
MiniRTL

Hard real time Linux for embedded systems

Nicholas Mc Guire

University Vienna, Institute for Material Physics

Computational Material Science Group, Prof. Dr. J. Hafner

Sensengasse 8 Vienna, AUSTRIA, A-1090

der.herr@hofr.at, http://www.hofr.at

Abstract

Embedded system development is moving away from single-task/user applications running on specialized
target platform towards a reduced general purpose OS running on PC-like hardware. This move is well
represented by Linux based embedded projects and specialized minimum GNU/Linux distributions. As a
sample system and a basis for development of hard-real time embedded systems MiniRTL was developed
at the University of Vienna and at FSMLabs New Mexico. A system that is designed around three major
tenets:

� bootable o� a 1.44MB media (currently simply a
oppy)

� hard-real time capabilities, based on FSMLabs' current RTLinux development

� maximum compatibility to a "`standard"' desktop development system running an up-to-date kernel

In this paper strategies to reach these goals will be described and the successful implementation in a running
system, MiniRTL, demonstrated. These changes are mostly applicable to all embedded Linux e�orts and
are not speci�c to RTLinux.

1 Introduction

System software used in embedded systems covers a
wide range, spreading from micro-kernels at a size
of 40 KB up to full-featured operating systems such
as Linux with a run time kernel in the range of a few
MB's. In this paper we are concerned with the high
end of the embedded systems domain. More pre-
cisely, we deal here with embedded systems based
on GNU/Linux, referred to as Linux embedded user
system, which try to provide a system with as close
to complete user environment on the embedded sys-
tem as possible.

Expressing the size of such systems in terms of mem-

ory is hard. They start somewhere in the range of 2
MB disk and 2 MB RAM requirements for a 1.0.9-
ELF kernel (Linux lite) and 2 MB disk with 4 MB
RAM for 2.0.x or 2.2.x kernels. If these systems are
to do more than the absolute minimum, however,
then a 4 MB disk and 4 MB RAM mark the bot-
tom line at which such a system can be identi�ed as
Linux embedded user system. In particular, these
systems are appropriate for mobile units, a small se-
ries of special devices or systems that need extensive
maintenance and remote monitoring.

Traditionally, system software for embedded sys-
tems has been developed independently of general
purpose operating systems. So why take main-
stream Linux as a basis and drop it to an embedded

system? The answer is actually quite simple, though
not purely a technical: GNU/Linux is a stable desk-
top system which provides a complete set of devel-
opment tools. Thus, it makes life very much easier
as it o�ers the possibility of doing development, de-
bugging, optimizing and testing on the desktop sys-
tem, dropping the results to the embedded platform
then. There is no need for any special development
environments and no need for proprietary "`tools"'.
The decision to implement the current kernels, al-
though they are quite large, is based upon:

� The kernel's rich variety of features, especially
in the networking and hardware support area.

� It is hard, if not impossible, to maintain an in-
dependent kernel development track without
tremendous manpower behind it.

� The availability of well-documented open
source kernel eases development for embedded
systems greatly

Sticking with the mainstream kernel makes it easy
to ensure compatibility with the standard desktop
GNU/Linux system. Real time Linux development
is also tightly coupled to the current kernel develop-
ment in many essential aspects. Notably, full SMP
support requires current RTLinux kernel/patches,
and support for
ash-disk and disk-on-chip are just
emerging in 2.4.0, although it might not always be
necessary to have the newest version, for a particu-
lar application.

RTLinux for embedded platforms is in general in-
tended for high-end projects and for projects that
want to utilize the advantage of using commodity-
component PCs. Even if a midi-tower equipped
with an "`old"' i386/i486 is not recognized as an
embedded system by most people, from a functional
standpoint this is often a very interesting alternative
for low-cost and prototyping systems.

2 Features of MiniRTL

MiniRTL was originally based on the Linux router
project [3]. Naturally, it is a little archaic and you
should not expect GNU/emacs as the system de-
fault editor. The main features available on this

minimum system are not really speci�c to this sys-
tem but rather simply the standard GNU/Linux fea-
tures. We list them here because these capabilities
might not have been taken into account when con-
sidering embedded system design:

� FSMLabs hard real-time Linux kernel 2.2.14
RTLinux 2.3.

� glibc-2.0.7 (at time of writing 2.1.3 is at work).

� Full support of the x86 chips from 386 upward.

� SMP capable (if you really need power).

� Low latency on disk access and high disk
bandwidth with RAM-disk usage.

� Support for most standard PC hardware (em-
bedded commodity components PC).

� Full network support (inetd, SSHD, HTTP,
DNS, NFS, dial-in connectivity).

� Shell (ash) access at the console and via the
network, via telnet (for those who like insecure
connections...)

� Secure access via SSH/SCP (...for those who
don't).

� Capable of o�-site logging via syslog, for error
diagnostics and accounting.

� mini httpd with full cgi-bin support for simple
monitoring.

� No specialized software required for develop-
ing your own projects.

� Source availability easing development of your
own concepts.

� Modular structure, eases adding your own
package as a tar.gz archive.

� No specialist required for administration, it
"`standard"' GNU/Linux.

You might not need all this, and you might be miss-
ing something, but Mini-RTL should give you a
good idea of what can be squeezed onto 1.44 MB!
Considering this, a 2 MB
ash-disk based system
gives you lots of space to play with.

3 Designing a Minimum System

Minimizing disk usage in a RAM-disk based system
is performance-critical. Most embedded systems are
low-memory systems, at least by desktop standards.
A 2.2.14 kernel will boot and run in 4 MB, but there
is little room for applications in this setup. Linux
is quite sensitive to low-RAM setups. We might be
exaggerating a little by stating that doubling RAM
on low memory systems will increase overall perfor-
mance just as much as doubling CPU speed.

A RAM-disk resides in bu�er cache, so increasing
disk usage will reduce available memory. This im-
plies that we should review strategies for optimiz-
ing performance, and also makes clear why dynamic
disk usage during boot-up is not really a critical
point (as long as you never try to exceed available
total ram, which can happen if you try to put the
entire system into a single archive �le). So, there is
little necessity to reduce the image size of the boot-
ing system, as only run-time size is relevant.

3.1 Reduce the system size

Designing the system requires the most time, be-
cause it is hard to tell what one can drop and what
one really needs in a minimum system. Fortunately,
there are some measures that can be taken to reduce
system size, as discussed in the following.

3.1.1 Exploiting redundancy

Linux is very redundant when it comes to executa-
bles: you can do the job of displaying a �le on the
console with cat, tail, more, less, grep and even dd.
So �nding the redundant executables and de�ning
the scope really required is the �rst step. Some ques-
tions to ask here are:

� What do we really need to do on-site? What
can I move o�-site?

� Do we need all options available with ls, tar
and so on? (e.g. ls of busybox)

� Can we substitute some executables by simple
shell-scripts? (e.g. /bin/grep on MiniRTL)

� Can we substitute system-services such as tftp
for ftp?

� What do we need only at boot-up? (network
modules , boot-media support)

� What can be added at runtime, either by up-
loading or by mounting it? (most admin tools)

3.1.2 Deletion

One point here is probably unique to minimum sys-
tems, and so deserves a little more detail: A normal
system has its executables in place, and these will
be used at the next system boot. Embedded sys-
tems that run in RAM-disk are running o� a decom-
pressed image copy, so they don't need to preserve
�les if they are not required for the system's opera-
tion. They can simply be removed. Candidates for
removal are:

The kernel image �le! Once it's loaded, we don't
need it. Initialization scripts. Modules that we
will not need to reload until a system reboot. Exe-
cutables that only do initialization (sshd key gener-
ation).

3.1.3 Compression

Many executables/modules may reside on the �le
system in compressed form, because they will only
be needed for speci�c purposes during maintenance.
It is essential, though, to make sure that these com-
pressed executables are not called from scripts with-
out decompressing them �rst. This sounds obvious,
but the dependencies in even a 2MB system can be
quite complex. It is in general not a trivial task to
ensure this. Candidates for this are all executables
that will only be used by administrative personnel
and not called by scripts (after boot up that is!),
such as editor(s), maintenance programs (such as if-
con�g, ping, rmmod) and �le utilities (such as ctar,
ae).

All these measures can reduce system runtime size
by 30 to 40 percent without any black magic. A 40
percent �le-system size reduction means a substan-
tial increase in RAM available at run-time.

3.2 Reduce run time sizes

The above size reduction was achieved by using
compression, which is is limited to the �le system
size of executables. The run time size is not a�ected
in the same manner, so the next step, naturally, is
to reduce run time size as well. This does not always
correlate with a reduction in �le system size!

3.2.1 Restricting kernel resource

There are lots of provisions made in the regular
Linux kernel that assume operation as a full multi-
user multi-tasking system, with no real limits to the
number of processes and users. As a consequence,
the more resources are allocated than a minimal sys-
tem needs. As a �rst step, therefore, optimization
of the Linux kernel for minimum systems consists of
no more than throwing out some of these resources
(pty's, tty's, hdX and lots of hooks in /dev).

Real optimization, in the sense of modifying ker-
nel behavior to better use speci�c resources, is not
intended (and probably not that easy either). It's
also counterproductive, due to the fact that there
is a new Linux kernel out there every few weeks.
Removing resources is simple and requires no real
kernel hacking. Starting points may be found in in-
clude/linux/*.h. Be careful with the limits de�ned
there, though, for not all may be reduced without
side-e�ects. If you modify any #de�ne statement,
you will need to grep through the kernel tree to �nd
if it is referenced anywhere else, and thus create
side-e�ects if modi�ed.

As an example, there will rarely be a need for 63
console devices on an embedded system, so the max-
imum number of consoles in include/linux/tty.h can
be reduced to 3 (giving you four consoles). Other
good candidates are device �les. You will not need
to access all hda* to hdh*, as it is diÆcult to imag-
ine an embedded system running with eight IDE
devices hooked up.

A signi�cant drawback to compile-time modi�ca-
tions is that you will have to dig around in the ker-
nel source every time a new kernel comes out. This
means that you will have a job to do every few weeks
if you want to keep up with the current kernel. Ca-
didates for such "`resource striping"' are the number
of devices a driver will permit (no embedded system

will probably ever need 64 Consoles, or 8 IDE de-
vices), reducing options for �lesystems (e.g. de�ning
namelength at compile time and not permiting it as
option) or subsetting of features, like only making
thos values available in /proc that your system re-
aly needs. Putting minimization
ags in the con�g
process would be a nice solution, but I doubt that it
will �nd its way into the main stream kernel, manly
because it would require very many additional con-
�g options and even more compile time parameters
to be set.

3.2.2 Shrinking executables

Many executables that you use on a day-to-day basis
on your desktop system have many options that you
will rarely need and could either spare completely or
substitute with a generic command. Going through
the executables you designated for your minimum
system and stripping out options, error messages
and built-in help is an easy way of reducing such
�les.

Also, consider compile-time options, as they also in-

uence size. On desktop systems this isn't a big
deal, so often the Make�les will provide the safest
options, not the most eÆcient with respect to size.
As a general way to reduce size, don't include the
default libs, but explicitly include the libs you need.
To do so, use the -nostdlib and -nostart�les
ags
with gcc, and include libc with -lc explicitly along
with any other libs your app needs.

3.2.3 Compressing output

Whenever programs on a minimum system produce
data, you might consider outputting it in a com-
pressed format from the beginning. This will not
only save scarce disk-space, downloading to a server
or pushing data over an NFS-mount can also be sub-
stantially improved if a compressed format is used.
Alternatively, data �les and log-�les may be com-
pressed periodically by a simple cronjob, especially
for local log-�les on embedded systems where in
many cases only recent events will be relevant.

3.2.4 multi-call binaries

An interesting concept to pack lots of functional-
ity on a minimum system is the so-called busybox
concept. It is a monolithic collection of base func-
tions in a single executable with function selection
by the name of the calling process. This is han-
dled by symbolically linking functions names to the
busybox executable.

The advantage is that there is little overhead in the
executable for argument handling and the like, since
there is only one parser for all linked executables.
Also in the busybox, functionality is reduced to a
minimum, which comes at a price: some standard
functions behave a little di�erently than one might
expect, with some options missing and others re-
duced in scope. Adding functions to the busybox is
quite simple, but it requires recompiling the entire
suite and modi�cations to the system initialization
to set up the required links appropriately.

3.2.5 The Busybox vs. Standard Tools

First, let us look at the �le size of the busybox (0.28)
when compared to the sum of the sizes of the cor-
responding standard Linux tools. The busybox oc-
cupies 65KB, whereas the sum of the Linux tools
occupies 608KB. Even the stripped Linux tools still
require 592KB (egcs-2.91.66, glibc 2.0.7).

This comparison might not seem fair, since many
options available in the standard tools are not avail-
able in the busybox, but the essence is that you
can pack lots of functionality into a tiny executable,
if reduced to the minimum needs of administra-
tion. The real challenge is deciding precisely what
is needed and what can be removed. With all the
dependencies within an OS like Linux (and the use
of shell-scripts for many jobs), this is not easily de-
cided. This leads us back to one of the motivations
for such a minimum system: reduced system com-
plexity, which eases understanding of such depen-
dencies.

The second comparison is the hello world program
in C compiled with gcc (egcs-2.91.66) as an ELF-
executable and the size di�erence of a hello world
function added to busybox called via a link named
hello. The ELF-executable comes in at 33KB raw
and 7KB stripped. The increase in size of the busy-
box, however, is a nominal 161 bytes.

This shows how eÆciently the overhead reduction
is achieved by having one main routine and calling
everything else as a function, via the name of which
busybox is called.

3.3 Libraries

Some of the library problems were mentioned above,
glibc is a very large and powerful library, but for
minimum systems it's a problem since it is very re-
source consuming. Nevertheless we stick with glibc,
because reducing its size is not only complicated
(you must �gure out all function calls that are un-
used and remove them), but also because it poses
a compatibility problem. If you try to optimize by
modifying libraries, you lose compatibility with your
desktop system. At the same time, it means main-
taining a private version of the lib, and you don't
want to maintain your own libc track!

Stripped libraries are dramatically smaller, and
since debugging can comfortably be done on the
desktop-system, there is no need to include debug
symbols on MiniRTL. The same holds for executa-
bles that can be stripped, thereby massively reduc-
ing size. To reduce the number of required libraries,
it is best to de�ne a set of libraries for the mini-
mum system and then strictly build on those. This
is not such a big problem, due to the vast amount
of software/sources on the Internet, it is quite easy
to �nd editors, scripting languages and the like that
will not need any special libraries. Naturally, the
system will have a little bit of an archaic touch, but
that's ok; you're not expected to work full time with
ash and ae as your shell and editor. For administra-
tive jobs, you can get used to it.

3.3.1 The minimum list of libraries

for glibc-2.0.7pre6 assuming network support is

ld-2.0.7.so

libc-2.0.7.so

libcrypt-2.0.7.so

libdl-2.0.7.so

libncurses.so.4

libnsl-2.0.7.so

libnss db-2.0.7.so

libnss dns-2.0.7.so

libnss files-2.0.7.so

libresolv-2.0.7.so

libss.so.2.0

libutil-2.0.7.so

libuuid.so.1.1

3.4 Run-Time Optimization Strategies

The optimization strategies presented here are only
applicable in very special situations and might seem
a little weird at �rst glance. Yet consider that many
embedded systems run for months without any hu-
man intervention. For these systems, optimization
strategies that are repaid by an increase in admin-
istrative complexity might be acceptable.

3.4.1 Kernel Resource Optimization

The modular structure of the Linux kernel permits
optimization of run time size. Modules for network-
support may be loaded, enabling the embedded sys-
tem to drop log/data-�les to a central server system,
and then be removed from the kernel until needed
again. The same holds for �le system support. The
size reduction may be performance-relevant on low-
memory systems.

A further kernel optimization may result from re-
ducing allocated resources, either by kernel param-
eters at boot-up or by reducing resources in the ker-
nel source. This does not really require kernel hack-
ing, merely going through kernel source �les and
stripping down resources that you will not need for
embedded systems (e.g., by setting the maximum
number of IDE devices to 2 instead of 8, reducing
number of consoles to 4 and so on). These modi�ca-
tions can be done without going very deep into the
kernel and are not too hard to apply again when a
new kernel comes out. This stripping of resources
will not substantially reduce the compressed kernel
image but it will reduce the run time kernel memory
trace.

Many kernel resources can be tuned on your desktop
system via the sysctl interface operating via /proc.
By tuning system settings on the full system you can
�nd an optimized setting for your kernel. On a min-
imum system sysctl would be a real waste since it
is very large, so the optimized values for free pages
page-cache etc. must be set in the kernel source
and the kernel recompiled. This is not as bad as it
sounds, since optimization is rarely so application-
speci�c that it would change within a running sys-
tem.

3.4.2 File Systems

Many �le systems are designed for very big systems.
Embedded systems rarely need a directory depth
of 1024 directories or maximum �lename length of
1800 characters. Memory can be saved if the correct
�le systems are used with the appropriate options
(compare msdos/minixfs/ext2fs/reiserfs...). Many
�le-systems have options to reduce the number of
inodes provided or reduce �lename length but keep
in mind that every restriction on the �le system
(DOS 8.3 �lename length or mkfs.minix -n14 giving
you 14-character maximum �lename length) is paid
for by having to be careful of �le conversions when
moving �les around (notably, msdos-fs is a real lim-
itation), this easily can lead to hard-to-detect side-
e�ects.

3.4.3 On-demand Loading

Not all executables may be necessarily resident on
the system. You can have administrative tools
like an editor or some additional kernel modules
only required for administration on the remote
site and simply upload them on demand, remov-
ing them when the tasks have completed. This is
performance-critical since, as noted above, the �le
system resides in bu�er cache. Alternatively, you
can have modules with nfs support on the embedded
system, which can temporarily increase disk space
availability tremendously. You can even swap via
nfs, but this is not suitable via a modem-line! Of
course, nfs has security implications that need to be
considered if running such a system outside a secure
network.

The point of all this is that there are very few re-
sources really needed on-site. Much can be moved

o�-site as long as there are mechanisms available to
hook them up on demand (via scripts, cron etc.).

4 Kernel modi�cations

The kernel modi�cations described here were not
done as part of this project, but were rather the ba-
sis for it. Describing them all here in detail would
not be possible, so we will only give a brief overview
of the concepts involved.

4.1 initrd

To boot o� the initial RAM-disk, you need to mod-
ify the standard kernel a bit. Basically, it is no
more diÆcult than replacing the hook in init/main.c
that points to the regular root device and make it
point to the initial RAM-disk. Using raw images
this would be all that is required to run a system, yet
running raw images is not very comfortable during
development and also quite messy to modify. Since
raw images are required to tell the kernel the exact
hexadecimal address where to jump to, raw images
have no �le system hook. So, to permit the usage
of standard tar.gz archives, some additional mod-
i�cations are added to create an initial minix �le
system on the RAM-disk. The kernel then unpacks
all it needs into the �le system.

One problem with this is that the initial console
does not exist at the time when the kernel actually
is ready to boot up the system, because it has not
been created yet. This is solved in a very pragmatic
way by having a special device packed on the disk
(called linuxrc.tty) which is a minimalist tty, only
used at boot time.

4.2 mkminixfs and untar

In drivers/block/rd.c, the RAM-disks are created by
the kernel at boot time. This is where the code for
creating the minix �le system on /dev/ram0 and un-
packing the root archive from tar.gz form is inserted.
This is essential because now the root image is no
longer a raw image, but simply a standard tar.gz
�le, so manipulation is comfortably done. Due to
this add-on, it is possible for any Linux user to

create the modi�ed archive �les. All you need to
do is pack everything you would like to have in a
tar archive (provided you can get it on a 1.44 MB

oppy) and gzip it, then tell linuxrc to unpack it via
the "`command-line options"' in syslinux.cfg. The
setup script (linuxrc) can access these command-line
options via /proc/cmdline, this is a quite simple way
to pass any string from the syslinux.cfg (the syslinux
con�guration �le on the
oppy) to the running linux
system.

4.3 FSMLabs RTLinux

Besides the above modi�cations, the normal
RTLinux patches version 2.3 (kernel 2.2.14) were
applied, with no modi�cations. The front-end appli-
cation interfaces are restricted in the libs available
on the Mini-RTL system and compile-time options
where introduced to reduce the size of executables.
For the standard demo-apps, no modi�cations were
required, but application design for a minimum sys-
tem must take the lib-restrictions into account.

4.3.1 RTLinux concept

FSMLabs rtlinux is based on a very small layer that
is put beneath the actual Linux kernel. It is dropped
in as a kernel patch and permits a system to utilize
all the capabilities of a regular GNU/Linux desk-top
system. Building these hard real-time capabilities as
modules allows for runtime insertion, reducing the
kernel changes to a minimum. This layer incorpo-
rates the following basic functionalities:

� interrupt interception ,no real interrupt ever
reaches Linux, all interrupts destined for a
non-rt task are
agged and passed to Linux
when no rt-task is ready to run.

� timing precession in the nano-second range
(rtl time.o)

� scheduling of real time tasks independently
of the Linux scheduler (rtl sched.o), rtlinux is
running a loadable scheduler beneath the non-
rt level, this give great
exibility in design and
optimization of the rt-scheduling policy.

� simple communications with the non-rt side
via rtl printk ,rt-�fos (rtl �fo.o) and shared
memory (mbu�.o).

� process synchronization via mutex and mmap
functions (mutex.o mmap.o)

� runs Linux as its low-priority idle-task.

5 Example programs on MiniRTL-

V2.3

The following list of example real-time linux pro-
grams are available on MiniRTL-V2.3 ,kernel mod-
ules listed as .o , front-end programs without exten-
sions:

hello.o

sound.o

read lpt / rectangle.o

read lpt / sched toggle.o

lpt irq + monitor / rt irq gen.o

frank app / frank module.o

monitor / oneshot test.o

monitor / periodic test.o

monitor / rtc fifo test.o

rtc test.o

multitask.o

monitor / rt process.o

mutex.o

rtpu / rtp.o

In addition to these examples the basic rtlinux mod-
ules are also on-disk:

mbuff.o

rt com.o

rtl fifo.o

rtl posixio.o

rtl sched.o

rtl time.o

More information on rtlinux, writing code and un-
derstanding it can be found at [2]. The following is
a brief description of some of the examples, these
show the basic real-time program structures, inter-
rupt service routine directly mapped to a hardware
interrupt (sound.c), single scheduler managed real
time task (hello.o) , multiple real-time task managed
by the real-time scheduler (rectangle.o) and external
signal triggered real-time task (rt irq gen.o).

5.1 Hello World: hello.o

One of the �rst C-programs to master is "`hello
world", a simple program that will print "`hello
world"' on your screen. In the real-time linux world
its not much di�erent, this simple "`real-time hello
world"' will write hello world from the rt-side to the
non-rt-side of your running rtlinux box. To see the
messages hello.o is writing to you, you must call the
Linux command dmesg, which will print the kernel
messages to stdout. This is because on the real-time
side of your box you can't directly access the con-
sole, so hello.o drops a message to the linux kernel
and that in turn prints it via printk.

hello.c close to the simples module possible,
init module, cleanup module as with all modules,
and start routine, the actual task, which is only a
periodic rtl printk of a message and any arguments
received. After inserting hello.o with insmod, sim-
ply execute dmesg, and it will talk to you.

#include <rtl.h>

#include <time.h>

#include <pthread.h>

pthread_t thread;

void * start_routine(void *arg)

{

struct sched_param p;

p . sched_priority = 1;

pthread_setschedparam (pthread_self(),

SCHED_FIFO, &p);

pthread_make_periodic_np (pthread_self(),

gethrtime(), 500000000);

while (1) {

pthread_wait_np ();

rtl_printf("I'm here; my arg is %x\n",

(unsigned) arg);

}

return 0;

}

int init_module(void) {

return pthread_create (&thread, NULL,

start_routine, 0);

}

void cleanup_module(void) {

pthread_delete_np (thread);

}

5.2 Sound with a pc-speaker: sound.o

The PC-speaker is driven by a programable
timer/counter chip in your PC, it will generate a
periodic signal, that can be thought of as a "`sine-
wave"' or simply a periodic signal of some shape or
simply a beep. If this beep is turned on and o� in
a reasonably fast and precisely timed fashion then
one can produce "`sound"'. This condition is what
makes it clear why such a speaker driver would not
properly work when executed from regular non-real-
time linux, on an unloaded box it might work more
or less, but with increasing load distortion would
become unacceptable.

The data used to control the "`on"' or "`o�"' state
of the speaker is 8-bit mu-law encoded audio data
(regular .au �le). It is reduced to 1-bit and this is
then used to turn the speaker on or o� , depending
on what was left of the 8-bit after running it through
a simple �lter function.

The sound.c is a little di�erent from other sample
programs, in that it is not scheduled and thus man-
aged by the real-time scheduler, but it is simply as-
signed as the interrupt handler of interrupt 8. This
is done for performance reasons, but is restricted
to a one-task situation. init module will save the
CMOS settings then assigned the "`sound"' routine
as the interrupt handler for interrupt 8, program the
CMOS clock to generate interrupts at 8KHz and
then exit. So this is basically what you would do
on a DOS box to run a routine as interrupt service
routine directly. This interrupt service routine then
reads the data in from the �fo and �lters it from
8-bit to 1-bit in �lter() then sets the speaker ac-
tive of deactivates it according to the �lter output.
cleanup module will reset the state of the CMOS
clock , remove the �fo and free the RTC interrupt.

#include <linux/mc146818rtc.h>

#include <rtl_fifo.h>

#include <rtl_core.h>

#include <rtl_time.h>

#include <rtl.h>

#define FIFO_NO 3

static int filter(int x){

static int oldx;

int ret;

if (x & 0x80) {

x = 382 - x;

}

ret = x > oldx;

oldx = x;

return ret;

}

unsigned int intr_handler

(unsigned int irq, struct pt_regs *regs) {

char data;

char temp;

/* clear IRQ */

(void) CMOS_READ(RTC_REG_C);

if (rtf_get(FIFO_NO, &data, 1) > 0){

data = filter(data);

temp = inb(0x61);

temp &= 0xfc;

if (data) {

temp |= 3;

}

outb(temp,0x61);

}

rtl_hard_enable_irq (8);

return 0;

}

char save_cmos_A;

char save_cmos_B;

int init_module(void)

{

char ctemp;

rtf_create(FIFO_NO, 4000);

/* this is just to ensure that the */

/* output of the counter is 1 */

/* binary,mode 0,LSB/MSB,ch 2*/

outb_p(0xb0, 0x43);

outb_p(0x1, 0x42);

outb_p(0x0, 0x42);

rtl_request_irq (8, intr_handler);

/* program the RTC to interrupt at 8kHz */

save_cmos_A = CMOS_READ(RTC_REG_A);

save_cmos_B = CMOS_READ(RTC_REG_B);

/*32kHz Time Base, 8kHz interrupt freq.*/

CMOS_WRITE(0x23, RTC_REG_A);

ctemp = CMOS_READ(RTC_REG_B);

ctemp &= 0x8f; /* Clear */

/* Periodic interrupt enable */

ctemp |= 0x40;

CMOS_WRITE(ctemp, RTC_REG_B);

rtl_hard_enable_irq (8);

(void) CMOS_READ(RTC_REG_C);

return 0;

}

void cleanup_module(void)

{

rtf_destroy(FIFO_NO);

/* restore the original mode */

outb_p(0xb6, 0x43);

CMOS_WRITE(save_cmos_A, RTC_REG_A);

CMOS_WRITE(save_cmos_B, RTC_REG_B);

rtl_free_irq(8);

}

5.3 Playing with the Parallel Port

These programs requires that you have your
MiniRTL box connected to a second Linux PC via
standard PLIP cable.

5.3.1 rt irq gen.o

rt irq gen.o waits for an input on the parallel port
in polling mode. This polling-task is in a busy-wait
loop until something occurred at the parallel-port,
it will "`freeze"' your rtlinux box until something
comes in or it is timed out. if you remove the time-
out in rt irq gen.c then your rtlinux box will only
stay "`alive"' as long as you run the lpt irq program
on your second linux box connecting it via a plip-
cable.

5.3.2 rt irq gen.c

#include <rtl.h>

#include <rtl_time.h>

#include <rtl_fifo.h>

#include <asm/rt_irq.h>

#include <asm/rt_time.h>

#include <rtl_sched.h>

#include <asm/io.h>

#include <linux/cons.h>

#include <pthread.h>

#include <time.h>

#include <rtl_sched.h>

#include <rtl_sync.h>

#include <unistd.h>

#include <rtl_debug.h>

#include <errno.h>

#define LPT 0x378

#define LPT_IRQ 7

#define RTC_IRQ 8

struct sample {

hrtime_t min;

hrtime_t max;

};

/* all time values in nano-seconds */

#define TIMEOUT 10000000

#define SAMPLES 10

pthread_t thread;

hrtime_t min_response;

hrtime_t max_response;

struct sample samp;

int samples;

void * irq_gen(void *arg) {

/* putting these in registers prevents

* additional delays due to load and

* store to memory during the timing loop

*/

register int i;

register int orig;

int old_interrupts;

hrtime_t before, after, response;

struct sched_param p;

p . sched_priority = 1;

pthread_setschedparam (pthread_self(),

SCHED_FIFO, &p);

pthread_make_periodic_np (pthread_self(),

gethrtime(), 100000000);

while (1) {

min_response = 2000000000;

max_response = 0;

for (samples=0;samples<SAMPLES;samples++){

/* turn off interrupts so we really get

* the round-trip time by the busy-wait

* loop

*/

rtl_no_interrupts(old_interrupts);

/* ACK is 1 for logic 0

*/

outb_p(0xf, LPT);

orig = inb_p(LPT + 1);

/* trigger an interrupt

*/

outb(0x0, LPT);

before = gethrtime();

i = 0;

/* the busy wait loop,poling the

* interrupt pin of the parallel port.

*/

while ((inb(LPT + 1) == orig) &&

(i++ < TIMEOUT));

after = gethrtime();

/* if this loop were not present the

* system would wait for ever until

* an interrupt is polled on ACK of

* the parport.

*/

if (i >= TIMEOUT) {

rtl_printf("timeout!!!\n");

return 0;

}

response = after - before;

if (response < min_response) {

min_response = response;

}

if (response > max_response) {

max_response = response;

}

/* restore interrupts before sending */

/* the thread to sleep

*/

rtl_restore_interrupts(old_interrupts);

pthread_wait_np();

}

samp.min = min_response;

samp.max = max_response;

rtf_put(0, &samp, sizeof(samp));

}

return 0;

}

int init_module(void)

{

rtf_destroy(0);

rtf_create(0, 4000);

return pthread_create (&thread,NULL,irq_gen,0);

}

void cleanup_module(void)

{

rtl_printf ("Removing rt_gen_irq on CPU %d

and clearing ACK on %d\n",rtl_getcpuid(),

LPT);

outb_p(0xf, LPT); /* clear ACK on parport */

pthread_delete_np (thread);

rtf_destroy(0);

}

5.3.3 lpt irq

this is a simple non-rt busy-wait loop waits for ACK
on the parallel port ,then it will toggle pins D0-D7
to produce an ACK. Again this runs on the second
linux box and is connected to the MiniRTL box via

PLIP-cable. if you drive the load high on the com-
puter running lpt irq you can see that the MiniRTL
system will time out sooner or later since the non-rt
program lpt irq will fail to deliver the ACK in the
required timeout de�ned in rt irq gen.c.

To prevent this behavior you can use rectangle.o on
the second box, which is a rt-program that does ba-
sically the same as lpt irq just it does it in real-time
and thus driving the load high on the PC will not
in
uence the behavior of the MiniRTL system. This
deterministic behavior is what its all about and this
simple example shows the di�erence most drastic.

5.3.4 lpt irq.c

#include <stdio.h>

#include <asm/io.h>

#include <unistd.h>

#include <sys/io.h>

#define LPT 0x378

int main(void)

{

int in;

if (ioperm(LPT, 3 , 1) < 0) {

fprintf(stderr,

"ioperm: error accessing IO-ports");

exit(-1);

}

/* wait for ACK to go low (logic 1) on

* the parallel port and then produce a

* HI/LOW on D0-D8 to trigger an interrupt

* as response , see PLIP.txt for pin-out

*/

while(1) {

in=inb(LPT+1);

in = in >> 3;

in = in & 0x0f;

if(in==0){

printf("got interrupt on LPT\n");

outb(0xff,LPT); /* logic 0 on LPT*/

usleep(100);

outb(0x0,LPT); /* logic 1 on LPT*/

}

}

}

5.4 Real-time Multitasking: rectangle.o

As mentioned above rectangle.c will also toggle the
parallel port, but it will do it load independent,

so if rectangle.o is running on the second PC then
you will not be able to timeout rt irq gen.o on the
MiniRTL system. At the same time rectangle.c is
an example of simple real time multitasking. Two
threads are running, one that sets the pins D0-D7
"`Hi"' and one that set them "`Lo"'.

5.4.1 rectangle.c

#include <linux/module.h>

#include <linux/kernel.h>

#include <rtl_time.h>

#include <rtl_sched.h>

#include <asm/io.h>

#include <time.h>

#include "common.h"

int period[2]={20000000,1000000};

int periodic_mode=0;

int nibl=0xff;

pthread_t THREAD[2];

void *bit_toggle(void *t) {

int index = (int)t;

pthread_make_periodic_np(THREAD[index],

gethrtime(), period[index]);

while (1){

outb(nibl,LPT);

nibl = ~nibl;

pthread_wait_np();

}

}

int init_module(void)

{

pthread_attr_t attr;

struct sched_param sched_param;

pthread_attr_init (&attr);

sched_param.sched_priority = 1;

pthread_attr_setschedparam (&attr,

&sched_param);

pthread_create (&THREAD[0], &attr,

bit_toggle, (void *)0);

pthread_create (&THREAD[1], &attr,

bit_toggle, (void *)1);

return 0;

}

void cleanup_module(void)

{

pthread_delete_np (THREAD[0]);

pthread_delete_np (THREAD[1]);

}

6 Acknowledgments

Thanks goes to the head of the Computational Ma-
terial Science Group, Prof. Dr. J. Hafner, for en-
couraging this slightly o�-topic work at his institute.
Further thanks to Victor Yodaiken of FSMLabs for
supporting this work and supplying the Internet re-
sources required to successfully run such a project.

7 Availability

MiniRTL is available from the following sites on the
Internet.

http://www.rtlinux.org/rtlinux.new/minirtl.html

ftp://ftp.rtlinux.org/pub/rtlinux/minirtl

http://www.fsmlabs.com/

ftp://ftp.fsmlabs.com/pub/rtlinux/minirtl/

http://www.thinkingnerds.com/

ftp://ftp.thinkingnerds.com/pub/projects/

Help and support can also be found on the
rtlinux mailing list hosted at rtlinux.org, to
subscribe to this mailing list send mail to
majordomo@rtlinux.org with the line subscribe

rtl YOUR EMAIL ADDRESS in the body of the mail.

References

[1] M. Baraban, New Mexico Institute of Mining
and Technology
A Linux-based Real-Time Operating System,
Thesis (1997).

[2] Real Time Linux Home-Page,
http://www.rtlinux.org/,
ftp://ftp.rtlinux.org/

[3] The Linux router project
http://www.linuxrouter.org/

[4] initrd-archive kernel patch
ftp://ftp.psychosis.com/linux/initrd-arch/

[5] linuxrc-always kernel patch
ftp://ftp.psychosis.com/linux/initrd-arch/

[6] Dave Cinege <dcinege@psychosis.com>,
Eric B. Andersen <andersee@debian.org>,

ftp://ftp.lineao.com/pub/busybox

[7] David A. Russling, The Linux Kernel,
at any LDP-site tlk-0.8-3.ps.gz

