
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Piranha Audit: A Kernel Enhancements And Utilities To Improve
Audit/Logging

Vincenzo Cutello, Emilio Mastriani, Francesco Pappalardo
Department of Mathematics and Computer Science

University of Catania, Catania, Italy
{cutello, mastriani, francesco}@dmi.unict.it

Abstract

This paper presents a mechanism to enrich logging as re-
quired in TCSEC [1] document to detect and stop possible
intrusions based on typical attacks and to protect the sen-
sible audit data from deletion/modification even in root
compromise situation.

After installing Piranha Audit, administrators will have
a solid infrastructure for improving security and resistance
to penetration, with only modest performance penalties.

We present experimental results of the advantages of
this solution and the performance impact of the mecha-
nism.

1 Introduction

The main purpose of this work is to present a systematic
solutions to the persistent problems of securing and im-
proving the Audit and Logging capabilities.

Moreover, we will present a collection of suites to per-
form Intruder Detection and a proposal to protect the sys-
tem against Buffer Overflow Attacks. Covert Storage
Channel Analisys is currently under study.

The basic problem is that, in a root compromise case,
all audit data can be deleted or altered, trashing the col-
lected informations even if they respect the TCSEC re-
quirements.

An important question is: does anybody have the time
to inspect hundreds of lines generated by Audit/Logging
system? We provide a collection of utilities that analyze in
real time such data and take the least disruptive action to
terminate the event that may corrupt the system integrity.

In doing so we will try to meet Dision B, Class 3 TC-
SEC requirements.

Section 2 decribes the state of the art in Linux about
Audit and Logging, the typical attacks against the in-
tegrity and security of the system and what are the TCSEC
requirements in detail.

Section 3 shows how Piranha Audit helps system ad-
ministrators to detect what has happened and how Intruder
Detection System defends against some more dangerous
attacks. Kernel patches applied and a quick description of
the suite of user utilities will be also provided.

Section 4 presents performance and penetration test-
ing. Section 5 describes related works. Finally section
6 presents our conclusions.

2 General overview

The standard Linux Kernel meets Division C, Class 2
"partially” in Audit context, since there is no system rou-
tine which records events of object introduction or dele-
tion.

Once this problem was solved, to reach Division B,
Class 1:

(a) the audit record will have to include, for each event
that either introduces an object into a user’s address
space ot it deletes an object, the name of the object
and the object’s security level.

(b) Moreover, the system manager would have to be able
to selectively audit the actions of any one or more
users based on individual identity and/or object se-
curity level.

(c) Finally, it must be possible to audit any override of
human-readable output markings.

To reach Class 3,



(d) one of the required features is the presence of a mech-
anism that is able to monitor the occurrence or accu-
mulation of security auditable events that may indi-
cate an imminent violation of security policy. This
mechanism will have to be able to immediately no-
tify the security administrator when thresholds are
exceeded, and, if the occurrence or accumulation of
these security relevant events continues, the system
will have to take the least disruptive action to termi-
nate the event.

(e) Moreover, we would need some mechanisms for the
identification of events that may be used in the ex-
ploitation of the usage of covert storage channels.

In this paper, we will describe an extension of the standard
Linux Kernel to reach Division C, Class 2 and that solves
problems (a)-(d) as well. Problem (e) currently is solved
for a particular case: File Flag Communication1, but this
needs more work.

Now we will describe a list of typical attacks [2].

� A system cracker telnets to the next site on his hit
list. "guest – guest", "root – root", and "system –
manager" all fail. It does not matter. A lot of sites
have easy passwords to crack, based on user name,
birth date and so on.

� NFS-Attacks. For instance, running showmount on
a target reveals that /export/foo is exported to the
world. In this case you can put an .rhosts entry in
the remote guest home directory, which will allow
you to login to the target machine without having to
supply a password!

� Anonymous ftp attacks. Vulnerabilities in ftp are of-
ten a matter of incorrect ownership or permissions of
key files or directory.

� X windows attacks. If not protected properly (i. e.
via xhost or magic cookie mechanisms) window dis-
plays can be captured or watched.

� DoS2 attacks. These type of attacks do not involve
a penetration in a system. They slow or block a net
service or the entire system.

1With this term we intend a illegal communication from root to user
processes based on file presence that indicates, for example, a bit infor-
mation.

2Denial of Service

� Sendmail attacks. Sendmail is a very complex pro-
gram that has a long history of security problems, i.
e. running the “decode” alias is a security risk: it
allows potential attackers to overwrite any file that is
writable by the owner of that alias, often daemon, but
potentially any user.

� “hosts.equiv” attacks. The hosts recorded in this file
are trusted: for example if a login request come from
a site recorded in hosts.equiv file, there is no need to
supply a password. Any form of trust can be spoofed.

� Buffer exploit attacks. If a malicious user finds a
buffer overflow in a suid utility, he can gain root priv-
ilege.

� Password sniffing. The telnet sessions do not use any
form of encryption; so an attacker can sniff the pass-
word during a telnet session.

New forms of attacks appear every day. This list can only
be a short example.

3 Piranha Audit details

Why would you want to meet the TCSEC requirements?
An Audit/Logging file that respects TCSEC layout pro-
vides detailed informations as described above. More-
over Piranha Audit protects sensible data against dele-
tion/modification at root level and phisycal disk manage-
ment (fdisk, format, kernel image replacement, boot the
system from floppy). To allow these operations and dump-
ing the Piranha_Audit.log, it’s needed Pirahna Manager
operator.

He/she is a trusted person that knows the Piranha pass-
word that is needed to complete Piranha Audit manage-
ment sessions.

Only he/she can change the Piranha password. We em-
phasize that just the root or just Piranha Manager cannot
assolve these rules: the execution of any Piranha manage-
ment session (needs root privileges) requires the Piranha
password.

Table 1 shows the files used and kernel protected by
Piranha Audit.

This high level of protection has been obtained by ap-
plying patches to 2.2.14 Linux Kernel shown in table 2,
where PM stands for Piranha Manager and SU for Super
User.



Table 1: Piranha Audit files.

Files Description
Piranha_Audit.log Contains all sensible data from Audit/Logging System

syslog.conf Configuration file for syslogd daemon
Piranha_FSCF_DB.md5 Collects MD5-fingerprint for critical file system objects

Piranha_SETUID-GID.db Maps all SETUID-GID root files
Piranha_MD5_Digest_Creator Utility that uses MD5 algorithm to create digital sign

Piranha_System_Shutdown Utility to shutdown the machine in critical events
Piranha_Password Contains the password for Piranha Manager operator

Table 2: Protection modes.

Protected Files Patched Files User Level SU Level SU+PM Level
Piranha_Audit.log namei.c, open.c — r– rd-

syslog.conf namei.c, open.c — r– rw-
Piranha_FSCF_DB.md5 name.c, open.c — r– rw-

Piranha_SETUID-GID.db namei.c, open.c — r– rw-
Piranha_MD5_Digest_Creator namei.c, open.c — r– rx-

Piranha_System_Shutdown namei.c, open.c — r– rx-
Piranha_Password namei.c, open.c — r– rx-

r=read
d=dumping
x=execute



In “namei.c” and “open.c” we have also introduced
a C routine that allows syslogd daemon to open Pi-
ranha_Audit.log in append only mode. The TCSEC
layout is kept byinserting “printk” calls in “namei.c”,
“open.c”, “pipe.c” in correct locations.

The “exec.c” has been patched to detect possible buffer
exploit attacks. Suppose that a malicious user has ex-
ploited a setuid program. He/she produces “a.out” pro-
gram that uses this bug to obtain root access. The pro-
gram does its work and executes a root shell. Piranha Au-
dit detects a particular situation: UID –> 500, GID –>
100, EUID –> 0, EGID –> 100. There is an anomaly:
an inconsistence between UID and EUID; a kernel trap
is executed. The user session will be terminated and the
account will be locked.

The patched “signal.c” does not allow to kill the Pi-
ranha Guardian, detailed below in table 3 with a quick
description of Intruder Detection Suite, where IDS stands
for Intruder Detection System.

The Simple Watcher utility allows an automatic log
analysis detecting patterns that implies an anomaly status.

When it is detected, Simple Watcher sends an Alert
Message to Piranha Audit subsystem that takes the least
disruptive action to terminate the event.

It is possible to configure rensponses to certain au-
ditable events and to make the PM protection of key files
configurable setting the Simple Watcher config file.

4 Performances and penetration test-
ing

Examples 1, 2, 3, 4 and 5 show the behavior of Piranha
Audit in some cases of intrusions attempts.

Example 1: Gaining a root shell.

� Jul 9 10:07:32 SecureHost kernel: Piranha Audit:
Warning: the object /bin/su, executed by UID: 500,
GID: 100 is set-uid!

� Jul 9 10:07:33 SecureHost su[3196]: + tty3 emilio-
root

Example 2: Attempt to remove Audit/Logging
archive.

� Jul 9 10:07:46 SecureHost kernel: Piranha Audit:
Object delete command issued from UID 0, GID 0,
object name: Piranha_Audit.log.

� Jul 9 10:07:46 SecureHost kernel: Piranha Audit:
Owner of object is: UID 0, GID 0.

� Jul 9 10:07:46 SecureHost kernel: Piranha Audit:
Object i-node mode is: 33188.

� Jul 9 10:07:46 SecureHost kernel: Piranha Audit:
Unauthorized access (delete command) to security
event file from UID: 0 GID: 0 detected.

Example 3: Attempts to delete/link/overwrite
Piranha_Audit.log.

� Jul 9 10:08:59 SecureHost kernel: Piranha Audit:
Read access of security event file detected from UID:
0 GID: 0.

� Jul 9 11:16:42 SecureHost kernel: Piranha Audit:
Hard link not allowed for security event file from
UID: 0 GID: 0.

� Jul 9 11:17:04 SecureHost kernel: Piranha Audit:
Unauthorized or incorrect use of security event file
detected from UID: 0 GID 0.

� Jul 9 11:18:14 SecureHost kernel: Piranha Audit:
Unauthorized or incorrect use of security event file
detected from UID: 0 GID: 0.

� Jul 9 11:18:36 SecureHost kernel: Piranha Audit:
Unauthorized or incorrect use of security event file
detected from UID: 0 GID 0.

� Jul 9 11:18:55 SecureHost kernel: Piranha Au-
dit: Attempt to create confusion with special ob-
ject (mknod system call) and protected Piranha Audit
files detected from UID 0, GID 0.

Example 4: Fdisk attempt.

� Jul 9 11:23:45 SecureHost kernel: Piranha Au-
dit: (ALERT LEVEL 3) Attempt of disk manage-
ment without correct security procedure detected
from UID: 0 GID: 0.

Example 5: Satisfying TCSEC layout.

� Jul 12 15:41:30 SecureHost kernel: Piranha Au-
dit: Object introduction detected from UID 500, GID
100, object name is: trial.

� Jul 12 15:41:30 SecureHost kernel: Piranha Audit:
Owner of object is: UID 500, GID 100.



Table 3: IDS utilities.

Utility Quick description
Piranha_Account_Locker Locks an account after compromised events
Piranha_Intruder_Killer Terminates work session of a buffer exploit compromised user

Piranha_MD5_Digest_Creator Creates md5 finger-print
Piranha_PWD_Creator Sets the Piranha Manager Password

Piranha_SETUID-GID_Checker Controls every 60 minutes the root SETUID-GID map
Piranha_SETUID-GID_Init Initializes root SETUID-GID database file

Simple Watcher [9] Instructs Piranha about Alert Level reactions
Piranha_System_Shutdown Halts the machine in critical situation

Piranha_Dumper Allow under root+PM privileges file system management
Piranha_FSC Protects critical files against modification/trojan horse attacks

Piranha_FSC_Init Initializes the database with MD5 signs of critical files
Piranha_Guardian Controls that all IDS works correctly. It cannot be killed

Piranha_Init Script that coordinates the execution of IDS
Piranha_Overflow_Checker Checks for dimension overflow of Piranha_Audit.log
Piranha_PG_PID_Search Searches for suitable PID for Piranha_Guardian
Piranha_PID-UID_Finder Gets from PID its owner (UID)

� Jul 12 15:41:35 SecureHost kernel: Piranha Audit:
Object delete command issued from UID 500, GID
100, object name: trial.

� Jul 12 15:41:35 SecureHost kernel: Piranha Audit:
Owner of object is: UID 500, GID 100.

� Jul 12 15:41:35 SecureHost kernel: Piranha Audit:
Object i-node mode is: 33188.

� Jul 12 15:42:42 SecureHost kernel: Piranha Audit:
Special object introduction (mknod system call) de-
tected from UID 500, GID 100, object name is: pipe.

� Jul 12 15:42:42 SecureHost kernel: Piranha Audit:
Device number of object is: 0.

� Jul 12 15:42:42 SecureHost kernel: Piranha Audit:
Object i-node mode is: 33261.

Below we show the Piranha Audit System behavior to un-
derline the performances under different conditions.

5 Related works

Anderson [3] first proposed using audit trails to monitor
system activity. The use of existing audit records sug-
gested the development of simple tools to check for unau-
thorized access to systems and files.

Bonyun [4] argued that a single, well-unified logging
process was an essential component of computer security
mechanisms.

Picciotto [5] presents a sophisticated audit capability
for a Compartmented Mode Workstation.

Intrusion detection systems that focus on anomalous
behavior have also driven research in auditing and log-
ging. Axent Technologies [7] has presented IDS in Unix
and NT platforms, but nothing for Linux.

Tripwire facility from the COAST [8] project at Purdue
University can take care of the file system, but it can only
report problems: it does not take any action to terminate
the dangerous event.

6 Conclusions

We have presented Piranha_Audit, a systematic solution
to the persistent problems of securing and improving the
Audit and Logging capabilities, that prevents a broad class
of buffer overflow security attacks from succeeding.

Its most important futures are that it denies the dele-
tion/modification of protected files even in a root com-
promised situation; with TCSEC layout, the system ad-
ministrator has a powerful method to investigate; intru-
sion detection is critical in today’s complex enterprises.
Attempting to manually review audit trails is hopelessly



Table 4: Main memory details (in bytes).

Total Used Free Shared Buffers Cached

64716800 63213568 1503232 24977408 1347584 41750528

Table 5: CPU Info.

processor 0
vendor_id GenuineIntel
cpu family 586

model 2
model name Pentium MMX

stepping 3
cpu MHz 200.457340
fdiv_bug no
hlt_bug no
sep_bug no
f00f_bug yes

coma_bug no
fpu yes

fpu_exception yes
cpuid level 1

wp yes
flags fpu vme de pse tsc msr mce cx8

bogomips 80.08

Table 6: Stress Testing.

CPU Stress Test PASSED
Disk Stress Test PASSED

CPU+Disk Stress Test PASSED
CPU STATES: 62 processes: 48 sleeping, 14 running, 0 zombie, 0 stopped 98.2% user, 1.7% system, 0.0% nice, 0.0%
idle
DISK USE: dd if=/dev/zero of=trial count=400000
PASSED means that Piranha Audit System behavior is correct how in no stress situation.



time-consuming and a losing battle given the number of
systems and different types of audit trails. Today we need
automated intrusion detection tools. Digitals finger print
have produced with MD5 [6] algorithm, one of the best in
its area.

All this with little performances degradation how is
showed in the following figure.

7 Acknowledgements

We would like to thank the anonymous referees for their
valuable comments.



Figure 1: Performances.

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8

T
im

e 
(m

s.
)

Events

’Piranha Audit is ACTIVE’
’Piranha Audit is NOT active’

Table 7: Performance keywords

Event Keywords
find | grep lyx 1

Pirannha Audit compile process 2
latex work.tex 3

Starting an X session 4
netscape 5

lyx 6
gimp 7

Linux Boot 8



References

[1] Department of Defense Trusted Computer Systems
Evalutation Criteria. DoD 5200.28-STD, December
1985.

[2] D. Farmer and W. Venema, Improving the Security of
Your Site by Breaking Into It, USENET posting, De-
cember 1993.

[3] James P. Anderson, Computer Security Threat Moni-
toring and Surveillance, James P. Anderson Co. , Fort
Washington, PA (1980).

[4] David Bonyun, The Role of a Well-Defined Auditing
Process in the Enforcement of Privacy and Data Se-
curity, Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pp. 206-214 (1989).

[5] J. Picciotto, The design of an Effective Auditing Sub-
system, Proceedigns of 1987 IEEE Symposium on Se-
curity and Privacy, pp. 2-10 (1982.

[6] R. L. Rivest, The MD5 Message Digest Algorithm,
MIT Laboratory for Computer Science and RSA Data
Security, Inc., Request for Comments nr. 1321, April
1992.

[7] Axent Technologies, Guide to Intrusion Detection,
1995.

[8] COAST, Computer Operations,
Audit and Security Technology,
www.cs.purdue.edu/ar97/research/coast.html.

[9] Todd Atkins, Simple Watcher,
Todd.Atkins@CAST.Stanford.edu, Stanford Univer-
sity.


