USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,
Atlanta

Atlanta, Georgia, USA
October 10-14, 2000

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Open Source Group Calendaring: GCTP and OpenFlock

David L. Sifry
Chief Technology Officer
Linuxcare, Inc.
650 Townsend Street, San Francisco, CA 94103.

dsifry@linuxcare.com, http://www.linuxcare.com/

Abstract

This paper describes a new protocol and open—source system that is designed to solve a significant problem
— how to manage and organize individual and group schedules in a cross-platform manner. In addition,
the design was created to allow for interoperability and extensibility in the protocol and functionality of
the system, and discussion is given on how to create an extensible protocol while maintaining backwards
compatability.

1 Introduction

While many proprietary solutions exist for group calendaring (Microsoft Outlook/Exchange, Lotus Notes,
Novell Groupwise, etc) there were no free software-based groupware tools available. In addition, while
the IETF working group on calendaring is working on interoperability standards for sharing contacts and
information between different LAN-based calendaring systems, there was no work being done on a free al-
ternative to the LAN-based calendaring systems. Two standards, vCard (iCard) for the exchange of contact
information, and vCalendar (iCalendar) for the exchange of schedule information have been proposed, but
these proposed standards only offer a solution for transport between different systems - they do not take
into account a variety of functions that are as important, such as the method of transport, methods of
securing or rejecting appointments, and methods of rescheduling appointments. vCalendar and vCard are
nouns in the group scheduling vocabulary - but they do not describe the verbs. What became necessary
was an open way to describe both nouns and verbs, and an implementation or set of implementation that
met the needs of most users of the group scheduling system.

2 What is OpenFlock

OpenFlock is a group calendaring system. It handles calendars, projects, and teams in much the same way
that Sendmail handles email, or BIND handles DNS. OpenFlock is a GCTP (Group Calendaring Transport
Protocol)-compliant system, and is actually the first such system in existence, as the GCTP protocol was
designed in parallel with OpenFlock’s development.

3 OpenFlock Architecture

The OpenFlock architecture is client-server using GCTP as the protocol between the calendaring server
and client. Each connection is authenticated, much in the same way that POP3 or IMAP connections are
authenticated, however, a plugin authentication layer is used to allow for extensibility. OpenFlock is designed
to be able to export and import vCalendar objects to increase interoperability with other vCalendar-capable
schedulers. By using GCTP however, much richer functionality is possible. For example, it is possible to
ask the server to schedule an appointment with a predefined team of people for one hour during business
hours in the upcoming week, and the GCTP server will find the first available time period that meets those
conditions. In addition, the system allows for the concept of a proxy, that is, someone who is capable of
doing all the things the user that she is proxy for is capable of doing. This is applicable for administrative
assistants at a company, for example. The system is also set up with arbitrary access control capabilities,
so that, for example, bosses can auto-schedule appointments with subordinates, and can view subordinates’
non-private schedule entries. A queue exists for each user, and whenever a change is made to a person’s
schedule without her knowledge, a notification is added to her queue, along with an opportunity to confirm
or reject the change. In this way, the GCTP server maintains a set of knowledge of what appointments
have been confirmed or rejected, and if necessary, it can trigger a rescheduling of an appointment if one or
more of the attendees rejects the original time or date.

The application is also designed in such a way that a user can synchronize her client for off-line use,
can queue up scheduling changes, and upon reconnection to the server, request the changes in batch.
This synchronization capability is built into the protocol itself. It also allows users to synchronize group
calendars before going on a trip on a personal laptop, and then synchronize individual calendars on a
handheld device, such as a palm pilot. In addition, the design accomodates a palm-based client application
with full functionality that can log on, authenticate, and then synchronize calendars and contact lists with
the OpenFlock server directly.

3.1 Plugin architecture

OpenFlock has plugin capability for its authentication modules. Currently, passwd, shadow password,
MD5-challenge-response, and LDAP authentication is supported. More is forthcoming.

OpenFlock also implements a form of Access Control Lists (ACLs) on top of its database schema. This

ACL system is pluggable, allowing different storage backends. Currently, SQL database (PostgresSQL and
MySQL in particular) persistent storage is supported, but others can be implemented.

4 The GCTP Protocol

The GCTP protocol is described in full at http://www.gctp.org/protocol.txt but a selection of commands
is described below. I have intentionally left out most of the real nitty-gritty of the protocol in this paper,
like the regular expression syntax, all of the possible error conditions for each command, etc. These are
enumerated in the protocol description listed above. It should also be notes that the protocol is a work in
progress — What is described here is protocol version 1.0.

4.1 Environmental Commands

USER username

4.2

Specifies the username for the authentication session

LIST AUTHMETHODS

Returns a list of authentication methods that the GCTP server accpts. All GCTP servers must accept
the NONE, PASSWD, and RANDOM-MD5 authentication methods at a minimum. For example, here

is the conversation for a minimal server:

>>>LIST AUTHMETHODS
<<L<2

<<<0K PASSWORD
<<<0K RANDOM-MD5

LIST PEOPLE

Provides a list of people on the system.

LIST LOCATIONS
Provides a list of locations on the system.
LIST CAMPUSES
Provides a list of campuses on the system.

LIST PROJECTS

Provides a list of projects on the system.

LIST TEAMS

Provides a list of teams on the system.

AUTHMETHOD authentication-method

Specifies the authentication method used for this session.

AUTH string

Sends authentication information to the server. There may be a number of send-reply cycles within
the authorization sequence. For example, if the password is ”password” and the AUTHMETHOD is
RANDOM-MD5, then the sequence will look like this:

>>>USER user

>>>AUTHMETHOD RANDOM-MD5

<<<0K daopkaepkoeakope3k
>>>AUTH 1qdpc/e5dVmuvDLH+rGcOA
<<<0K AUTHORIZED

Connection Control Commands

RSET

Reset the connection to a new, unauthorized state. Useful for keeping connections alive without
having to break down the socket.

MODE outputmode

Changes the way that the server delivers output. There are currently two settings:

MODE TEXT

Causes the server to send output as plain text, not as the default Base64. This is for testing purposes
- using TEXTMODE can be difficult to parse, as embedded newlines, etc are not delimited.

MODE BASE64 Causes the server to send output as Base64-encoded text, which is the default.

4.3

4.4

Appointment Commands

NEW APPT appointment-string

Sends a request to the server to create a new appointment. The appointment-string is a block of XML
markup, describing the appointment. Valid types of appointments currently are vCAL, iCAL, and
INTERNAL (the OpenFlock internal format, used for debugging purposes). The INTERNAL format
is optional in GCTP implementations - but vCAL and iCAL are mandatory. Group appointment
requests are an integral part of this request - including requests for appointments where certain items,
like the date or time of the appointment, are left blank. This causes the GCTP server to find the
earliest time when all people who are marked as REQUIRED for the appointment are available to
attend.

Possible responses include:

OK Confirmed id
0K Tentative id

These denote confirmed and tentatively confirmed appointments - the Unique ID for each appointment
is returned also.

Possible Error conditions include:

ERROR Authentication
ERROR Permissions
ERROR User

ERROR Impossible
ERROR BadData

Each one of the possible return conditions are described in more detail in the GCTP protocol descrip-
tion, they are listed here as a description of the variety of return conditions that must be dealt with
in a group calendaring protocol.

GET APPT apptid

Sends a request to the server to get information on the requested appointments. If there are no errors,
the server will respond with a block of XML markup describing the appointment with the apptid
identifier.

MODIFY APPT apptid appointment-string

Sends a request to the server to modify an appointment with the unique identifier apptid.

DELETE APPT apptid
Deletes the appointment with the unique appointment ID apptid.

Search Commands

SEARCH PEOPLE argl expr regexp

Returns a list of people on the system where arg? is:

FIRSTNAME
MIDDLENAME
LASTNAME
NAME

TITLE

PHONE
FAX
EMAIL
ADDRESS

expris: '=="or '!=", denoting equals and not equals, and
regezp is a regular expression.

Possible responses include:

SEARCH LOCATIONS argl expr regexp

Returns a list of locations on the system where arg? is:

CAMPUS
BUILDING
ROOM
ADDRESS

)

expris: '=="or =", denoting equals and not equals, and
regexp is a regular expression.

Possible responses include:

OK string
ERROR Authentication
ERROR BadData

SEARCH PROJECTS arg! expr regexp

Returns a list of projects on the system where arg1 is:

NAME
DESCRIPTION

)

expris: '==’or ’!=’, denoting equals and not equals, and
regexp is a regular expression.

Possible responses include:

0K string
ERROR Authentication
ERROR BadData

SEARCH TEAMS argl expr regexp

Returns a list of teams on the system where arg! is:

NAME
DESCRIPTION

erpris: '=="or ’!=’, denoting equals and not equals, and
regexp is a regular expression.

Possible responses include:

0K string
ERROR Authentication
ERROR BadData

4.5 Schedule Commands

GET SCHEDULE uid datel date2

Retrieves a list of appointments for the user with UID wid, starting at date! and ending at date2.
Dates are represented as follows:

1999-02-15 05:00:00 = February 15, 1999 05:00:00 AM GMT.
2000-10-12 23:12:15 = October 12, 2000 11:12:15 PM GMT.

All dates are stored in GMT.
GET NOTIFICATIONS uid

Retrieves a list of notifications and appointment requests for the user wid.

CONFIRM uid apptid
Confirms the appointment with ID apptid listed for user wid.

REJECT wid apptid
Rejects the appointment with ID apptid listed for user wuid.

GET PERSONLIST listid

This command retrieves the person id’s that make up the personlist listid (used in the group scheduling
process).

4.6 Miscellaneous Commands

HELP

This command will list the top-level commands available on the server.

5 GCTP design guidelines

The three design guidelines of the GCTP protocol are:

Evolvability
Plugin architecture

Gracefully handle unknowns

5.1 Evolvability

This guideline is probably the most important part of the design criteria, because I anticipate that as
GCTP sees additional use, new commands will be added, new command formats will be added, and the
data description will change. Given these inevitabilities, it was important to design for evolvability right
from te start. One of the main syles of design I used was a tuple-based mechanism to describe commands.
As GCTP stands now, it only has 13 base commands, listed below:

USER
AUTHMETHOD
AUTH
RSET
LIST
MODE
NEW

GET
MODIFY
DELETE
SEARCH
CONFIRM
REJECT

Of those commands, 7 (LIST, MODE, NEW, GET, MODIFY, DELETE, SEARCH) already have subcom-
mands, i.e. "SEARCH PEOPLE”. This use of sub-commands illustrates the design for modularity and
extensability. Adding a new SEARCH command, for example, need not affect other parts of the protocol,
and from an implementation (coding) perspective, it allows the new subcommand code to be self-contained
and modular.

5.2 Plugin architecture

OpenFlock also supports a generic plugin architecture. This set of APIs is under active development, and
a set of authentication plugins that implement a variety of schemes are available. The back-end storage
structure is also pluggable, so although OpenFlock currently uses a SQL database for its persistent storage,
other avenues are available, such as a filesystem-based approach.

5.3 Gracefully handle unknowns

The third main architecture guideline is to gracefully handle unknowns. Since GCTP is expected to go
through a number of protocol revisions in a relatively quick manner, I designed for backwards compatability
from the start. If a new GCTP client connects to an older protocol revision server, it will fail gracefully
on the new protocol features but still be able to interact with the server’s set of commands. This allows
for a more smooth transition of system upgrades. The hope here is that a new protocol revision will not
instantly obsolete older protocol revisions, but will be an extension to the older revisions.

6 Current Status of the project

The GCTP protocol is approaching 1.0 stability, and will probably be at 1.0 by the time this paper is
published. A few additional features are being worked on at this writing, namely, the NEW APPT syntax
that allows the server to schedule an appointment with a predefined team of people for one hour during
business hours in the upcoming week. The most up-to-date information on the protocol, and servers and
clients implementing the protocol is at http://www.gctp.org/. Currently, work is ongoing to add GCTP
support to Helix Code’s Evolution project, and work on a pilot-based client is underway in addition to the
OpenFlock server. A PHP-based web client is also being built.

7 Future directions

After the 1.0 release of the GCTP protocol and OpenFlock, there is much to be done. One of the first
priorities is to fully integrate GCTP support into open source applications, like office suites and PIMs.
Work on PDA synchronization for offline use is also a priority. In addition, we're looking for developers
with MAPI experience, so that a GCTP MAPI conduit could be made available for people who are using
MS Outlook and Exchange. Multiple transport layer support (GCTP over SMTP, for example) will help
people who are not always connecting from a LAN environment or who don’t want to allow socket-based
connections to their GCTP server for whatever reason. More work is ongoing, and a mailing list exists for
developers, protocol-dev@gctp.org is the mailing list for protocol development of the GCTP protocol, and
devel@openflock.org is the mailing list for OpenFlock developers.

8 Acknowledgments

Many people have approached me with ideas and have helped in the design of GCTP and OpenFlock. In
particular, I’d like to thank David Desrosiers, Rasmus Lerdorf, Luke Leighton, David Mandala, and Andrew
Tridgell. I’d also like to thank all of the folks at Linuxcare who have worked tirelessly to provide a place
where open source development is encouraged and funded.

9 Availability

OpenFlock is free software, licensed under the GPL. It is available via anonymous FTP from

ftp://ftp.openflock.org/pub/openflock/

Information, including anonymous CVS access, is also available on the OpenFlock homepage at

http://www.openflock.org/

The development mailing list for OpenFlock is devel@openflock.org.

Information on the GCTP protocol is available at

http://wuw.gctp.org/

The development mailing list for GCTP protocol development is protocol-dev@gctp.org.

