing: The Future in Your Pocket and Your
 Datacenter
Adrian Cockcroft, Netflix, Inc., and Homebrew Mobile Club

Summarized by Tom Clegg (tom@tomclegg.net)

Low-power computing devices such as mobile phones—
which Adrian Cockcroft calls “millicomputers,” because
their power requirements are measured in milliwatts rather
than watts—are increasing in capacity faster than their hun-
dred-watt datacenter counterparts. In this talk, Cockcroft
gave an overview of the current state of low-power technol-
ogy and cheap open hardware in particular, considered
some of the applications that become possible as mobile
devices approach the capacity of personal computers, and
outlined a speculative “enterprise millicomputer architec-
ture” employing thousands of low-cost nodes per rack.

In 2007, the iPhone was notable for running a full Mac OS
rather than a cut-down embedded operating system—it
ships with 700 MB of system software. Clearly, portable
millicomputers such as the iPhone provide a real applica-
tion platform. Cockcroft showed photos of a prototype
“myPhone”—a Linux-based GSM/EDGE phone with many
built-in features and connectivity options, and CPU and
RAM specifications similar to the iPhone. In 2008, the
emergence of Google Android as an open source alternative
to the iPhone platform has generated a lot of developer in-
terest. The highest-performance smart phone hardware will
raise the bar further with 256 MB RAM, 16–64 GB storage,
twice the CPU speed, and faster networking. AT&T plans to
implement HSPA release 7 in 2009, which will deliver speed
“exceeding 20 Mbps” and has a “clear and logical path” to
700-MHz 4G access in the 2010 timeframe, which should
increase speed to nearly 100 Mbps. Meanwhile, short-range
low-power networking is reaching 480 Mbps as Ultra-Wide-
band Wireless USB starts to roll out. Nonvolatile storage is
steadily becoming cheaper, and emerging storage technolo-
gies promise dramatic speed increases in a few years. In the
CPU market, we can expect 1-GHz quad-core processors to
arrive in 2010.

Given the pace of mobile technology advances, the time is
coming into view when pocket devices with wireless dock-
ing can replace laptop computers, just as laptops replaced
desktop computers for many users. Combining workstation
computing power with mobile connectivity, we might see
“life-sharing” applications such as full-time video confer-
encing and virtual world integration. Integrating acces-

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 101

sories such as an accelerometer, compass, and brainwave
reader, we have a system with many possible uses such as
computer-assisted telepathy, ambient presence, immersive
personal relationships, and better ways to monitor and care
for physically disabled people.

In addition to mobile applications, these tiny low-power
computers have potential applications in the datacenter.
They could help reduce power consumption, which is
already a limiting factor in many situations. Cockcroft
presented one possible architecture to demonstrate how
a computing cluster might be constructed using low-cost
mobile device boards. Modules packed onto a 1U enterprise
motherboard yield a fully distributed heat model that is
much easier to cool than a typical server board. Two groups
of seven modules are connected via USB switches to each of
eight gateway/load balancer nodes, each having two gigabit
network interfaces. Thus, each rack unit has a total of 112
CPUs and 28 GB of RAM, consuming 24 W when idle and
160 W at peak power. Adding 8 GB microSDHC cards with
20 MB/s I/O each, we have 896 GB per rack unit of stor-
age with 2240 MB/s I/O. The $14,000 cost of this system is
comparable to a 1U Sun server with similar specifications—
but the millicomputer offers much faster storage I/O with
zero seek time and more network bandwidth, using little
more than half the power.

Software implications of this platform include a small ap-
plication memory limit (256 MB) on par with mainstream
systems from 2001. Management implications include
the need for lightweight monitoring, aggregation tools,
and load balancing. This platform would be well suited
to horizontally scalable applications such as Web content
delivery, legacy applications that could run on five-year-old
machines, storage I/O-intensive applications, and graphical
video walls.

One participant pointed out that the low bandwidth
between nodes could be a serious limitation. Cockcroft
explained that the USB approach was taken to minimize
power consumption, and the CPU power is not enough to
saturate a gigabit network interface in any case. This feature
of the design makes it more suitable for applications with
low IPC demands, such as Web servers. It would also be
possible to use other low-power interconnects, perhaps
based on FPGA technology, which would give better inter-
connect bandwidth. It should also become less of an issue
as RAM size increases. Another participant suggested a
heads-up display with facial recognition software as an in-
teresting mobile application. Cockcroft added that, although
signal processing chips can be a big power drain, many
processing tasks can be postponed until nighttime, when
the device is plugged into a charger and it’s acceptable for it
to get a bit hotter than comfortable pocket temperature. An-
other participant brought up the possible impacts of mobile
technology on the way we interact with services; Cockcroft
referred to “taking the friction out of interactions” with
always-on networking and services such as continuously

updated status tracking. Another participant wondered
whether this mobile power could simply do away with the
role of the data center; Cockcroft offered that, although
there tends to be a pendulum alternating between client and
server focus, there will likely always be a place for central-
ized services, but certainly more can happen in the pocket.

Current information on millicomputing can be found at
http://millicomputing.blogspot.com/.

file and stor age systems

Summarized by Zoe Sebepou (sebepou@ics.forth.gr)

n	 FlexVol: Flexible, Efficient File Volume Virtualization in
WAFL
John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair,
Eric Hamilton, Andy Kahn, Arkady Kanevsky, James Lentini,
Ashish Prakash, Keith A. Smith, and Edward Zayas, NetApp,
Inc.

John Edwards presented their work on a new level of indi-
rection between physical storage containers (aggregates) and
logical volumes (FlexVol volumes). An aggregate consists of
one or more RAID groups, and its structure resembles that
of a simple file system, keeping the changes made on the
individual FlexVol volumes. The main goal of FlexVol was to
provide new functionality by decoupling the physical device
management from the data management. The decoupling
strategy gives administrators the flexibility to enforce differ-
ent policies on different volumes and to dynamically grow
or shrink the volumes.

The mapping between the virtual block addresses of FlexVol
and the physical addresses used by aggregates requires extra
processing and disk I/O to deal with the address transla-
tion of each indirect block. This challenge is addressed with
two main optimizations: dual block numbers and delayed
block freeing. Block pointers in a FlexVol volume have two
parts: the logical location of the block in the container and
its physical location. In delayed block freeing, free space is
held by the aggregate, not the volumes, so one counts the
number of delayed free blocks and performs a background
cleaning after a specific threshold. These optimizations
help to reduce the overhead and result in at most a small
degradation in the system’s overall performance compared
to traditional volume approaches.

The evaluation of FlexVol was made through the use of
micro-benchmarks, including the comparison of read and
write in sequential and random access patterns. Their
results indicate that FlexVol performance is almost identical
to that of the traditional volumes, and in the worst cases the
performance difference is from 4% to 14% (mostly in ran-
dom cases involving metadata overhead in write operations).
Finally, Edwards provided some insight into the current use
of FlexVol and its services, showing the growing adoption of
FlexVol by their customers.

102 ; LO G I N : VO L . 33, N O. 5

n	 Fast, Inexpensive Content-Addressed Storage in Foundation
Sean Rhea, Meraki, Inc.; Russ Cox and Alex Pesterev, MIT
CSAIL

Sean Rhea presented Foundation, a preservation system
based on content-addressed storage (CAS) aimed at provid-
ing permanent storage of users’ personal digital artifacts.
Sean pointed out that the increasing use of computers to
store our personal data would lead to the undesired situ-
ation that this data would be unavailable in the future.
Indeed, as software and hardware components depend on
each other to make an application operate and provide the
desired functionality, a user in the future would need to
replicate an entire hardware/software stack in order to view
the old data as it once existed. To overcome this problem,
the authors, inspired by Venti, designed and developed
Foundation. Foundation differs from Venti mostly in that
instead of using an expensive RAID array and high-speed
disks, it only uses an inexpensive USB hard drive, making
the deployment of this system easy and possible for con-
sumer use.

Foundation permanently archives nightly snapshots of a
user’s entire hard disk containing the complete software
stack needed to view the data (with user data and applica-
tion and configuration state of the current system captured
as a single consistent unit). To eliminate the hardware
dependencies, Foundation confines the user environment to
a virtual machine. As in Venti, the use of content-address
storage allows Foundation to have limited storage cost,
actually proportional to the amount of new data, and to
eliminate duplicates through the use of a bloom filter; other
filesystem-based approaches miss this benefit.

The major components of Foundation include the Virtual
Machine Monitor (VMM), the filesystem Snapshot Server
(SMB), the virtual machine archiver, and the CAS layer,
whose main use is to store the archived data on the inex-
pensive external disk and/or replicate it using a remote
FTP server. The users operate on an active virtual machine
which runs on top of the VMM. The VMM stores the state
of the virtual machine in the local filesystem and every
night the virtual machine archiver takes a real-time snap-
shot of the active VM’s state and stores the snapshot in the
CAS layer. The SMB server is used to interpret the archived
disk images and present the snapshots in a synthetic file
tree, accessible by the active VM over the server.

To eliminate several of the problems that appear in similar
systems such as Venti, their proposed solution to reduce
disk seeks is to reduce as much as possible the hash table
lookups. In the case of writing, lookups occur when the
system needs to update a block index and when determin-
ing whether a block has been accessed before. In these cases
Foundation uses a write-back index cache that is flushed
to disk sequentially in large batches. During read opera-
tions, lookups are required in order to map hashes to disk
locations. In this case they start with the list of the original
block’s hashes, they look up each block in the index, and

they read blocks from the data log and restore them to
disk. Moreover, with the use of CAS they take advantage of
the fact that, given a block, CAS gives back an opaque ID.
This allows block locations to be used as IDs, completely
eliminating read-indexing lookups and thus still allowing
for potential duplicate finding using hashing.

For the evaluation of the Foundation system, the authors fo-
cused on the performance of saving and restoring VM snap-
shots. The important metrics taken into consideration were
how long it takes for Foundation to save the VM disk image
and how long it takes to boot old system images and recover
old files from the directory tree. Foundation’s algorithm in
its two modes, by-hash and by-value, was compared against
Venti’s algorithm. The results indicate that Foundation op-
erates efficiently and gives higher read and write throughput
in the majority of the tested cases compared to Venti. Sean
Rhea concluded that Foundation is a consumer-grade CAS
system that requires only a USB drive and can be used not
only as a preservation system but also as an inexpensive
household backup server. Moreover, it can automatically
coalesce duplicate media collections and operates efficiently
without requiring a collision-free hash function.

n	 Adaptive File Transfers for Diverse Environments
Himabindu Pucha, Carnegie Mellon University; Michael Kamin-
sky, Intel Research Pittsburgh; David G. Andersen, Carnegie
Mellon University; Michael A. Kozuch, Intel Research Pittsburgh

Himabindu Pucha described dsync, a file transfer system
that can correctly and efficiently transfer files in a wide
range of scenarios. By choosing to use all the available
resources (the sender, the network peers, and the receiver’s
local disk) and by constantly monitoring recourse usage,
dsync overcomes performance limitations present in other
similar systems such as rsync and peer-to-peer systems
such as BitTorrrent. Although the primary resource used by
dsync is the network, dsync dynamically chooses, if neces-
sary, to spend CPU cycles and disk bandwidth to locate any
relevant data on the receiver’s local file system in order to
enhance performance.

dsync retrieves chunks over the network either from the
sender or from any available peer that has downloaded the
same or similar data. It also makes the optimization to look
at the receiver’s local disk for similar data by spending some
of the system’s CPU resources to compute the hash of data
from the local disk and for scheduling purposes. Specifi-
cally, dsync source divides each file (or file tree) in equal-
sized chunks and by hashing the chunks computes for
each chunk a unique ID. A tree descriptor is then created
describing the file layout in the file tree, the metadata, and
the chunks that belong to each file. So, given a tree descrip-
tor, dsync attempts to fetch the file chunks from several
resources in parallel using the optimal resource at any given
time.

The evaluation of dsync was done for several transfer sce-
narios; results for single receiver (one source—one receiver)

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 103

and multiple receivers (in homogeneous/heterogeneous
environments—PlanetLab nodes) indicate that dsync can
effectively use the available resources in any environment.
Moreover, the back-pressure mechanism allows for optimal
resource selection and the heuristics used quickly and ef-
ficiently locate similar files in real file systems.

One questioner asked whether they have attempted to find a
solution that is globally good, given that resources are to be
shared among several receivers. The answer was that cur-
rently each receiver greedily uses the resources to minimize
its download time, but they would like to look at strategies
that enable cooperation among receivers to improve their
performance.

keynote address :
the par allel revolution has started : are
you part of the solution or part of the
problem ?

David Patterson, Director, U.C. Berkeley Parallel Computing
Laboratory

Summarized by Christopher Stewart (stewart@cs.rochester.
edu)

Patterson began by saying that his speech was motivated
by the revolution under way in computer architecture:
Microprocessors are out; parallel architectures are in. Pat-
terson argued that the design shift from microprocessors
is inevitable, so the systems community would do best by
embracing parallel architectures and finding solutions to the
new challenges they present. “I wake up every day and can’t
believe what is happening in hardware design,” Patterson
said. “We are in a parallel revolution, ready or not, and it is
the end of the way we built microprocessors for the past 40
years.”

Although the end of the microprocessor is inevitable, Pat-
terson noted that the current movement toward parallel
architectures could fail without ever achieving success. In
particular, past companies based on parallel architectures
have all failed. But this time, he argued, the consequences
of failure would likely be more severe and widespread.
Despite the history, Patterson said that he is optimistic that
the parallel revolution could succeed this time, for several
reasons. First, there will not be fast microprocessor alterna-
tives to parallel architectures. Second, the open-source com-
munity will build software that takes advantage of parallel
architectures. Third, emerging software trends (especially
software as a service) are well suited for parallel architec-
tures. Fourth, FPGA chips will decrease the time necessary
to prototype new designs. Finally, necessity is the mother of
innovation.

Of course, Patterson’s optimism was restrained, since many
obstacles must be overcome before the parallel revolution
can be realized. In the remainder of his talk, Patterson
described several challenges, or research themes, as they

relate to the systems community and the approaches being
taken by the Parallel Computing Lab to solve them. The
challenge that he mentioned first is that there is not yet a
“killer app” for parallel architectures. Patterson argued for
an application-centric solution in which researchers take
cues from domain experts. So far, his research group has
identified potential applications such as the re-creation of
3-D sound in ear buds, accelerators for hearing aids, image-
based search, modeling of coronary heart disease, face
recognition, and a parallel Web browser. Adapting single-
threaded applications written in old languages was the next
challenge addressed. Patterson argued that such applica-
tions can be transparently improved by identifying common
design patterns that can be parallelized. Following the lead
of Christopher Alexander’s book A Pattern Language, Patter-
son argued for 13 design patterns, which he called motifs,
that if properly researched could improve performance for a
range of applications.

Patterson’s third discussion point was about the difficulty
of developing parallel software. He advocated a two-layer
approach. The first layer is the efficiency layer, which would
be developed by 10% of the programming population. Soft-
ware at this level consists of smart and lightweight operat-
ing systems, hypervisors, and compilers that automatically
compose and optimize applications. The second layer is
the productivity layer, where novice programmers encode
domain-specific logic in high-level languages.

The fourth challenge was to develop a scalable lightweight
operating system for parallel architectures. Current virtual
machine monitors are a good step in this direction.

Finally, power conservation remains an important issue,
even for parallel architectures. Patterson’s group is using
runtime data on power consumption and performance to
inform compiler-level autotuners, the OS scheduler, and
adaptable software components. This challenge is especially
important for datacenters and handheld devices.

Patterson concluded by urging the systems community to
seize this opportunity to reinvent “the whole hardware/soft-
ware stack.” His parting words were, “Failure is not the sin;
the sin is not trying.”

Andrew Tannenbaum noted that a crash every two months
is not acceptable to most people, yet it seems to be the best
that we can do with sequential programming. Since parallel
programming is harder by at least an order of magnitude,
how will we create software that satisfies user demands
for reliability? Patterson agreed that reliability is an impor-
tant problem for parallel software. He suggested revisiting
software solutions that were proposed for previous parallel
architectures and emphasized that a solution is critical for
the parallel revolution to be successful.

Rik Farrow complimented Patterson’s research agenda and
broad vision. He suggested that the systems community
should also consider redesigning basic primitives, such as
the operating system’s trapping mechanism and methods for

104 ; LO G I N : VO L . 33, N O. 5

inter-processor communication. Patterson agreed and noted
the need for cooperation between the systems and architec-
ture community in optimizing such primitives.

Jeff Mogul wondered whether Patterson’s approach would
fit the needs of the common developer. In particular, Pat-
terson’s motifs seemed to reflect the patterns in scientific
computing and not necessarily everyday applications.
Patterson argued that the motifs do cover a wide range of
applications. But he noted that motif-based research is just
underway, and the real benefit will be evident as more ap-
plications are developed for parallel architectures.

web and internet services

Summarized by Tom Clegg (tom@tomclegg.net)

n	 Handling Flash Crowds from Your Garage
Jeremy Elson and Jon Howell, Microsoft Research

Jon Howell began by observing that a single server in your
garage can provide enough power to deploy a cool new Web
application and make some money with minimal startup
costs. However, if your service gets popular too suddenly,
the burst of traffic can easily bring down your garage server
completely. Utility computing services make it possible to
accommodate flash crowds cheaply by adding servers on
short notice and turning them off when they’re no longer
needed. Howell presented a survey of techniques for using
utility computing to achieve load balancing and fault toler-
ance for Web services.

The survey covered four basic approaches: storage delivery
networks, HTTP redirection, middlebox load balancing, and
DNS load balancing. Each technique was evaluated using
five criteria: applicability to different types of applications,
limits of scalability, implications for application develop-
ment, response to front-end failure, and response to back-
end failure.

Storage delivery networks are easy to use and are suitable
for serving idle content such as video files. HTTP redirec-
tion works by assigning each client to a single back-end
server. This client-server affinity makes application devel-
opment easier, but it is possible for clients to be bound to
a broken back-end server, and a front-end failure prevents
any new sessions from starting. An experiment with 150
clients and 12 back-end servers resulted in only 2% load on
a single front-end server, suggesting that a single redirec-
tor could handle 7,500 clients. A middlebox load balancer
associates clients with back-end servers by looking at layer
4 (TCP source port number) or layer 7 (HTTP cookie). An
advantage to this technique is that it does not involve the
client’s participation. However, a front-end server failure
is fatal to all sessions. DNS load balancing assigns clients
to back-end servers by selecting and reordering a list of IP
addresses when responding to queries. DNS load balanc-
ing scales very well, but it is complicated by DNS caches,
resolvers, and client software. Experiments showed a huge

variance in failover time on different operating systems,
with the Mac OS X resolver library taking up to 75 seconds
to failover to a second IP address. Also, a significant portion
of clients sort the list of IP addresses and contact the lowest-
numbered server first, thereby defeating the load balanc-
ing system. A hybrid approach might use a static delivery
network for static content and a load-balanced cluster for
active content or use DNS to balance load among several
fault-tolerant middlebox load balancers, which can compen-
sate for the sluggishness of DNS failover.

Howell shared some lessons learned from a CAPTCHA
service (Asirra) and a password reminder service (Inkblot-
Password), both of which handled flash crowds reasonably
well. The CAPTCHA service used DNS load balancing to
select a back-end server, which provides a session ID so that
misdirected queries can be identified and forwarded to the
correct back-end server. Occasional misdirected requests
were forwarded to the correct server. Some requests failed
because of utility computing back-end failures, but users
could simply retry. An attempted denial-of-service attack
was apparently abandoned after it failed to bring down the
service.

One attendee observed that the middlebox and DNS tech-
niques have complementary characteristics; Howell agreed
that it would be worthwhile to evaluate a hybrid approach
using those two techniques. Another question was why DNS
address list sorting didn’t prevent the DNS load balancing
from being effective; Howell noted that Linux accounts for a
relatively small portion of clients and that the DNS servers
could help work around the behavior by returning only a
subset of the full back-end server list to each query. In re-
sponse to another audience question, Howell said he would
be able to make the survey data available to the public.

n	 Remote Profiling of Resource Constraints of Web Servers
Using Mini-Flash Crowds
Pratap Ramamurthy, University of Wisconsin—Madison; Vyas
Sekar, Carnegie Mellon University; Aditya Akella, University
of Wisconsin—Madison; Balachander Krishnamurthy, AT&T
Labs—Research; Anees Shaikh, IBM Research

Most Web servers rely on overprovisioning to handle flash
crowds, because it is difficult to obtain data about server re-
source limitations. Administrators are reluctant to perform
stress tests on production servers, and testbed environments
are often configured so differently that test results would
not be a good indicator of the production Web server’s
performance. Pratap Ramamurthy presented a technique for
measuring resource limitations of a production Web server
without adversely affecting regular usage.

The “mini-flash crowd” service employs a distributed set
of clients, synchronized by a controller, to simulate flash
crowds. The controller conducts a number of experiments,
each designed to test the limitations of a specific resource;
for example, to test network bandwidth, the clients down-
load large static files from the target server. Each experi-

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 105

ment begins by launching a small number of simultaneous
requests and measuring the service’s response time, then
performing further tests with increasing numbers of simul-
taneous clients. The experiment stops when the response
time has increased by a user-configured threshold. This
prevents the experiment from having a detrimental effect on
the real users of the target service.

Before conducting a series of experiments, the controller
crawls the target server and classifies objects by size and
type in order to select appropriate requests for the differ-
ent resource tests. It also measures the round-trip response
time for each client; when conducting tests, it compensates
for the difference between clients so that the target server
receives all of the requests within the shortest possible time
interval. The service was used to test some “cooperating”
target sites, whose administrators were aware of the tests
and made their server logs available to the testers. These
tests were conducted with a 250-ms response time thresh-
old and the results were provided to the service operators;
in some cases the results exposed some unexpected limita-
tions and helped to diagnose known problems. Tests with
a lower response time threshold (100 ms) were conducted
on a number of other public Web sites in the wild. The
results of these tests were categorized according to Quant-
cast popularity rank, which showed that the more popular
sites tend to be better provisioned and accommodate bigger
client loads but that even unpopular servers often have well-
provisioned network connectivity. A survey of phishing sites
showed that their request handling capabilities are similar
to low-end Web sites (ranked 100,000–1,000,000).

In response to a questioner, Ramamurthy said that the MFC
source code will be made available. Another attendee ex-
pressed curiosity about the response time curve beyond the
100-ms threshold. Ramamurthy offered that the relevance
of larger response times depends on the type of application;
for example, longer response times are more important for
a search index than for a binary download site. Another
attendee suggested that the tests cannot be considered “non-
intrusive” if they affect the target service’s response time
enough to be worth measuring. Ramamurthy replied that
the response time increases only for the short time that the
test is being conducted and that 100 ms is a relatively small
impact for testing servers in the wild; in effect, the choice of
response time threshold is a compromise between nonintru-
siveness and the likelihood that the results will be indica-
tive of critical resource constraints. Another questioner
addressed the problem of treating Web servers as “black
boxes”: The profiler might be measuring the performance
of a load balancer more than that of the back-end servers.
Ramamurthy agreed and mentioned that different types of
tests can be developed to make more fine-grained inferences
in the case of a “cooperating” server.

n	 A Dollar from 15 Cents: Cross-Platform Management for
Internet Services
Christopher Stewart, University of Rochester; Terence Kelly and
Alex Zhang, Hewlett-Packard Labs; Kai Shen, University of
Rochester

Internet services are becoming more popular, and the data-
centers that support them are becoming more complex. The
use of multiple hardware and software platforms in a data-
center is commonplace. Multi-platform management can
allow high performance at low cost, but choices tend to be
made on an ad hoc basis because there are too many per-
mutations of configurations to test exhaustively. Christopher
Stewart presented an approach to optimizing performance
using a predictive model which can be calibrated with
readily available data and used to guide server purchasing
decisions and make the best use of multiple platforms in a
heterogeneous environment.

Often, management recommendations must be made with-
out modifying production systems in any way; it is impos-
sible to obtain profiling information using source code
instrumentation and controlled benchmarking. Therefore,
Stewart’s approach relies only on data that is readily avail-
able without touching production systems. It uses trait
models derived from empirical observations of production
systems, together with expert knowledge of the structure
of processors and Internet services. The key principle is
to derive trait models from production data for hard-to-
characterize platform parameters and to use expert knowl-
edge to compose traits for performance prediction. A trait
model characterizes only one aspect of a complex system:
For example, a processor metric such as cache misses can
be predicted from a system configuration variable such as
cache size.

The effectiveness of Stewart’s method was demonstrated by
calibrating a trait model on one processor and using it to
predict application performance characteristics on a system
with a different processor. The calibrations and predictions
were made for three different applications. The model of-
fered superior accuracy over a wide range of request mixes,
compared to commonly used predictors such as bench-
marks and processor clock speed. As well as service time,
it was able to make accurate predictions of total response
time, using a previously developed queueing model which
can be calibrated in production environments. Stewart
discussed potential management applications, including
platform-aware load balancing, in which distributing re-
quests to the platform best configured to their architectural
demands may yield better performance than the typical
weighted round-robin approach.

One attendee asked whether the model’s predictions were
accurate for future performance as well as past performance.
Stewart explained that his method was to use the first half
of a month’s data to calibrate a model, then compare the
resulting prediction against the data from the second half
of the month. He also mentioned that the predictions were

106 ; LO G I N : VO L . 33, N O. 5

tested against the first half of the month, with favorable
results, although that data was not included in the paper.
Another attendee wondered whether the method would
suffer from the introduction of new architectures, because
of the need to develop new empirical observations and not
having suitable models on hand. Stewart observed that the
trait models are attractive because they can be constructed
cheaply; developing new models for new platforms can be
done quickly enough. Stewart also clarified that the queue
model refers to the application-level queue—users waiting
for responses—not the operating system’s run queue.

invited talk

n	 Xen and the Art of Virtualization Revisited
Ian Pratt, University of Cambridge Computer Laboratory

Summarized by Ward Vandewege (ward@gnu.org)

The Xen project mission is to build the industry standard
open source hypervisor. To maintain Xen’s industry-leading
performance, Xen tries to be first to exploit new hardware
acceleration features and helps operating system vendors to
paravirtualize their operating systems. Security is para-
mount to maintaining Xen’s reputation for stability and
quality. Xen supports multiple CPU types (e.g., x86, ia64,
PowerPC, and ARM, with more to come). With its roots as a
university project, Xen wants to foster innovation and drive
interoperability between Xen and other hypervisors.

Virtualization is hot for a number of reasons. Virtualiza-
tion allows clearing up the mess created by the success of
“scale-out” caused by moving applications from big iron to
x86: the so-called server sprawl with one application per
commodity x86 server, leading to 5%–15% typical CPU
utilization. This is a result of the failure of popular OSes
to provide full configuration isolation, temporal isolation
for performance predictability, strong spatial isolation for
security and reliability, and true backward application
compatibility. With virtualization, old applications can be
run on old OSes instead of relying on less than perfect OS
backwards compatibility.

The first virtualization benefits are server consolidation,
manageability, ease of deployment, and virtual machine
(VM) image portability. Second-generation benefits include
avoiding planned downtime with VM relocation, dynami-
cally rebalancing workloads to meet application SLAs or to
save power, automated systems that monitor hosts and VMs
to keep apps running, and “hardware fault tolerance” with
deterministic replay or checkpointing.

Security of the hypervisor code is obviously very important,
but hypervisors can also improve security in a number of
ways. Hypervisors allow administrative policy enforcement
from outside the OS—for instance: firewalls, IDS, malware
scanning, all running outside of the Xen domU. OSes can
also be hardened with immutable memory. The hypervisor
also shields the OS from hardware complexity by abstract-

ing away the complicated real world with multi-path IO,
high availability, etc. Breaking the bond between the OS
and hardware simplifies application-stack certification:
Application-on-OS, OS-on-hypervisor, and hypervisor-on-
hardware can all be certified more easily, which enables
virtual appliances. Virtual hardware also greatly reduces the
effort to modify or create new OSes. This opens the door to
application-specific OSes, the slimming down and optimiz-
ing of existing OSes, and native execution of applications.
Finally, hypervisors enable hardware vendors to “light up”
new features more rapidly.

Paravirtualization means extending the OS so it is aware
that it is running in a virtualized environment. This is
important for performance, and it can work alongside hard-
ware enhancements found in modern CPUs.

Memory management unit (MMU) virtualization is critical
for performance. It is challenging to make it fast, though,
especially on SMP. Xen supports three MMU virtualization
modes: direct pagetables, virtual pagetables, and hardware-
assisted paging. OS paravirtualization is compulsory for di-
rect pagetables and is optional but very beneficial for virtual
and hardware-assisted paging.

Network interface virtualization is tough to achieve. In ad-
dition to the high packet rate with small batches, data must
typically be copied to the virtual machine when received,
and some applications are latency-sensitive. Xen’s network
IO virtualization has evolved over time to take advantage
of new NIC features. Xen categorizes smart NICs in levels
0 through 3. Level 0 NICs are conventional server NICs,
whereas level 3 ones are more exotic, with very advanced
features. Smarter NICs reduce CPU overhead substantially,
but care must be taken that by using smarter NICs the ben-
efits of VM portability and live relocation are not lost.

Xen Client is a frontier for virtualization: a hypervisor for
client devices. Hypervisors on small computer systems
will allow “embedded IT” virtual appliances that could run
intrusion detection systems, malware detection, remote ac-
cess, backups, etc., independent of the user-facing operating
system.

To conclude: open source software is a great way to get
impact from university research projects. Hypervisors will
become ubiquitous, offering near-zero overhead and being
built into the hardware. Virtualization may enable a new
“golden age” of OS diversity, and it is a really fun area to be
working in!

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 107

workloads and benchm arks

Summarized by Kiran-Kumar Muniswamy-Reddy (kiran@
eecs.harvard.edu)

n	 Measurement and Analysis of Large-Scale Network File
System Workloads
Andrew W. Leung, University of California, Santa Cruz;
Shankar Pasupathy and Garth Goodson, NetApp, Inc.; Ethan L.
Miller, University of California, Santa Cruz

Andrew Leung presented results from a three-month study
of two large-scale CIFS servers at NetApp, the first trace
study that analyzes CIFS servers. One server had a total
storage of 3 TB, with most of it used, and it was deployed in
a corporate datacenter. The other server had a total stor-
age of 28 TB, with 19 TB used, and it was deployed in an
engineering datacenter.

Andrew highlighted some of the interesting findings in
the study. They found that more than 90% of active data
is untouched during the three-month period. The read/
write byte ratio was 2:1, whereas it was 4:1 in past studies.
The number of requests is high during day and low during
the night (as expected). Read/write access patterns have
increased (as workloads have become more write-oriented).
Some 64% of all files are opened only once and 94% of
files are opened fewer than five times, with 50% of reopens
happening within 200 ms of the previous open. Files are
infrequently accessed by more than one client. Even when
they are accessed by more than one client, file sharing is
rarely concurrent and they are mostly read-only.

One member from the audience asked whether they ana-
lyzed how file sizes grew over time. Andrew replied that
they did not analyze this but a significant amount of the
data came in single open/close sets. He then asked about
the average data transfer rate. Andrew replied that the ac-
cess patterns varied a lot from one day to the next and it is
hard to put down a number. In response to a question about
the size of the system they studied, Andrew replied that he
would call it a medium system. The Q&A session ended
with a member of the audience commenting that the results
should be fed back to the spec benchmarks.

n	 Evaluating Distributed Systems: Does Background Traffic
Matter?
Kashi Venkatesh Vishwanath and Amin Vahdat, University of
California, San Diego

Kashi Vishwanath posed the question, “What sort of back-
ground traffic should be used while evaluating distributed
systems?” To answer this, they performed a literature survey
of 35 papers from SIGCOMM, SOSP/OSDI, and NSDI from
2004 to 2007. They found that 25% of the papers did not
use any background traffic to evaluate their system, 15%
used simple models (constant bit rate or Poisson models) to
model their background traffic, 33% employed live deploy-
ments for their measurements, and 25% used complex
models for their measurements. Using their test setup, they

first compared simple models for generating background
traffic and swing to ascertain whether their traffic generator
was responsive and realistic. They concluded that simple
methods can result in significant inaccuracy and that you
need traffic generators that are more realistic. Further, they
evaluated the effect of background traffic on various classes
of applications. They found that Web traffic (HTTP) is
sensitive to the burstiness of background traffic, depend-
ing on the size of the objects being transferred. Multimedia
apps are not very sensitive to traffic burstiness, as they are
designed to tolerate some jitter. Bandwidth estimation tools
are highly sensitive to bursty traffic. Based on these results,
they concluded that applications should be evaluated with
background traffic with a range of characteristics.

Someone from the audience asked whether they went back
and tried to evaluate how their findings would affect the
results from the papers in their literature survey. Kashi re-
plied that they did do that and found that some applications
changed quite a bit with the amount of background traffic.

n	 Cutting Corners: Workbench Automation for Server
 Benchmarking
Piyush Shivam, Sun Microsystems; Varun Marupadi, Jeff Chase,
Thileepan Subramaniam, and Shivnath Babu, Duke University

Piyush Shivam presented this paper. Their goal was to
devise a workbench controller that plans the set of experi-
ments to be run based on some policy, acquires resources
and runs the experiments, and further plans the next set of
experiments to be run based on the results. The challenge
is to do this efficiently (i.e., running as few experiments
as possible) while achieving statistical significance. As an
example they use finding the peak rate on a Linux NFS
server and present various algorithms and policies for doing
this (strawman linear search, search, binary search, linear,
and model guided). Their results show that their automated
workbench controller achieves their goals at lower cost than
scripted approaches that are normally used.

A member of the audience commented that using the
peak load is misleading and that the median case is more
important. He then asked whether they tried varying the
workload mix. Piyush replied that the peak was just an ex-
ample they used in the paper and that you could try varying
the workload mix. Next, Piyush was asked what happens
when the parameter space explodes. Piyush replied that the
response surface method lets you choose only 2% of the
overall possible space.

108 ; LO G I N : VO L . 33, N O. 5

securit y and bugs

Summarized by Kiran-Kumar Muniswamy-Reddy (kiran@
eecs.harvard.edu)

n	 Vx32: Lightweight User-level Sandboxing on the x86
Bryan Ford and Russ Cox, Massachusetts Institute of Technology

Awarded Best Student Paper!

Russ Cox presented Vx32, a lightweight sandbox for the x86
architecture. Vx32 is not OS- or language-specific, but it
is tied to the x86 architecture. Most x86 OSes don’t use all
segments, and users can create their own segments. Vx32
takes advantage of this and runs the code to be sandboxed
natively in its own segment. But the sandboxed code can
change the segment registers. Vx32 prevents this by using
dynamic instruction translation and rewriting code to a
“safe” form. They evaluated Vx32 by running various bench-
marks and by building four applications. For benchmarks,
the overheads are low when there are no indirect branches
(i.e., no instructions to be translated). The applications that
they built were an archival storage system, an extensible
public-key infrastructure, a port of the Plan 9 OS on top of
a commodity operating system, and a Linux system call jail.
The first two applications have between 30% slowdown to
30% speedup compared to native execution. Linux jail has
an 80% overhead.

A member of audience asked what they planned to do about
64-bit systems as they do not have segmentation registers.
Russ replied that they can switch to a 32-bit mode while
running Vx32’s 32-bit code segments. Next, Russ was asked
whether Vx32 lives in the same segment as the code being
sandboxed. If so, could self-modifying code attack it? Russ
replied that the translated code lives in a different segment
than Vx32. Lastly, Russ was asked how Vx32 was different
from a binary instrumentation tool such as Pin. He replied
that Vx32 is much faster than in Pin; you can either get
performance or safety but not both.

n	 LeakSurvivor: Towards Safely Tolerating Memory Leaks for
Garbage-Collected Languages
Yan Tang, Qi Gao, and Feng Qin, The Ohio State University

Memory leaks can occur even in garbage-collected lan-
guages such as Java and C#. One reason is that programs
keep pointers to objects they don’t use anymore. For long-
running programs, this results in performance degradation
as they take up more and more heap space and eventually
crash the program. Their system, LeakSurvivor, identi-
fies such “potentially leaked” (PL) objects and swaps them
out from both virtual and physical memory. They replace
references to PL with a unique kernel reserved address.
Access to these addresses will result in a swap-in. They also
maintain an index that keeps track of all outgoing point-
ers to an object. They implemented LeakSurvivor on top of
Jikes RVM 2.4.2. They evaluated their system by running
it with programs that had known memory leaks (Eclipse,
Specjbb2000, and Jigsaw). Eclipse and Specjbb survive with

good performance for much longer than they do without
LeakSurvior. Jigsaw, even though it runs for much longer
with LeakSurvior, eventually crashes because their leak
detector could not detect “semantic leaks” present in Jigsaw.
The overhead of LeakSurvivor is low (2.5%) when it is run-
ning programs that don’t have leaks.

In response to whether they can meet QoS guarantees when
they run LeakSurvivor on a Web server, the authors replied
that they currently cannot make performance guarantees.
As to whether they have to save virtual memory for a 64-bit
machine, the authors explained that, in a 64-bit machine,
you have infinite virtual memory and LeakSurvivor might
hurt performance. When asked whether they have any plans
for providing feedback to developers so that developers can
fix their leaks, they admitted that they currently did not
have this functionality. As to whether they had any heuris-
tics for turning LeakSurvivor on and off, the authors replied
that they currently turn it on all the time, but it is not really
hard to add this function.

n	 Perspectives: Improving SSH-style Host Authentication with
Multi-Path Probing
Dan Wendlandt, David G. Andersen, and Adrian Perrig, Carn-
egie Mellon University

Dan Wendlandt presented a method to reduce the vulner-
ability to man-in-the-middle (MITM) attacks of some of the
common protocols such as SSH and HTTPS. SSH’s model
of host authentication is one of “trust-on-first-use,” in which
the user decides whether an unauthenticated key is valid or
not. This and the fact that the user must manually verify the
validity of any key that conflicts with a cached key make
the user very vulnerable to MITM attacks. The Perspectives
approach to mitigate this is to have a bunch of notaries in
the network. Instead of trusting the SSH key, a client can
verify the key from the notaries. The notaries probe ma-
chines on the network and build a record of the keys used
by the services over a period of time.

The notaries provide the client with spatial redundancy
(observation from multiple vantage points) and temporal
redundancy (observation over time). The notaries offer a
better perspective to the clients and enable them to make
better security decisions. Further, the client implements
key-trust policies that trade off between security and avail-
ability; for example, it might accept a key even when the
number of notaries that report a key is less than a quorum.

Someone asked how a client can know how many notaries
are present. Dan replied that the clients can download a
notary list, but he also pointed out that someone accessing
a server that has just been deployed will not get temporal
security. Next, Dan was asked whether Perspectives would
help with the Debian bug. Dan replied that Perspectives will
not help you detect bugs in the OpenSSH implementation.

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 109

n	 Spectator: Detection and Containment of JavaScript Worms
Benjamin Livshits and Weidong Cui, Microsoft Research

Benjamin Livshits proposed a distributed taint mechanism
for detecting and containing Javascript worms. Javascript
worms are hard to find and fix, as Web 2.0 technologies
allow the worms to propagate themselves by generating ap-
propriate HTTP requests. Simple signature-based solutions
are insufficient, as worms are polymorphic. Their idea for
detecting worms is as follows. They tag each page uploaded
on the server. This tag is downloaded to clients whenever
the Web page is downloaded. They also inject Javascript
code so that the tags are propagated at the client side and
are preserved when pages are updated. They look for worms
by checking for long propagating chains. They have an ap-
proximation algorithm that is designed to scale for graphs
containing thousands of nodes. They evaluated Spectator for
scalability and precision by performing a large-scale simula-
tion of MySpace and a real-life case study (on siteframe).

YuanYuan Zhou asked whether the tag should be unique or
whether it can be global. Benjamin replied that it really is
not an issue and that it can be global. YuanYuan then asked
if the tags can be removed by the worms. Benjamin replied
that they generally cannot be removed, as the tags are
HTML, but there are some particular cases of worms where
it can be a problem.

invited talk

Summarized by Zoe Sebepou (sebepou@ics.forth.gr)

n	 Using Hadoop for Webscale Computing
Ajay Anand, Yahoo!

Ajay Anand described their experiences using Apache
Hadoop and what led them to start developing this prod-
uct. He started his talk by stating the problem Yahoo! has
in collecting huge amounts of data, implying petabytes of
storage capacity and a vast number of machines to deal with
the processing of this data in a secure and accurate manner,
while avoiding hardware outages.

Hadoop constitutes an open source implementation of a
Distributed File System (HDFS) and a map-reduce program-
ming model combined in one package. Hadoop is designed
to support many different applications providing them with
the required scalability and reliability, which otherwise
would be extremely costly to implement in each application.
Hadoop is written in Java so it does not require any specific
platform. Its main components are a Distributed File System
based on the architectural characteristics of the Google
File System (GFS) and a Distributed Processing Framework
based on the map-reduce paradigm.

Hadoop architectural characteristics include many unreli-
able commodity servers and one single metadata server,
but it ensures reliability by replicating the data across the
available data servers. Because the system was designed for
the requirements of their environment and in general for

Web-scale applications that make simple sequential access
involving one writer at a time and as a consequence do
not require strict locking features, Hadoop receives perfor-
mance advantages from the simplicity of its design. Indeed,
the core design principle behind Hadoop is to move the
computation as close to the data as possible; processing data
locally is definitely more effective than moving the data
around the network.

HDFS, which is Hadoop’s file system, operates using two
main components: The name nodes keep information about
the files (name, number of replicas, and block location); the
data nodes provide the actual storage of the data. The files
in HDFS are striped across the available data servers and
are being replicated by a settable replication factor to avoid
unavailability resulting from node failures. HDFS keeps
checksums of the data for corruption detection and recov-
ery. Every time someone requires access to a specific file, it
contacts the name nodes and, after obtaining information
about the exact location of the data, it directly acquires the
data from the data nodes. In case of a data-node failure, the
name node detects it by periodically sending heartbeats to
the data nodes. After a failure, the name node chooses a
new data node to store new replicas. With the use of check-
sums, the clients can identify data corrupted by a node
outage and ask some other available data node to serve their
request. However, name-node outage still remains a single
point of failure.

Ajay continued his talk by analyzing the map-reduce tech-
nique used by Hadoop to enhance the system’s performance
by providing efficient data streaming by reducing seeks. The
map-reduce mechanism follows a master-slave architecture.
Specifically, the master, called Jobtracker, is responsible for
accepting the map-reduce jobs submitted by users, assigns
map-reduce tasks to the slaves, called Tasktrackers, and
monitors the tasks and the Tasktrackers’ status in order to
reexecute tasks upon failure. The Tasktrackers run map-
reduce tasks upon instruction from the Jobtracker and man-
age the storage and transmission of intermediate outputs.
Ajay pointed out that some future improvements are still to
be made in the map-reduce mechanism; Yahoo! is currently
working on these issues. He explained that Hadoop still
does not have an advanced scheduling system. The slaves
of the map-reduce framework can manage one or more
jobs running within a set of machines and the mechanism
does work well for dedicated applications; however, in the
presence of shared resources their mechanism would not
be sufficient. Consequently, he described the Pig program-
ming environment, an Apache incubator project initiated by
Yahoo!. Pig is a high-level, easy-to-use dataflow language
used to generate map-reduce jobs and provides extensible
data processing primitives.

Ajay concluded his presentation with the current uses of
Hadoop inside and outside the Yahoo! environment, also
providing measurements depicting the advantages gained by
using the system.

110 ; LO G I N : VO L . 33, N O. 5

Bar Kenneth from VMware asked whether Yahoo! had con-
sidered exploring the use of virtual machines to solve prob-
lems with loss of data locality in Hadoop. The reply was
that in fact virtualization is an issue they are very interested
in and that they will be exploring this possibility. Moreover,
their goal is to be able in the future to say that the job is the
VM and what they actually want is to be able to replicate
the jobs across the machines.

Rik Farrow wondered, if the name nodes are really criti-
cal for Hadoop, why there is no high availability for them
and why they have yet to develop a mechanism to support
this feature. Ajay answered that this issue is on the list of
their things to do but is not at the top because most of what
they are running are batch jobs and not online operations.
In addition, their main priority is to enhance other things
such as the scheduling mechanism to provide name-node
balancing.

A second question from Rik Farrow was whether Hadoop
has a shared memory architecture. The answer was that it
does not. In fact, each computer node has its own memory
and this memory is not shared across machines.

A questioner from Sun Microsystems asked about the algo-
rithms used for chunking and data distribution, as well as
for the fault-tolerance mechanism and the load balancing of
the data placement in Hadoop. Ajay explained that the basic
concept is to have three replicas, two within a rack and one
outside, to spread things around as much as possible inside
their environment. The same questioner asked about the
communication protocol between the HDFS clients and the
name nodes of Hadoop, wondering whether there is a sepa-
rate path for the metadata communication and the heart-
beat messages. The reply was negative; in Hadoop all the
communication is taking place through the same network,
without any isolated network for metadata purposes.

Another questioner asked about bottlenecks in the network
bandwidth, the disk bandwidth, or the CPU utilization of
their system. The speaker said that at Yahoo! they try to col-
lect data and to do more and more profiling to identify the
bottlenecks. The main bottlenecks already observed are the
network and the memory in the name-node side.

In response to an additional question about how Hadoop
handles a global failure and how things return to normal
again, Ajay replied that Hadoop continues working in the
case of node failures as long as they are not name nodes. To
the final question of how many times and how often they
have to upgrade their system, the answer was that in the
case of upgrade everything has to come down; usually they
upgrade the system once a month, with the whole process
taking less than four hours.

memory and buffer m anagement

Summarized by Varun Marupadi

n	 A Compacting Real-Time Memory Management System
Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Ana
Sokolova, Horst Stadler, and Robert Staudinger, University of
Salzburg

Modern memory managers lack predictability—the time to
allocate a chunk is dependent on the global memory state.
In addition, fragmentation of memory is not dealt with well.
To address these shortcomings, Silviu Craciunus and his
co-authors have developed Compact-fit, a memory manage-
ment system that responds in linear time to the size of the
request and is able to trade off performance for lower levels
of fragmentation.

The system works by dividing objects into differently sized
“classes.” Within each size class, there is allowed to be only
one partially filled page. This allows quick (linear time)
deallocation, since exactly one object needs to be moved per
deallocation. The authors present two implementations—
one actually moves data in physical memory when an
object is freed (the “moving implementation”) and the other
manages an indirection table that allows only table informa-
tion to be changed without moving the data itself. In either
implementation, by increasing the number of pages that
may be partially filled, some performance may be gained at
the expense of more fragmentation.

Experimental evaluation shows that allocation and dealloca-
tion times show good fidelity with the theoretical predic-
tions, but they are slower than existing memory alloca-
tors, owing to the overhead of managing fragmentation.
Compact-fit is able to allocate objects effectively even with
high levels of fragmentation. In response to a question, the
authors said that Compact-fit will not move objects from
one size class to another at the current time.

n	 Prefetching with Adaptive Cache Culling for Striped Disk
Arrays
Sung Hoon Baek and Kyu Ho Park, Korea Advanced Institute of
Science and Technology

Sung Hoon Baek and Kyu Ho Park study the neglected field
of prefetching schemes for striped disk arrays. Prefetching
from striped disks has several new problems, including loss
of expected parallelism owing to short reads, nonsequen-
tial short reads, and the absence of cache management for
prefetched data.

To manage these risks, the authors present Adaptive Stripe
Prefetching (ASP), which uses new schemes for prefetching
an entire stripe when a request for a block comes in, adap-
tive culling of the cache to preferentially evict prefetched
blocks that have not been requested, and an online model
to tune the ratio of prefetched to cached blocks to maximize
the total hit rate.

; LO G I N : O c tO b e r 20 0 8 cO N fe re N ce re p O rt s 111

The system was evaluated with a variety of benchmarks.
It performs as well or better than any existing prefetching
schemes. A question was raised regarding the performance
of the system in the presence of writes. The response was
that the system is primarily focused on read-heavy work-
loads but should work in the presence of writes as well. It
was also pointed out that one of the benchmarks (Dbench)
simulates a read-write workload.

n	 Context-Aware Prefetching at the Storage Server
Gokul Soundararajan, Madalin Mihailescu, and Cristiana Amza,
University of Toronto

A problem with today’s prefetching schemes is that they
break down under high levels of concurrency because it is
hard to detect access patterns when requests from many
sources are interleaved. To address this, Gokul Soundarara-
jan and his colleagues presented QuickMine, a system that
allows application contexts to be visible to the storage server
so that it can more accurately detect access patterns.

Every block request is tagged with an identifier correspond-
ing to a higher-level application context (Web, database, or
application). It is claimed that this is minimally intrusive
and easy to create for any application. However, it does
require minor modifications to the source code. Mining the
context-tagged requests can generate block correlations for
both sequential and nonsequential accesses. The system was
evaluated by modifying the MySql database to pass context
information and running a number of three-tier Web-based
applications on it. For all benchmarks, the cache miss rate
and latency were drastically reduced by using QuickMine.

In a lively question session, several attendees asked about
extending the work to other contexts. In particular, file-
based storage rather than block-based storage could be dealt
with by using the filename+offset rather than the block
number. Extension to other applications requires only local-
ized instrumentation changes. Extension to other classes
of applications would be more intrusive and is a topic of
ongoing research. Schemes using fuzzy contexts or machine
learning techniques to infer context could be used and are
worth exploring, but Gokul believes context is still neces-
sary, because very different queries follow the same code
path through libraries.

invited talk

Summarized by Matthew Sacks
(matthew@matthewsacks.com)

n	 Google Hacking: Making Competitive Intelligence
Work for You
Tom Bowers

Tom Bowers takes the ideas presented in Johnny Long’s
book Google Hacking and applies the concepts of using
Google as a hacking utility for servers and other machine-
related vulnerabilities to information in and of itself. The
amount of information that can be gathered using the

world’s largest database is astounding. Tom went on to
demonstrate how to gather information about a particular
organization or individual by leveraging unconventional
techniques for using the Google search engine.

By using Google as a utility for competitive intelligence,
one can find out a wealth of information about competitors,
as well as seeing what type of information is being leaked
about the individuals in a company or organization and
the organization itself. 80% of all competitive intelligence
is done through public sources. Also, the U.S. Supreme
court has ruled that information found on Google is public
information.

Tom also presented the basic method for performing com-
petitive intelligence using Google by building a competitive
intelligence profile.

As an example, using Google Earth Pro (which provides
more frequent updates than the standard Google Earth),
Tom can map out a competitor’s facility to determine where
he might be able to gain easy access. From there he could
use wireless scanning techniques to access the competitor’s
data from unsecured wireless networks. Also, using Google
hacking Tom showed that a large majority of Web cams
are available through the public Internet from a standard
Google search!

In this talk Tom revealed the world of competitive intel-
ligence and its primary information-gathering utility: Once
a competitive profile has been built, the job of gathering
additional detailed information becomes rather simple. Most
of the work done in competitive intelligence can be done
from one’s own office or home.

wide-area systems

Summarized by Varun Marupadi (varun@cs.duke.edu)

n	 Free Factories: Unified Infrastructure for Data Intensive
Web Services
Alexander Wait Zaranek, Tom Clegg, Ward Vandewege, and
George M. Church, Harvard University

Alexander Zaranek and his colleagues explained that this
work was initiated to help process the large amounts of data
needed to sequence human genomes. A free factory is a set
of several 12- to 48-node clusters, some of which are co-
located with data-acquisition instruments. The clusters are
connected via relatively slow networks. A free factory runs
freegols, which are application-centric virtual appliances that
run within a free factory. Different users use and develop
different freegols for their particular needs.

A portion of the cluster’s resources is configured as ware-
house instances, which provide processing, cache, and
storage services. The remainder of the resources hosts Xen
virtual machines for hosting freegols. The storage services
within a cluster are implemented as a three-tier hierarchy:

112 ; LO G I N : VO L . 33, N O. 5

a memory cache, a distributed block cache, and a long-term
archival storage service.

More information can be found at factories.freelogy.org.

n	 Wide-Scale Data Stream Management
Dionysios Logothetis and Kenneth Yocum, University of Califor-
nia, San Diego

Dionysios Logothetis presented Mortar, a platform for
building queries across federated distributed systems. Such
queries are useful for remote debugging, measurement,
application control, and myriad other uses. Mortar allows
operators to aggregate and process data within the net-
work itself, building multiple overlays to process data from
remote sources.

Mortar builds a set of static overlay trees that overlap in
order to tolerate node and network failures. By carefully
building trees, it is possible to generate routes that are
network-aware and resilient at the same time. Mortar avoids
problems arising from static clock skew by using relative
time offsets rather than absolute timestamps. By isolat-
ing data processing from data routing, it is possible to use
aggregate operators that are not idempotent or duplicate-
insensitive. By using multiple static overlay trees, Mortar is
able to make progress when as many as 40% of the nodes
have failed.

Questions were raised about how queries that require
knowing the source of the data could be implemented. Dio-
nysios replied that such queries are problematic because of
the nature of aggregation itself. Other attendees wondered
whether the system might fail from corner cases in the
heuristics and static tree-based routing. Dionysios explained
that the effect of topology on the system has not yet been
fully studied, so it is hard to give a definite answer.

n	 Experiences with Client-based Speculative Remote Display
John R. Lange and Peter A. Dinda, Northwestern University;
Samuel Rossoff, University of Victoria

John Lange presented work on speculatively executing
window events on a remote display. The goal is to reduce
the user-perceived latency when using a remote service. The
predictability of events sent by VNC and Windows Remote
Desktop was presented; VNC appeared to be much more
predictable than RDP. John says that this may be primar-
ily due to the higher level of abstraction that RDP uses,
along with the much lower event rate. A Markov model was
used to predict future events based on past events and user
input. This also allowed control over the tradeoff between
accuracy and latency.

A user study was presented for VNC prediction. Although
not conclusive, the study did show that users are at least
moderately accepting of display errors during mispredic-
tion. A question was asked about what constitutes an error.
John explained that an error may be anything from garbage
on the screen to subtle artifacts in the window. Another at-
tendee asked about overhead. John replied that, after train-

ing, there was almost no CPU overhead but there was some
memory overhead.

Third Workshop on Hot Topics in Autonomic
Computing (HotAC III)

Wheeling, IL
June 2, 2008

Summarized by Alva Couch, Tufts University

The theme of this year’s Hot Autonomic Computing
(HotAC) was “grand challenges of autonomic computing.”
By contrast with two prior iterations of HotAC involving pa-
pers and panels, this year’s HotAC included short presenta-
tions, working groups, and plenty of discussion.

In the morning, selected attendees were given five minutes
each to describe a grand challenge problem in autonomic
computing, how to solve it, and what resources would be
required. Presenters were selected based upon white papers
submitted to the conference organizers in advance. In the
presentations, several themes emerged, including monitor-
ing, composition, applications, and human concerns.

Autonomic systems remain difficult to monitor and the
monitored data remains incomplete. Autonomic system state
remains difficult to characterize and more accurate models
are needed (Salim Hariri, University of Arizona). There is a
need for “adaptive monitoring” that tracks changing needs
(Paul Ward, University of Waterloo), as well as “experiment-
based” control based upon making changes and observing
results (Shivnath Babu, Duke University). The resulting
monitoring infrastructure must be scalable and adaptable
to a changing Internet (Fabián Bustamante, Northwestern
University).

It also remains unclear how to compose different control
systems to control one entity, and how to deal with open-
ness and unexpected events. It remains difficult to compose
or combine autonomic systems (Alva Couch, Tufts Univer-
sity) and to deal with unpredictable behavior. An ideal auto-
nomic system might employ scalable co-ordinated cross-
layer management (Vanish Talwar, HP) in which control
systems are composed vertically from lower-level elements.

Several application domains for autonomic computing were
explored. Empathic autonomic systems (Peter Dinda, North-
western University) optimize for perceived end-user satisfac-
tion. Spatial computing (Jake Beal, MIT CSAIL) requires
new languages and abstractions to control a computing
medium in which computing presence approximates a con-
tinuous medium. Autonomics can help us construct “Green
IT” computing environments (Milan Milankovic, Intel) that
exhibit reduced energy consumption, lower carbon foot-
print, etc. Sensor networks can be managed through a ho-
listic strategy that treats the whole network as a single entity
(Simon Dobson, UC Dublin). P2P networks can benefit from
“sloppy” autonomic control mechanisms that “leave well

