
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Gaining the Middleground:
A Linux-based Open Source Middleware Initiative

Dr. Greg Wettstein Ph.D., North Dakota State University
Johannes Grosen M.S., North Dakota State University

August 25, 2000

Abstract

Central to the development of the Internet, and the re-
sulting business paradigm shifts, has been the adoption of
standards which have provided the necessary framework
for computer systems to cooperate and exchange informa-
tion. The next major step necessary to support the contin-
uation of this process is the development of software pro-
tocols and tools which provide the ability to manage the
delivery of services to users.

This paper describes a Linux-based middleware ini-
tiative which has been deployed at North Dakota State
University to support a Category of Service information
delivery system for the North Dakota Higher Education
Computing Network. The system was designed to support
a computing model where the majority of the service in-
frastructure is supplied by Linux servers and which is ex-
tensible to the 11 state institutions comprising the HECN.

The paper begins with a discussion of middleware and
its importance in the development of next-generation in-
formation systems. Included in this discussion are the top-
ics of identification, authentication and authorization and
the requirement for them in a modern middleware solu-
tion. Central to this topic will be a discussion of the po-
tential threat that proprietary middleware solutions pose
to the continued penetration of Open Source efforts into
the enterprise computing model.

The paper then discusses in detail the design and archi-
tecture of the User Services Management System which
implements the middleware solution at NDSU. The three
fundamental components discussed will be the User Ser-
vices DataBase, LDAP meta-directory services and the

User Account Management System .
Discussion of the system architecture will include de-

tails of how standard services have been modified to op-
erate under middleware control.

The paper will conclude with a discussion of the impli-
cations of this work. Also included is a discussion of the
next generation of the system architecture.

Introduction

North Dakota State University (NDSU) is one of eleven
colleges and universities in the North Dakota University
System. With an enrollment of 10,000 students, NDSU is
a land-grant institution offering several Phd programs and
home to several internationally recognized researchers
in the fields of chemistry, engineering, and agriculture.
NDSU is a member of Internet2 and a partner in the
Great Plains Network, a NSF-funded regional network
connecting six mid-western states and supporting earth
system sciences research. The authors are employed by
the NDSU campus computer center, Information Technol-
ogy Services, (ITS). Dr. Wettstein is the senior system
administrator and Mr. Grosen is the associate director
for networking and multi-user computing systems. ITS
provides desktop computing support and services, train-
ing, networking, and other information technology to the
NDSU campus. ITS is also home to the SENDIT network,
a K-12 technology services initiative for the state of North
Dakota.

As a rural state with a small population, North Dakota
has faced and continues to face many challenges in de-
ploying information technology services. In the mid



1970’s, university system administrators conceived of the
notion of tackling some of these problems by centralizing
as many services as possible and deploying a communica-
tions infrastructure to provide access. The resulting sys-
tem of services was named the Higher Education Comput-
ing Network (HECN). Initially, the HECN concentrated
on providing administrative computing services and the
University of North Dakota was designated the adminis-
trative computing host site. In the late 70’s it was recog-
nized that technology was becoming an important compo-
nent in academics and, in 1980, NDSU was charged with
the responsibility of centrally providing academic com-
puting services. Initially, the infrastructure consisted of a
single IBM mainframe computer. Over time, it came to
include multiple servers and services such as email, do-
main name services, USENET news, Unix shell access,
etc. When the mainframe system was removed from ser-
vice four years ago, the model for delivering services re-
mained essentially the same; users accessed services via
interactive logins over the state’s wide area networks.

As desktop PCs became more ubiquitous and the ad-
vent of graphical interfaces made these applications more
accessible to the non-technical, users began to prefer us-
ing their desktop software over that available on the cen-
tralized servers. Concurrently, a survey of HECN users
and administrators revealed that there was consensus on
the need for a unified electronic “phonebook” or direc-
tory. The survey also revealed the desire for a standard-
ized scheme for email addresses. Two criteria were iden-
tified: first, the recipient portion of the email address
should be based, as closely as possible, on the person’s
full name and, second, the dependency on hostnames for
mail servers should be replaced with DNS domain names
and MX records. These observations and requests became
input into a major re-design of the infrastructure for pro-
viding HECN academic computing services.

During the design process, additional technical require-
ments were developed. Key among these was moving to
a client-server architecture using micro-servers running
Linux. The old server infrastructure was based on several
Unix hardware and operating system combinations. This
requirement would allow us to reduce the heterogeneity in
the server infrastructure, simplify management, ease de-
velopment, and lower costs.

Another technical requirement was to move to a Cate-
gory of Service (CoS) model. In the “old” model, users

were assigned Unix logins which gave them access to all
services (email, printing, etc.) supported on the server.
Servers were, in effect, equivalent to certain standard sets
of services and users were assigned according to their
needs. In some cases users were assigned to multiple
servers to provide them with all the services they required.
In the client-server model, Unix logins could no longer be
used. Thus, a new way of creating and assigning sets of
services for users was required.

The CoS model was the answer to this problem. Ser-
vices would no longer be tied to any particular server.
Each user would be assigned a single “login” with a sin-
gle password. Each service would be separate from all
other services and enabled or disabled without affecting
any other services for that user. Custom sets of services
could be created for users without the need for multiple
server logins.

Two fundamental problems arose out of these require-
ments:

� how to identify, authenticate, and authorize access to
services

� how to implement and manage the CoS model

These problems led us to the discovery of the importance
of middleware as a basic component of the IT architecture
we were developing.

The Necessity for Middleware

The requirements and design process described above be-
gan in 1997. At that time, the notion of middleware was
not widely known in the field of IT. Instead, middleware
was understood by its major components: identification,
authentication, and authorization (IAA). These compo-
nents must be clearly understood before the importance
and role of middleware can be understood.

Identification, Authentication and Authoriza-
tion

A key component in a distributed, client-server-based net-
work is the ability to reliably and consistently identify
users. It is extremely desirable (at least from a user’s
perspective) if there is a single identifier that universally



identifies them throughout the enterprise. This latter goal
has typically been very difficult to implement because,
in a heterogenous network, servers and/or services may
have different requirements for an identifier. In addition,
in larger enterprises, the network may be composed of
several administrative subdomains making consistency an
administrative challenge at the very least. Ideally, there
should be a single external identifier (user id) and some
means of mapping that identifier, if necessary, to an in-
ternal, invariant identifier. This solves the problem of the
heterogenous environment and permits the user id to be
changed by the user without affecting the internal identi-
fier.

Once we have the means to identify users the next chal-
lenge is to verify that the identity presented is being used
by the person it is assigned to. This is authentication; the
process of identification verification. Traditionally, au-
thentication has been accomplished by the use of an iden-
tifier and password pair. The user id uniquely identifies
the user to the system and the password can be used to
verify the identity of the user. As with the identifier, it is
desirable to have a single password that can authenticate
the identifier throughout the enterprise. It is also impor-
tant that every effort is made to insure that the use of the
password on the network is secure from “snooping” and
other attacks.

Most discussions stop at this point; we have an identi-
fier and the means to authenticate the use of that identifier.
However, in this model, with a single identifier and pass-
word for every user available to every server on the net-
work, how do we determine whether to allow access to a
service? Traditionally, authorization is implied by a valid
identifier and password as in a Unix login. If a user can
login to the server they have access to whatever services
are available on that server. In the distributed computing
model, this is no longer enough. We have to be able to de-
termine whether a valid identifier is authorized to access
a service and the terms under which the access can occur.
Thus, a complete solution is only possible when we have
all three components; identification, authentication, and
authorization.

The Role of Middleware

Middleware is a term which refers to the set of services
composed of IAA, APIs, and management systems which

support the needs of a distributed, networked computing
environment. As the name “middleware” suggests, it is,
using the hierarchical model, a layer of services which sits
between applications and the services they access. An
excellent overview of middleware can be found in RFC
27681. The RFC’s authors admit that even today, middle-
ware is still not a well-defined term but the above defini-
tion is consistent with the RFC’s and is sufficient for the
purposes of this paper.

Middleware, at first glance, seems somewhat innocu-
ous or invisible, especially when it works well. This tends
to disguise the importance of this layer, however. Mid-
dleware is a critical component in the CoS model. It is
the middleware which supports the creation and removal
of users, provides the ability to verify an identity, man-
ages the addition and removal of services associated with
user ids, and even the addition and removal of services
available to users. Within the enterprise, a good middle-
ware solution makes the delivery of services transparent
to users. There is no need to know which server is pro-
viding a given service and a single login/password pro-
vides access to all of the enterprise’s services, subject
to whatever authorization policies have been established.
In the business-to-business world, where multiple enter-
prises establish electronic relationships, middleware will
perform the same function but it is complicated by the fact
that there are currently no middleware standards in place.

The IT community today certainly recognizes the
importance of middleware. The Internet2 community
has formed a working group to investigate middleware.
Companies like Microsoft (Active Directory) and Nov-
ell (NDS) have committed huge amounts of money and,
in effect, bet their corporate futures on gaining adoption
of their middleware implementations as standards. This
makes middleware, in the authors’ opinion, the single
most important component in future networked comput-
ing environments. The Open Source community, and the
Linux community in particular, must recognize its impor-
tance.

A proprietary solution such as Active Directory or NDS
will irreparably harm the Open Source movement. The
success of Linux in the enterprise has largely been be-
cause of its adherence to open standards and availability
of source code. This has permitted managers to easily de-

1http://www.ietf.org/rfc/rfc2768.txt?number=2768



ploy Linux into existing enterprise IT architectures where
open standards exist. If the middleware standard isn’t
open the implications are obvious. For example, consider
the SMB file protocol and the open-source Samba soft-
ware. With the introduction of Microsoft Windows 2000
and the incorporation of Active Directory into file and
print services, Samba’s viability is immediately threat-
ened. This scenario will repeat itself over and over unless
the middleware is standards-based and open.

An Open Source Middleware Mar-
riage

The Open-Source community provided the important in-
frastructure for the development of the CoS middleware
solution described by this paper. In the current imple-
mentation the three basic components of the IAA process
are handled by the LDAP directory server provided by the
OpenLDAP2 project and by the MIT Kerberos3 authenti-
cation system.

The success of this middleware implementation was a
function of having access to source based tools which
implemented commonly accepted standards and proto-
cols for identification, authentication and authorization of
users for information technology services.

LDAP Directory Services.

The most central component of a middleware initiative is
the ability to identify a person or entity to which services
are being provided. The Lightweight Directory Access
Protocol (LDAP) provides both an open protocol as well
as an open-source solution for implementing the identifi-
cation component of the process.

The directory services component of the middleware
solution is essentially a database of all objects within an
enterprise information delivery system. This notion of
managing a computing infrastructure through a network
accessible database or directory system is referred to as
’directory enabled computing’. Proper implementations
of directory systems provide the advantage of centralizing

2http://www.openldap.org/
3http://web.mit.edu/kerberos/www/

the tracking of resources as well as decreasing administra-
tive costs by centralizing the control and management of
service delivery.

Directory systems are based on representing service en-
tities and computing resources in a hierarchical tree form.
The most critical element in the implementation of a di-
rectory is the requirement that each user be granted a
unique identifier which optimally should be considered
immutable throughout the users lifetime in the organiza-
tion. This identifier forms the basis for the Distinguished
Name (DN) in the directory, essentially the equivalent of
a database “key.” This characteristic is particularly im-
portant in the implementation of digital signature systems
since digital certificates are branded with the DN of the
user which the certificate will authenticate. As discussed
in the previous section, this requirement also makes direc-
tories ideal for supporting identification in a middleware
solution.

Implementation of an enterprise directory system will
become increasingly important to the effective delivery
of services in a highly networked enterprise computing
environment. Decreasing system administration costs is
considered to be a fundamental benefit of directory sys-
tems. In the future, the role of directories will become
critical in implementing strategies such as organization-
to-organization partnering and in managing concepts such
as organizational role playing. Role playing refers to the
notion that an individual may have multiple functional
roles in a organization. Often, it will be desirable to vary
a user’s authorizations based on the role they are assum-
ing at a given time. Directory services will also become
a critical component in monitoring and delivering qual-
ity of service guarantees and as an integral component in
developing policy based computing initiatives.

An enterprise directory system is critical to the success-
ful implementation and deployment of digital signatures
based on PKI or X.509v3 certificate technology. Federal
initiatives are underway which will require that organiza-
tions wishing to do business with government agencies
use digital certification to authenticate transactions and
decrease administrative costs by reducing paper-based ac-
counting and transaction schemes.

One of the foremost goals in implementing directory
services for this middleware project was to provide the
mechanism for implementing a single sign-on identifier
system for all users. Included in this goal was the desire



to unify the email address with the identifier token used to
access other services. Implementing this mechanism en-
ables all users to be provided with a single identifier which
is not only the preamble for their email address (compo-
nent in front of the @ sign) but also their login name or
identifier for all other services.

The canonical identification token is referred to as the
Information IDentification or IID. This token is formed
using an underscore to separate the users first and last
names. A tie breaking algorithm was developed to insure
that the IID was unique across the entire user domain. In
addition to the IID each user is granted an invariant identi-
fier which is used to uniquely identify the user throughout
the lifetime of the organization. This invariant identifier
is used to construct the Kerberos authentication principal
and also serves as the machine identifier for the user. The
LDAP directory thus provides the mechanism for map-
ping an external identification element into the identity of
a user which in turn provides access to the information
elements (attributes) of that user.

This solution offers a number of advantages to the tra-
ditional scheme of granting a user a UNIX style userid.
First of all the IID is not limited to eight characters which
in turn allows the IID to be more expressive of the users
actual identity. This, for example, allows email addresses
to be constructed which resemble the users actual name.
A second and major advantage is that this mapping allows
the external representation of the user to be changed with-
out affecting the actual identification of the user within
the system. This allows account creation to occur once
without the need to modify machine accounts and/or con-
figurations if the user should wish to change their external
identification.

The Open-Source middleware solution described by
this paper is heavily reliant on directory services to pro-
vide not only a repository of user information but also
as the central resource for the authorization of services.
Classic middleware solutions within the UNIX environ-
ment have typically used directories to manage user in-
formation such as numeric ID’s, personal information
(GECOS) and group relationships. A central goal in the
development of this solution was to also facilitate the con-
cept of service authorization. Each individual object de-
scribing a user entity has an attribute associated with it
which describes whether or not the user is authorized to
receive a given category of service. In the current imple-

mentation a very simplistic methodology is used to autho-
rize services.

Each service category is specified by a tag field within
the services attribute. The basic level of services provided
by the system consists of authentication services, email
access, remote configuration management, dial-up (mo-
dem) access and USENET news reading privileges. Ab-
sence of an attribute tag indicates that the service is not
granted to the user, a lower case tag is used to indicate
that the service has been disabled and an uppercase tag
denotes that the user is authorized for the service. The
following figure demonstrates three users with different
states of access to email services:

No email service services: USENET
Email disabled services: USENET email
Email enabled services: USENET EMAIL

This scheme provides support personnel with the
means of determining the services granted to any individ-
ual user and the status of that access. The ability to disable
a service through the directory provides a mechanism for
suspending services without disturbing the actual instan-
tiation of a service. For example, with email services, the
delivery of mail to the user will continue even if access to
the message store is suspended.

Kerberos Authentication

The second pivotal element of an effective middleware so-
lution is the authentication of the users who are identified
via the LDAP directory system. The Kerberos authentica-
tion system was implemented to provide this component
for the CoS information delivery system.

Implementation of an LDAP directory system simply
provides a mechanism for identifying a user within the or-
ganization and associating the user with a set of attributes
describing the user and their role in the organization. An
equally important part of this process is the guarantee that
the user who is interacting with the system is actually the
user identified in the directory system.

In some directory implementations the authentication
process is conducted by storing authentication tokens
such as passwords as an attribute associated with a user’s
directory object. Other schemes rely on the use of digital
certificates to authenticate the user to the database via the



Secure Socket Layer (SSL) protocol. The Kerberos au-
thentication system was chosen to provide this important
functionality for a number of reasons. First and foremost
was the desire to separate the authentication and identifi-
cation components of the middleware process. A second
imperative was to leverage the extensive security expe-
rience of the Kerberos team in developing a scheme for
strong network based authentication. A final rationale was
the ongoing concern of the design team with the issue of
user credentialling including the imposition of finite time
limitations on the authentication and authorization peri-
ods.

The Kerberos system is based on the notion of a Trusted
Third Party authentication scheme sometimes referred to
as a shared secret system. Each entity authenticated by the
system is referenced by an alpha-numeric tag known as a
principal. A secret key is associated with each principal
maintained by the authentication database. A user authen-
ticates to the system by encrypting a request for authenti-
cation. Successful decryption of the request validates the
user.

Additional security guarantees are provided by insur-
ing that a server providing services to the user is indeed
a legitimate server. This functionality prevents security
attacks such as IP spoofing and DNS contamination. The
authentication server provides the user with a token which
is encrypted with a secret known only by the server dis-
pensing a particular service. The server must successfully
decrypt this token for the service connection to be prop-
erly authenticated.

In addition to authentication the Kerberos system also
provided this middleware solution with the resources
needed to implement a single-signon system for service
access. Web based tools accessed through an SSL secured
WEB server provide support and administrative staff a
mechanism for managing user passwords. An optimum
implementation of Kerberos authentication requires that
passwords never be allowed to travel unencrypted on the
network. Current client limitations precluded attaining
this optimum environment. The use and development of
Kerberos provides a solid foundation for developing and
strengthening the local security infrastructure as client
support matures.

A significant result of this project was the implementa-
tion of strong Kerberos authentication and encryption in
the Open LDAP directory server. Current implementa-

tions of the server include Kerberos IV authentication but
did not include support for the current Kerberos 5 release.
Ongoing work is being conducted to implement the notion
of service classes functioning as authentication entities
with respect to service objects within the LDAP directory.
This work will be extended as the policy/authorization en-
gine (discussed later) is integrated with identification and
authentication services.

The ability of Kerberos V to support separate authenti-
cation realms was leveraged heavily in this project. Cur-
rently six security realms are supported by this implemen-
tation. Support for cross-realm authentication was used
to implement inter-operability between servers specific to
each organizational unit. The separation of the authen-
tication realms also promoted individual autonomy for
the participating organizations. User level administrators
within one security realm do not have access to security
information in another organization’s realm. The separa-
tion of the authentication realms also reduces the poten-
tial impact in the event of a compromise of one of the
Kerberos key management servers.

The ability of the LDAP directory server to identify
users merges naturally and symbiotically with the sepa-
rate authentication realms. Authentication and authoriza-
tion tools developed as part of this middleware solution
use information attributes from the directory server to de-
termine which security realm should be used to authen-
ticate the user. This allows servers supporting separate
organizational units to provide services on a cooperative
basis with provisioning of services controlled through the
directory system.

KerDAP API

The preceding discussion notes the synergy that occurs
when elements of identification and authentication are
merged. An important component of this middleware so-
lution was the development of an Application Program-
ming Interface (API) which allows common Linux based
applications to leverage this middleware-enabled comput-
ing architecture. The simplistic programming library de-
veloped is referred to as KerDAP reflecting the union of
the two open source solutions.

In order to be effectively managed through this system,
all applications which implement user services needed to
be modified to take advantage of the middleware. The



goal of the KerDAP API is to encapsulate the mechan-
ics of directory lookups and Kerberos authentication into
simple function calls which can be easily integrated into
the authentication structure of the open source applica-
tions which were used to implement the services.

The current library exports the following four func-
tions:

1. char * IID_Login(char * iid, char *password)

2. char * IID_Service_Login(char *iid, char *pass-
word, char *service)

3. char * IID_To_Uid(char *iid)

4. char * Get_Uid(void)

The first function carries out simple identification and au-
thentication when given the canonical identifier (IID) and
a password. The second function implements the triad
of identification, authentication and authorization (IAA)
when given an identifier, a password and a service at-
tribute. In both cases a NULL pointer is returned if the
process fails and a character pointer to the machine repre-
sentation (POSIX uid) on success.

The third and fourth functions are utility functions
which are useful when middleware support is enabled in
applications. The third function simply carries out the
identification process and returns the POSIX userid which
the canonical identifier (IID) maps to. The fourth func-
tion provides a mechanism for retrieving the value after
a successful call of one of the first three functions. All
functions cache the POSIX userid in static storage if a
mapping is successful.

There are situations where an application needs to be
middleware-enabled but source code is unavailable. Other
applications implement authentication using an external
mechanism. In these cases, the API is of no use and an-
other method is required. KerDAP provides the kerdauth
command-line utility for these situations. This utility has
proven to be particularly useful in a wide variety of CGI
applications where middleware support is required. It has
also been used as a supplemental authenticator for Squid
proxy services as well as user authentication for INND
(USENET news). The following usage table summarizes
the simplistic character of the application:

Option Action

-A Authorize mode
-K Authenticate mode
-e IID to authenticate or authorize
-h Print usage
-s Service to authorize for
-v Verbose mode

The kerdauth utility operates in either authorization or
authentication mode. In both modes the utility reads the
user password on standard input. This minimizes the po-
tential for security issues related to passing passwords on
the command line. In both modes the canonical user iden-
tifier (IID) is passed via the -e switch on the command
line. In authorization mode the -s switch is used to spec-
ify the service which authorization is requested for.

When used as an external authenticator the kerdauth
utility returns results via the exit status from its execu-
tion. A return code of 0 indicates the authentication or
authorization was successful. A non-zero return code is
used to indicate a failure condition. Specifying the ver-
bose mode causes the application to print out the results
of the authentication or authorization procedure.

Middleware Management - User Ser-
vices Management System

One of the primary yardsticks for measuring the success
of a middleware-enabled computing architecture is an in-
crease in manageability of the information delivery infras-
tructure. The overall goal of this middleware project was
a complete end-to-end solution which provided a seam-
less architecture for the management and tracking of user
services and the ultimate instantiation of the services on a
target server.

The multi-component system architecture implement-
ing this solution is referred to as the User Services Man-
agement System (USMS). This system is unique in that it
provides a complete open-source implementation capable
of tracking and managing enterprise information services.
Of particular importance is the modular and extensible de-
sign which allows the system to expand without organiza-
tional or geographical limitations. The following sections
discuss the essential components of the implementation.



User Services DataBase

Two strategies exist for the management of service enti-
ties within a middleware solution:

1. Canonical directory services.

2. Meta-directory services.

In a canonical directory services implementation all user
and service information is tracked in the hierarchical en-
terprise directory. Classical commercial middleware so-
lutions such as Novell Netware’s NDS and Microsoft Ac-
tive Directory implement this type of solution. A meta-
directory implementation uses a separate repository of in-
formation and provides a scheme for propagating the data
objects into one or more directory servers.

An important initial design decision in this middleware
solution was to implement a meta-directory strategy for
tracking users and services. Directory server systems such
as LDAP tend to be optimized for the rapid retrieval of in-
formation elements given a system of filtering constraints
or search rules. The most important and fundamental lim-
itation of these systems is that they provide no relational
data services nor do they provide important data preser-
vation features such as referential integrity or transaction
guarantees. For these reasons the decision was made to
implement the management of users and services in a re-
lational database system and to propagate the directory
objects through a meta-directory update system.

This approach also offered flexibility for future inte-
gration into Enterprise Resource Planning (ERP) and data
warehousing projects which are under development by the
university system. As was noted previously, middleware
management systems will be an essential component of
PKI deployments and will need to support and implement
the notion of organizational role playing. Integration of
service management middleware solutions with admin-
istrative and enterprise computing systems will provide
useful synergies for implementing a seamless information
access and delivery architecture.

The actual implementation of the USDB consists of
a relational database and application software that is re-
sponsible for populating, updating and managing the sys-
tem. The relational database component is implemented
with Oracle and the application software is written in

PERL. A design mandate was to implement the applica-
tion interface to the relational database with the modu-
lar DBI::DBD system. An additional constraint was to
implement the database using ANSI standard SQL and
datatypes. The overall goal was to isolate the application
software from the database implementation so as to allow
an alternate database to be ’plugged’ in as the backing
store.

The database implements a series of tables which track
users, services and hosts which implement service deliv-
ery. The application layer implements the notion of cre-
ating a ’binding’ which is a tuple relating a user, service
and server. The application software provides an imple-
mentation of a rules structure which allows a common
service such as EMAIL to be bound to different servers
based on parameters such as the organizational unit (OU)
of the person receiving the service.

The entire system inter-operates with a mainframe
computer system which supports the administrative soft-
ware systems for the university system. A subset of the
user’s information is exported from this system to the
USDB which provides for essentially real-time updates
of the middleware data elements.

A WEB based application is provided for user interac-
tion. This application allows a user to apply for additional
services and change various characteristics of their ser-
vice profile. The system also implements an acceptable
use quiz which is mandated by the legal department of
the university to insure that users understand and can be
held responsible to the information ethics policy of the
university system.

LDAP Account Management System

The second major component of the USMS is the meta-
directory update system which is referred to as LAMS.
This system is responsible for propagating directory up-
dates from USDB to the LDAP directory servers. LAMS
also provides a command line interface for making
changes in the directory across the master and replicate
LDAP servers. The following table summarizes the list of
operational modes for LAMS:



Action Description

Add Insert a DN
Kill Remove a DN
Delete Remove an attribute of a DN
Update Modify a set of attributes for a DN
Modify Modify attributes of a series of DN’s
Query Lookup and display a DN

The USDB maintains a set of rules which map partic-
ular record fields from the relational databases into var-
ious attribute elements for each directory object. When
the USDB determines that one of the LDAP exported at-
tributes has changed the LAMS system is called to up-
date the directory object. While LAMS operates on the
directory objects and their associated attributes, all re-
quests for update and modification services are done via
the user’s canonical identification IID. The input for re-
questing changes is made through ASCII files coded in
the Lightweight Directory Interchange Format (LDIF).

All changes are propagated from the USDB into the
LDAP directory servers in the amount of real-time af-
forded by the administrative systems that ultimately serve
as the authoritative source of user information. Error mes-
sages from the update and replication process are posted
back to the administrative team via e-mail so that reme-
dial action can be taken to correct errors. The instances
of manual intervention is generally quite low. The most
common errors arise from incorrect user reference data
which typically requires intervention at the USDB level
or higher.

The meta-directory update system can be globally dis-
abled so that updates are not propagated to the master and
replicate servers. This feature is useful from a system ad-
ministrations perspective when there is a desire to hold all
the directory servers in a known state. The USDB holds
the last modification time for an object as well as the last
propagation time. After directory updates are re-enabled
all changes to the meta-directory information since the
last update are propagated into the directory servers.

The USDB also supports the ability to generate a com-
plete LDAP directory load in LDIF format. This file
is suitable for building an entirely new LDAP directory
server database representing the current state of infor-
mation under management by the middleware structure.
This feature is useful from a disaster recovery perspective
as well as for re-synchronizing all directory servers to a

known state.
The low cost of the Intel architecture and the OpenL-

DAP directory server software makes running multiple
directory servers economical which in turn yields impor-
tant benefits from an administrative perspective. The data
center implementing this middleware solution uses one
primary LDAP server and two replicates. The LDAP
connections are mediated through a fourth server run-
ning TCP/IP port redirector software. This provides for
load-balancing as well as the ability to remove directory
servers from the active service rotation. This feature pro-
vides an easy mechanism for synchronizing the directory
databases while maintaining a high availability profile for
directory services.

User Account Management System

The final component of the services management sys-
tem is responsible for the instantiation of the service on
a server and is known by its acronym UAMS. This sub-
system is responsible for serving as the bridge between
the USDB and the actual servers providing end-user ser-
vices.

An important concept in this services oriented solution
is the notion of ’binding’ a particular service entity to a
host. A service entity is most easily understood to be a
user with a specific service such as electronic mail. The
USDB application layer provides a mechanism where a
number of hosts can be defined as candidates for provid-
ing a particular service and then placed into a pool. At
the time of service creation the binding process selects
a candidate server using either a round-robin or weighted
averages algorithm and ’binds’ the user to that server. The
UAMS layer is responsible for taking this binding request
from the USDB and carrying out the actions needed to
prepare the server to provide the service for the user.

The USDB application layer also supports the notion of
so called “host-less” services. These are services which
only require KerDAP API services and do not actually
require account creation on the server. Two examples
of such services are USENET news service and authen-
ticated WEB proxy service. In both cases the kerdauth
binary is used to provide simple authentication and autho-
rization services via the external authenticator mechanism
provided by INND and the Squid proxy server. The only
action needed to instantiate the service is the presence of



the user in the LDAP directory with an appropriate ser-
vices tag and a Kerberos principal for authentication.

The UAMS system is designed around the paradigm of
queueing requests for user services. Queued requests are
stored in separate spooling areas, one for each server. The
system provides for locking and arbitration of access to
the queue. Requests for service instantiation are stored
until the queue is “processed” either by an administra-
tor or by an automated mechanism. Processing of the
requests can be carried out either on a per host basis or
globally for all hosts which have entries in their request
queue. The process of “running” a queue involves read-
ing each request and sending that request via an authenti-
cated and encrypted session to the target host. The results
of the requests (success or failure) are appended to the
service request and are used to replace the request queue.
This mechanism provides for historical accounting of the
success or failure of the requests. The UAMS system pro-
vides tools for an administrator to review both pending
and processed requests.

The actual syntax of the service request are very sim-
plistic. The following tables contain the input for a series
of pending requests and the resulting output:

imap1.domain:Bull_Dozer:EMAIL:create
imsp1.domain:Bull_Dozer:CONFIG:create
kdc1.domain:Bull_Dozer:KERBEROS:create
imap1.domain:Back_Hoe:EMAIL:delete
imap2.domain:Road_Grader:EMAIL:modify:quota

imap1.domain:Bull_Dozer:EMAIL:create:OK
imap1.domain:Bull_Dozer:CONFIG:create:OK
imap1.domain:Bull_Dozer:KERBEROS:create:FAILED
imap1.domain:Back_Hoe:EMAIL:delete:OK
imap2.domain:Road_Grader:EMAIL:modify:quota:OK

The actual instantiation of the services is carried out by
UAMS clients which are installed on the target hosts. The
entire UAMS system is implemented with Bourne Shell
scripts and relies on the notion of function inheritance to
implement the actual service classes.

The basic UAMS client implements a library of com-
mon functionality including user account creation via the
useradd utility. Each service category is implemented by
sourcing in a module which has the option of either re-
placing existing functions with modified versions or us-

ing the functionality provided by the base library. This
inheritance mechanism also provides the ability to import
functionality from host and domain specific service mod-
ules. This system allows modules to be written which
support enterprises with the need for tailoring services on
the basis of organizational unit needs. While the UAMS
client itself is implemented in Bourne shell the actual ser-
vice instantiation modules can include any tools and/or
languages available on the target platform. Pre- and post-
processing hooks are also implemented to handle any
setup or departure requirements needed for a sequence of
service management requests.

Within this middleware solution the LDAP directory is
defined as the official API for obtaining any and all in-
formation relevant to the implementation and delivery of
services. This requirement enables the simplistic UAMS
syntax. The UAMS client library provides a number of
convenience functions for interrogating the LDAP direc-
tory and returning data attributes needed to implement the
service instantiation process. This requirement has two
implications: first of all, LAMS and UAMS invocations
must be synchronized to insure that service creation oc-
curs after the meta-directory system has populated or up-
dated the LDAP directory servers. The second implica-
tion is that this requirement imparts an additional degree
of security since an intruder would need to compromise
the directory servers in order to effectively coerce the sys-
tem into creating invalid or modified accounts.

KerDAP Enabled Applications

The primary goal of this middleware project was to imple-
ment authenticated and differentially authorized services
to a wide variety of systems. The following services are
currently implemented using the KerDAP API and under
management of the USMS:

1. Generic host logins.

2. USENET news reading.

3. TACACS terminal server access.

4. WEB (Squid) proxy services.

5. IMAP email.



6. IMSP remote configuration management.

7. FTP file services.

8. Shared Message Block (SMB) file services.

9. WEB forms and applications.

10. User and system administration and management
tools.

In almost all cases only minimal alterations to the sources
were needed to implement the triad of IAA.

LDAP directory services were also heavily leveraged as
a component of the clustering and high-availability strate-
gies implemented in the data center. The most notable
example of this is the use of IMAP and IMSP redirection
systems. LDAP support was added to the open-source
perdition4 software as an alternative “database” for de-
termining which server implements the IMAP message
store and IMSP accounts for a user with email services.
The mail destination attribute, which serves as the source
for IMAP and IMSP redirections, also provides the ba-
sis for mail routing through the LDAP-enabled sendmail
hubs which handle incoming mail for all organizational
units serviced by this solution.

Future Initiatives

KerDAP is considered to be in a developmental phase of
implementation. The USMS has demonstrated its abil-
ity to decrease administrative costs and to more precisely
control the delivery of services to the user community.
Experience with this initial implementation has led to
plans for a number of important modifications to the mid-
dleware architecture.

First and perhaps foremost are plans for the implemen-
tation of an authorization server. Just as USDB, LAMS
and UAMS provide the three components of IAA for the
management system, the authorization server will couple
with LDAP and Kerberos to complete the triad of IAA for
KerDAP-enabled applications. The KerDAP library will
be extended with a set of functions which will allow each
service request to query an authorization server to deter-
mine whether or not access to the service is authorized at a

4http://perdition.sourceforge.net/

particular instant in time. In this scheme the LDAP server
assists the authorization process by supplying a unique
service token for each service which has been bound to
a service entity. This token is passed to the authorization
server which than authorizes access to the service based
on a set of rules which are specified generically for the
service and more specifically for a particular service en-
tity.

It is anticipated that this authorization server will al-
low the centralized management of IP access controls
and other administrative functionality. Most importantly
it will provide a mechanism for establishing finite ser-
vice lifetimes and implementing the notion of organiza-
tional role playing for service entities within the enter-
prise structure. It is anticipated that this authorization
server will play an important role either as a replacement
or delivery mechanism for X.509v3 attribute certificates.

A second important area of anticipated development is
in the merging of shared message block file (SMB) ser-
vices with middleware services. Integration of the Samba
file server with the middleware solution is anticipated to
make this file sharing protocol more competitive with
the management and administrative advantages of cur-
rently popular commercial alternatives. Initial work be-
yond simple authentication and authorization is focusing
on allowing share configuration and access information to
be obtained from the LDAP directory rather than host spe-
cific configuration files. A second and longer term project
is to implement the notion of a Samba fanout server which
would automatically redirect SMB connection requests
based on user identification and the name of the requested
file share.

Another important area of development is the delivery
of KerDAP IAA services through the Pluggable Authen-
tication Module (PAM) system. The PAM system is cur-
rently seeing widespread use throughout the Open-Source
community. The goal of these efforts is to minimize the
amount of modification needed at the source level of the
service delivery applications.

Current trends of inter-operability in the network di-
rectory arena are being closely monitored as well. There
are a number of efforts focusing on the use of XML
and its derivatives to support the propagation of infor-
mation from meta-directory systems into server directory
databases. Of note is industry led work on the Directory
Services Markup Language (DSML). If standards efforts



prevail the goal would be to implement the functional-
ity of LAMS via DSML which would provide this mid-
dleware solution with a mechanism for propagating and
replicating directory information into commercial as well
as open-source directory server solutions.

Conclusions

The incredible success of the INTERNET, the increas-
ing demand for mobile computing, and resultant business
model paradigm shifts will demand middleware based IT
architectures. The choice of a middleware solution will
affect all other applications in the enterprise. Application
and server systems will need to participate in and integrate
with the middleware. Failure to do so will preclude their
use within the framework of enterprise computing.

The Open Source and Linux communities must recog-
nize this and respond with an open, standards-based solu-
tion to insure the continued viability of their service de-
livery platform. The success of the open source model to
date indicates that it works and that, if an open middle-
ware solution is developed, the INTERNET community
will embrace it.

The success of KerDAP and USMS suggests that
the notion of a viable middleware strategy based on
an open system architecture and open source software
is realistic. The authors are pleased with the inter-
est in their solution and invite interested parties to
contact them via email at ker_DAP@ndsu.nodak.edu.
Copies of this paper are available via the web at
http://www.ndsu.nodak.edu/servergroup/kerDAP/.

Acknowledgements

Any significant achievement is invariably a success due to
individual contributions through a team effort. USMS and
KerDAP is no exception to this rule.

The authors would like to first of all thank Ms. Bonnie
Neas, Director of ITS at NDSU, for creating an environ-
ment which nourishes and encourages this type of effort
in a research/production environment.

Special acknowledgements go to Mr. Dick Jacobson
and Mr. Dale Summers. The development of the USDB
and its integration with the administrative parent systems

is the result of their programming and organizational tal-
ents. Success of any middleware initiative is dependent
on access to individuals such as these that have a thorough
knowledge of an organization, its operation and the policy
implications of implementing effective middleware strate-
gies. Their efforts were aided by Mr. Mick Pytlik and his
administrative services staff which worked closely with
them in identifying successful integration strategies.

Finally a special thanks to the tireless legions of Open-
Source programmers. Their efforts toward the common,
collective good provided the tools and the sandbox with-
out which this project would not have been possible.


