
A Better Update Policy

Jeffrey C. Mogul
Digital Equipment Corporation Western Research Laboratory

partially-filled data block results in a delayed write,Abstract
while a modification that fills a block results in an
immediate, although asynchronous, write. TheSome file systems can delay writing modified
ULTRIX operating system can be configured to bedata to disk, in order to reduce disk traffic and over-
even more aggressive, delaying all writes of modifiedhead. Prudence dictates that such delays be bounded,
data.in case the system crashes. We refer to an algorithm

used to decide when to write delayed data back to Without some bound on the age of a delayed-
disk as an update policy. Traditional UNIX systems write block, a system crash could cause loss of ar-
use a periodic update policy, writing back all bitrary data. Users would not tolerate this, so the file
delayed-write data once every 30 seconds. Periodic system does push delayed-write data out to disk, after
update is easy to implement but performs quite badly a while. We use the term update policy to describe
in some cases. This paper describes an approximate the algorithm that decides what to write out, and
implementation of an interval periodic update policy, when.
in which each individual delayed-write block is writ- UNIX systems have traditionally used a simple
ten when its age reaches a threshold. Interval peri- periodic update (or ‘‘PU’’) policy: once every 30
odic update adds little code to the kernel and can seconds, all dirty blocks in the file system’s buffer
perform much better than periodic update. In par- cache are placed on the output queue for the ap-
ticular, interval periodic update can avoid the huge propriate disk. Recent analytical and simulation
variances in read response time caused by using peri- results, presented by Carson and Setia [2], showed
odic update with a large buffer cache. that the PU policy actually performs worse in many

cases than the write-through (WT) policy (in which
all writes are immediate). Their analysis showed that1. Introduction
PU causes increased mean response times for readFile systems usually cache data and meta-data in a
operations; the results presented in this paper showmain memory buffer cache, in order to improve per-
that PU can also increase the variance in readformance. When a modification is made, the file sys-
response time.tem may write the new information to stable storage

(e.g., disk) immediately, or it may delay the write. Because so many systems use the now suspect PU
This leads to a tradeoff: delaying writes reduces the policy, it seemed like a good idea to validate the
load on the disk and system overhead, but the data results of Carson and Setia on actual systems; their
could be lost if the system crashes before the write analyses and simulations, while careful, had to use
occurs. In many cases, users can tolerate this vul- certain simplifying assumptions. Carson and Setia
nerability, and welcome the performance advantages suggested that several other update policies would
of delayed writes. provide better performance, so it also seemed useful

to implement one of these and measure its perfor-UNIX systems have traditionally supported
mance.delayed writes, from the earliest C-language

version [13, 14] up through 4.3BSD [6] and its In this paper, after discussing the theoretical back-
derivatives. In these systems, a modification of a ground in some more detail, I describe an implemen-

tation of the interval periodic update (IPU) policy. I They found that:
also present the results of some simple measurements • When the disk is not overloaded, ‘‘the cache
of PU and IPU made using an actual implementation, must eliminate 80-90 % of all write accesses
rather than a model. The results appear to bear out before the PU policy pays off.’’
the basic conclusions of Carson and Setia. What I

• Under heavy loads, the PU policy gets somefound is that although use of delayed writes can im-
benefit from write-hits in the cache, and thusprove mean response time, combining delayed writes
reduces the overall disk load. In cases wherewith periodic update increases the variance in
the WT policy would saturate the disk, the PUresponse time, but using interval periodic update both
policy gives a lower mean read-response time.the mean and variance are improved.

Cache hit rates vary, depending on cache size, ap-
plication, and replacement policy, but we are unlikely2. Theoretical background
to achieve average write-hit rates exceeding 80%.

In this section, I discuss the previous simulation
For example, Baker et al. [1] traced user-level file

study, the possible alternative update policies, the
access patterns in a distributed system and found that

choice of an update interval, and how this problem
88% of the bytes written were written sequentially; if

will scale with changes in technology.
the applications in question used traditional buffering
strategies, most of these sequential writes would not

2.1. Carson and Setia’s results for Periodic have hit already-dirty buffer-cache blocks, and so the
Update write-hit rate must have been quite low.

The study done by Carson and Setia showed that
Carson and Setia found an analytical model forthe periodic update (PU) policy, while easily im-

the mean response time. Their simulations were usedplemented, can perform quite badly. By dumping all
to validate this result, but they apparently did notthe dirty blocks into the disk queue at once, PU can
investigate other statistics besides the mean. As sec-cause lengthy queueing delays. Latency-sensitive
tion 4 will show, PU is especially bad for worst-casesynchronous operations, such as file reads or
response time, and for overall variance in responsesynchronous writes, are forced to wait behind
time. It is not hard to construct a situation where PUlatency-insensitive asynchronous operations in the
can lead to worst-case read response times of manyqueue. If the system were to use a write-through
seconds.(WT) policy instead, disk write operations would

normally be spread out more over time, and the
2.2. Proposed alternative policiesqueues would be shorter.

PU performs poorly because it generates long
Carson and Setia show that the relative perfor-

queues at periodic intervals, and subsequent
mance of WT and PU, measured in terms of mean

synchronous requests get stuck at the ends of these
read-response time, depends on several parameters:

queues. Perhaps one could improve read-response
Read load times by changing the queueing mechanism.

The ratio of read operation arrival rate to the rate
UNIX systems typically maintain a single, un-

that the disk can support. A read load of 1.0 is
prioritized operation queue for each disk. Suppose

one that the disk could just barely keep up with, if that read operations were given priority over
no writes were done. asynchronous operations already in the queue. Then,

read operations would not ‘‘see’’ a queueing delayWrite load
caused by the queued delayed writes. Carson andThe ratio of write operation arrival rate to the rate
Setia analyzed this periodic update with read prioritythat the disk can support.
(PURP) policy, and showed that it mostly solves the

Cache hit ratio for writes
read-response time problem. I found PURP unsatis-

The fraction of write operations that are satisfied factory, however, for several reasons:
by modifying already-dirty blocks in the buffer • Modification of the existing disk queue
cache. mechanism would require changes to numerous

They expressed their results in tables showing, for a
kernel modules, including all disk drivers and

given read load and write load, what write-hit ratio
many of their clients (file systems, virtualPU requires in order to match or exceed the perfor-
memory systems, etc.)mance of WT. (Since WT causes disk writes to occur

• Modern disk controllers and drives can queuealmost immediately, it cannot benefit from write hits
in the cache.) several operations in their internal buffers. One

would either have to accept the resulting queue- Under the assumption that modifications occur
more or less uniformly over time, the average age ofing delays, or somehow modify the hardware to
a delayed-write block, when it is written to disk, is 15support the new queueing mechanism.
seconds.• Carson and Setia point out that fixed-priority

The IPU policy also has a characteristic timeschemes such as PURP introduce the potential
scale, the age at which a dirty buffer is scheduled forfor infinite delays of delayed writes, if the read
writing to the disk. If we set this to 30 seconds, then

load is enough to saturate the disk.
(again ignoring queueing delays), by definition, no

Peacock [12] reported that adding PURP to Sys- information will be vulnerable to a crash for longer
tem V Release 4 does seem to hurt benchmark than 30 seconds. Also by definition, the average age
performance, although it substantially increases of a block, when written to disk, is 30 seconds.
single-file write throughput. If we choose to set the update delay for IPU the

Although implementation of a prioritized queueing same as the update interval for PU, then both policies
scheme should be helpful in general, it is neither a expose modified data to exactly the same worst-case
complete solution to the bursty-update problem, nor vulnerability. Doing so, however, means that the
is it the simplest solution. mean age of dirty blocks is roughly twice as it would

Carson and Setia also proposed the interval peri- be with the PU policy. This suggests that IPU should
odic update (IPU) policy, in which each dirty block is see a higher write-hit ratio, and might avoid a few
written out when its age reaches a threshold. If file more disk write operations.
modifications are nicely spread out in time, this Carson and Setia showed that, as the update inter-
means that the delayed writes back to the disk will val was increased, the write-hit ratio at which PU
also be spread out. As with PU and PURP, IPU uses began to pay off had to increase as well. We do
the buffer cache to eliminate some disk writes that expect this ratio to increase, but does it increase fast
would be done by WT. Unlike PU and PURP, IPU enough? Carson and Setia cite other work suggesting
normally avoids creating large bursts of writes, and that it might [10] (see also a more recent study [1]).
so avoids the associated queueing delays. Carson and Unfortunately, I know of no actual test of this
Setia show that IPU never gives worse mean read hypothesis. Still, one might suspect that the in-
response time than WT or PU, although in some creased average lifetime of dirty blocks, when the
situations it may perform worse than PURP. IPU policy is used, might account for some perfor-

Anna Hac [3] describes algorithms meant for mance advantage. (Note that the experiments
deciding when to move dirty blocks from the buffer reported in sections 4.1 and 4.2 carefully avoid
cache to a disk queue. In essence these replace the repeated writes to the same block during an update
time-driven update policies with dynamic algorithms, interval, and so should encounter abnormally low
which choose when to schedule disk writes based on cache hit ratios.)
the system load and disk queue length. Such adap-
tive algorithms may perform better than any of the 2.4. Scaling properties
open-loop algorithms described in this paper, but One might ask why, if PU performs so badly, has
they require more extensive changes to the operating 1this not been a problem in practice . The answer is
system. I do not have anything useful to say about that buffer cache sizes and disk speeds are improving
them, and they merit additional study. at different rates, which changes the ratio of disk

queue length to disk service latency.
2.3. Choice of update interval 4.2BSD and related systems only delay partial-

UNIX systems have traditionally used a 30-second block writes. Since most files are written sequen-
interval between writes generated by the PU policy. tially, most blocks are filled quickly, and pending
This means that, ignoring brief queueing delays, no delayed writes of partial blocks are turned into
information will be vulnerable to a crash for longer asynchronous immediate writes of filled blocks. If
than 30 seconds. (Applications that depend on reli- the buffer cache is not large enough to hold many
able data storage should arrange to write their data entire files, then it makes little sense to delay writes
synchronously, using the fsync() system call. Many
other applications, such as compilers, can afford to
use delayed writes because their output can easily be

1reconstructed, or because if the system crashes during Some systems have indeed exhibited poor behavior
a run, the resulting partial output is useless anyway.) resulting from disk queues containing many asynchronous

write requests [12].

of full blocks, since these blocks are unlikely to be Year RAM Buffer Number Avg. disk Time to
referenced again quickly. size size of access write all

buffers time buffersMemory chips get larger: this is one of the most
reliable laws of recent history. One can quibble over 1983 1 MB 512 B 205 35 msec 7.2 sec
whether the doubling time is 18 months or two years, 1993 64 MB 4 KB 1638 15 msec 26 sec
but main memory sizes do increase (at roughly con-

2003 4 GB 64 KB 6554 6 msec 39 secstant cost) as the years pass, and no other technology
trend is quite so steep [5].

Table 2-1: Scaling for random write of entire buffer cache
This trend means that, if the fraction of main

Year RAM Buffer Disk Time tomemory used as a buffer cache remains constant, the
size cache Bandwidth write allabsolute size of buffer caches is increasing with time.

size buffers(Many systems, including Mach, Sprite, and recent
1983 1 MB 103 KB 1 MB/s 0.1 secUNIX implementations, no longer allocate a fixed

fraction of main memory for the buffer cache, so it 1993 64 MB 6554 KB 5.5 MB/s 1.2 sec
can grow to fill all of memory.) Since mean file sizes

2003 4 GB 410 MB 30 MB/s 13.6 secdo not seem to be increasing as rapidly [1], perhaps
as main memories get larger, using delayed writes Table 2-2: Scaling for sequential write
would increasingly reduce disk traffic because of of entire buffer cache
write-hits in the cache. (Traces do show that a few

modern disk drives themselves reorder requests.) Inlarge files are getting much larger [1], and so caching
table 2-2, I show how the delays for this process scalealgorithms should perhaps switch to write-through
over time. These numbers are much better than thosefor any file larger than a certain size.)
in table 2-1, but they are probably unattainable, andAlthough increasing DRAM densities lead to
in any case they are also getting worse.larger buffer caches and perhaps more use of delayed

writes, disk technology trends are less encouraging.
3. ImplementationDisk access times have improved by perhaps one-

In this section, I discuss the implementation ofthird in ten years. Disk densities are increasing more
various update policies, including the original UNIXrapidly, doubling every three years [5]. Disk
implementation of PU, my approximate implemen-bandwidths tend to scale as the square root of disk
tation of IPU, and Sprite’s implementation of adensity (since density improvements come from both
similar policy.higher signal rates and smaller track spacings), and

also benefit from small increases in rotation rate
(from 3600 RPM to 5400 RPM), so over the past 3.1. 4.2BSD implementation of the PU policy
decade they have improved by perhaps a factor of Before describing how I implemented the IPU
six. policy, I will describe the ULTRIX implementation of

the PU policy. My code is a simple modification ofThis means that the time it takes to write the en-
the ULTRIX implementation.tire buffer cache to disk is growing, in absolute terms.

This is the key problem for the PU update policy: the Every 30 seconds, a daemon process
queueing delays caused by its burst of write requests (/etc/update) wakes up and does a sync() system
will get worse in the future. call. This system call schedules writes for certain file

system meta-data (the superblock, for example), andDelayed writes typically are queued in no par-
then calls the bflush() routine to update delayedticular order. If the disk driver does nothing to
writes.schedule the write operations more carefully, the rate

at which the queue can be drained depends mostly on In the original 4.2BSD implementation, bflush()
the disk’s average access time. In table 2-1, I show traversed a queue containing all of the valid blocks in
how long it takes to write the entire buffer cache the buffer cache, and scheduled an immediate write
(assuming this is 10% of main memory) for systems for each delayed-write block. Once a block was writ-
typical of 1983 and 1993, and I rashly project current ten and removed from the queue, the algorithm
trends 10 years into the future. started again from the beginning of the queue; this is

done because the queue could be manipulated byIf the disk drive system can optimize the order of
another process while the bflush() is waiting for thewrites in the queue, in the best case the queue can be
write to complete. Thus, in the worst case this re-drained at full disk bandwidth. (Many UNIX disk
quired time proportional almost to the square of thedrivers do sort requests to avoid seeks [6], and some

size of the buffer cache, and as memories grew header associated with each buffer. I did this by
larger, the /etc/update process started to con- adding a few lines of code to a routine called brelse(),
sume a large fraction of the CPU. which is the only place where a buffer is placed on

the delayed-write list. At this point, if the timestampRecent versions of ULTRIX solve this problem by
field is zero, then it is set to the current time; other-keeping a separate list of delayed-write blocks (i.e.,
wise, it is left alone. The brelse() routine is also theblocks that are dirty and have not yet been queued for
only place where buffers are placed on the list ofthe disk). The bflush() routine simply traverses this
clean buffers; at this point, the timestamp field is setlist once; it need not examine clean blocks, nor does
to zero.it have to examine any block more than once.

Thus, a clean buffer always has a zero timestamp.
A dirty buffer always has a timestamp reflecting3.2. Implementation of the IPU policy
when it was first dirtied. Further modifications of aCarson and Setia point out that to implement a
dirty block do not update the timestamp; otherwise, apure IPU policy would require a somewhat complex
block that was touched more often than once everytimer mechanism. Since the timers in the UNIX ker-
30 seconds would never be written to the disk.nel are quantized, if one wants to issue write opera-

tions in the same order as the blocks are dirtied, then ULTRIX already includes a timestamp field,
one also needs to maintain a separate ordered queue. busy_time, in the buffer header. This is used only
The overhead of the queue and timers may not be when a buffer is busy (i.e., on a disk operation
onerous, but it does complicate the kernel. queue), and so is never used when a buffer is on the

delayed-write list. Therefore, it can be ‘‘time-But why implement pure IPU? If a practical im-
shared’’ between these two uses. Other operatingplementation must use quantized time, why not use a
systems, including 4.xBSD, do not have such a times-relative coarse grain? If the algorithm that moves
tamp field, and so the implementation of IPU woulddelayed-write blocks onto the disk queues runs, say,
require its addition. The space overhead is small;once per second, then the queues will receive bursts
using modular arithmetic, a one-byte field would al-of writes, but the bursts will (on average) be about
low maximum ages under 255 seconds.3% as large as they would be with the PU policy and

a 30-second update interval. There will also be a This modification re-introduces the possibility of
21-second quantization error in the maximum vul- N behavior in the worst case (that is, when about

nerable period for a dirty block, but who cares? half of the buffer cache is due to be written during a
single interval). I solved this by using an extraI chose to implement this kind of approximate
queue. The bflush_smooth() routine starts by travers-IPU (or ‘‘AIPU’’). I created an alternative version of
ing the delayed-write queue and moving ready-to-the sync() system call, smoothsync(), that takes as its
write buffers from there onto a pending-write queue;parameter the age at which a dirty block should be

2 this can be done without blocking, and in time linearwritten to disk . The smoothsync() system call in-
in the size of the buffer cache. In the second phase,vokes a modified version of the bflush() routine,
bflush_smooth() writes the blocks on the pending-called bflush_smooth(). The main difference is that
write queue. It could block during this phase, butbflush_smooth() only schedules a buffer for writing if
because it simply pulls the first entry off of theit has been dirty for longer than the specified
pending-write queue, the algorithm is linear in thethreshold.
number of ready-to-write blocks, and so is also linearI replaced the usual /etc/update program,
in the size of the buffer cache, even in the worst case.which simply calls sync() once every thirty seconds,

with one that calls smoothsync(30) once a second.
3.3. Sprite’s implementation of an IPU policyThis program also forces the file system meta-data to

The Sprite operating system [9] implements andisk once every 30 seconds.
approximate IPU policy, although somewhat dif-

The system must also record the time at which a
ferent from the one I implemented. Sprite keeps

buffer becomes dirty, using a timestamp field in the
track of the first-dirty time for the oldest dirty block
of each file. Every five seconds, it scans all the dirty
files in its cache, and if a file’s oldest dirty block is
more than 30 seconds old, all of the file’s dirty blocks2Actually, instead of creating a true system call, I added
are written back [4]. Because this policy can inan ioctl request, since this involved writing less code. The

net effect should be identical. I added one more ioctl, to theory cause write-backs of fairly young blocks, it
write file system meta-data to disk; this can be called once may perform somewhat differently from IPU or
every 30 seconds, to preserve existing sync() semantics.

AIPU. However, since most files are open for only policy): moderately high mean response time, but
brief periods [1], and so normally all writes to a file low variance. When I enabled delayed writes without
happen more or less simultaneously, the average changing the update policy, the mean response time
lifetime of a dirty block should be close to 30 dropped somewhat, but the variance increased
seconds. tremendously (open circles). I then switched to the

AIPU policy (filled circles), which reduced the
variance without markedly increasing the mean. One4. Results
could also use the AIPU policy without delayedIn this section, I describe some simple measure-
writes (filled squares); this results in about the samements comparing my implementation of IPU against
mean as the default configuration, but slightly lessthe original PU policy. All of these measurements
variance.were done using a modified ULTRIX version 4.3 ker-

At first, it seemed strange that the mean readnel, running on either of two DECstation systems; the
response time is lower for delayed writes, since thehardware is summarized in table 4-1. The SCSI disk
write-load generator was constructed to avoid dirty-drives used apparently do not reorder requests, and
block cache hits; that is, the total number of writethe ULTRIX version 4.3 SCSI device driver does not
operations should be the same in either case.sort requests before issuing them.
However, the generator does its writes sequentially,In all of the experiments in sections 4.1 and 4.2,
which means that when a group of delayed writes istwo processes ran simultaneously:
sent to the disk, they are likely to be directed at• A write-load generator, configured to dirty half
nearby disk locations, and many end up in the same

the blocks in the buffer cache every 30 seconds, cylinder group. This reduces the average number of
at a rate set so that no block would be touched disk seeks per write (relative to non-delayed writes),
twice in one minute. This means that none of and so reduces the load on the disk. Since the read-
the writes would hit a dirty block in the cache. load generator issues random-access reads as fast as

possible, disk seeks are probably the rate-limiting• A read-load generator, which read 10,000 ran-
bottleneck, and a reduction in the number of write-domly chosen blocks from a large file, measured
related seeks leaves more disk-seek capacity to bethe read-response time for each block, and
used for reads. Also, issuing multiple writes to thegenerated a histogram of the delays.
same region of the disk may reduce rotationalOn the faster system, the buffer cache held 1228
latencies.blocks, and the read-load generator used a 34 Mbyte

For example, figure 4-1 shows that withoutfile. On the slower system, the buffer cache held 614
delayed writes, the system can support about 32blocks, and the read-load generator used a 32 Mbyte
reads/sec., and the write-load generator in this casefile. Both the generators used files stored on the
issues about 20 writes/sec., for a total load of aboutsame disk.
52 disk operations/sec. Based on the average accessI varied the system configuration, enabling or dis-
time shown in table 4-1, the disk drive should supportabling the use of delayed writes for full data blocks,
about 56 random-access operations/sec, which cor-and changing the update policy. Six trials were done
responds closely. With delayed writes, the read ratefor each configuration. I did not measure a pure
increases to about 38 reads/sec., which means that thewrite-through configuration, since I do not expect
disk should only be doing about 14-17 randomany modern system to use pure WT, given its known
writes/sec. This suggests that some fraction of the 20poor behavior.
blocks written are being combined with neighbors.

Figures 4-1 and 4-2 show the standard deviation4.1. Local tests
of the response times, but this hides how truly awfulThe first set of tests show how the update policy
things can be with the PU policy. Figures 4-3 andand use of delayed writes affects response time for
4-4 show histograms of response time for the fasterreads when the disk is local to the generating host.
and slower systems, respectively. In these his-Figures 4-1 and 4-2 show the results for the faster
tograms, all six trials for each configuration haveand slower systems, respectively.
been combined, and the x-axis has been divided into

The figures show a point for each trial, plotted logarithmic buckets.
with mean read response time on the horizontal axis,

The danger of combining delayed writes and theand the standard deviation of read response time on
PU policy now shows up clearly (open circles on thethe vertical axis. Open squares show results for the
histograms). Because the PU policy puts all the dirtydefault configuration (asynchronous writes, PU

Description CPU type SPECMark Disk Average Bandwidth
rating type access time

Faster system DECstation 5000 18.5 RZ58 18 msec 3.8-5.0 Mbyte/sec
model 200

Slower system DECstation 3100 11.3 RZ57 23 msec 2.2 Mbyte/sec

Table 4-1: Systems used for measurements

26 3327 28 29 30 31 32
mean read response time (msec)

0

250

50

100

150

200

st
d.

 d
ev

. o
f

re
ad

 r
es

po
ns

e
tim

e
(m

se
c)

asynch write, periodic update

delayed write, periodic update

asynch write, interval periodic update

delayed write, interval periodic update

Figure 4-1: Local random reads, fast system

40 6045 50 55
mean read response time (msec)

0

250

50

100

150

200

st
d.

 d
ev

. o
f

re
ad

 r
es

po
ns

e
tim

e
(m

se
c) asynch write, periodic update

delayed write, periodic update
asynch write, interval periodic update
delayed write, interval periodic update

Figure 4-2: Local random reads, slow system

delayed-write blocks on the queue at once, which in shows a small peak in read-response time at about
these trials could be as high as about 600 blocks, 300 msec. Since we expect 20 blocks (600/30) to be
some reads will be delayed by up to 8 or 9 seconds. queued once a second, this implies a mean write-
A significant number are delayed by longer than one delay of about 15 msec, which corresponds closely
second. with the RZ58’s specified average access time of 18

msec. More important, this configuration shows aWith the AIPU policy (filled circles), however,
maximum delay of 746 msec, and all but one of theonly one thirtieth of the dirty blocks show up on the
60,000 samples are below 450 msec. AIPU clearlydisk queue at any one time. The graph in figure 4-3
improves upon PU, in this experiment.

Even when I disabled delayed writes, the PU The AIPU policy shows a small but clear advan-
policy still lead to occasional long delays (up to five tage over the PU policy, especially when using
or six seconds). In other words, AIPU performs bet- delayed writes. In fact, when using delayed writes
ter than PU even if one does not want to abandon the with the PU policy, the net elapsed time is actually
improved safety of using asynchronous writes. slightly worse than the normal ULTRIX configuration.

The combination of delayed writes and AIPU is
about 2.1% faster than the asynch write/PU combina-4.2. Remote tests
tion. Note that this benchmark is rather CPU-bound;Most NFS client implementations, to ensure cache
on these trials, the CPU idle time averaged betweenconsistency and detection of write errors, force
12% and 14%. I would expect AIPU to show a largerdelayed writes to the server when a file is closed.
benefit on a more I/O-bound application.This means that NFS clients get little advantage from

delayed writes, and do not depend much on the up- The table also shows the number of disk writes
date policy. More recent file service protocols, charged to the processes involved in the build. The
however, such as Sprite [9], Spritely NFS [15], and kernel charges a process the first time a block is
NQNFS [7], use explicit cache-consistency protocols dirtied; subsequent writes to a dirty block are not
and so can benefit from delayed writes. counted. We see that while use of delayed writes

substantially decreases the write count, by increasingI ran a set of experiments using Spritely NFS to
the chance that a write will hit a dirty block, theaccess a remote disk, using the ‘‘slower’’ system as
AIPU policy provides another big decrease, probablythe client, and the ‘‘faster’’ system as the server.
by increasing the average lifetime of a dirty block.Both the read-load and write-load generators ran on
The combination of delayed writes and AIPUthe same client host. The server host supports
eliminates over 35% of the disk write operations;PrestoServe non-volatile RAM (NVRAM). I ran
AIPU by itself accounts for less than half of the im-six trials in each of six configurations, as shown in
provement.figure 4-5, using random-access reads. I also ran six

trials in each of four configurations, as shown in The table does not show the number of read I/Os
figure 4-6, using sequential reads; in this set of trials, charged, since this hardly varies at all with the update
delayed writes were always used. The sequential- policy, and only a few per cent with the use of
read generator cycled through the blocks of a file delayed writes.
much larger than the buffer cache on either the client
or server, so no reads were satisfied by the caches. 4.4. CPU costs of update mechanism

These experiments showed less conclusive results Does the update policy have any effect on the
than the local-disk experiments. For random reads CPU-time cost of doing the updates? The AIPU
(figure 4-5), delayed write combined with PU results policy scans the list of dirty blocks 30 times more
in slightly poorer read response time than delayed often than the PU policy does, so one might expect it
write with AIPU, although several AIPU trials ex- to consume more CPU time.
hibited much higher variance than any other trials. I measured the CPU time charged to the
PrestoServe also seems to be generally beneficial. /etc/update update process during the kernel-

For sequential reads (figure 4-6), AIPU seems build benchmark. This includes both user-mode time
mostly to reduce the variation between trials. The (which should be nearly zero) and kernel-mode time
mean response time is slightly worse for AIPU than (which accounts for all CPU time spent in the
for PU without PrestoServe, and slightly better with bflush() routine, as well as other activity). It does not
PrestoServe. include kernel-mode time spent as a result of disk

interrupts. The results are shown in table 4-3; note
that the underlying measurements were done with 1-4.3. Kernel-build benchmark
second resolution, and so small variations in theTo see if the update policy had any effect on a
results are not significant.‘‘real’’ application, I measured the time it took to

compile and link the entire ULTRIX V4.3 kernel, un- The table shows that, not surprisingly, aggressive
der different combinations of update policy and write use of delayed writes does increase the CPU time
policy. These tests were all run on the ‘‘faster’’ sys- spent in finding delayed-write blocks and scheduling
tem, with all kernel source and object files on the them for disk I/O. Contrary to my expectation,
local disk. This process creates about 43 MB of ob- however, AIPU actually reduces the CPU cost of do-
ject files, and a similar amount of temporary file data. ing updates (although the total cost is in either case
I ran three trials in each configuration; the means of insignificant).
the results are shown in table 4-2.

1 10000
read response time (msec)

10 100 1000
0.1

100000

nu
m

be
r

of
 e

ve
nt

s

1

10

100

1000

10000

asynch write, PU, max = 5070
delayed write, PU, max = 8961

asynch write, AIPU, max = 437
delayed write, AIPU, max = 746

Figure 4-3: Local random reads, fast system (histogram of response times)

1 10000
read response time (msec)

10 100 1000
0.1

100000

nu
m

be
r

of
 e

ve
nt

s

1

10

100

1000

10000

asynch write, PU, max = 6195
delayed write, PU, max = 8016

asynch write, AIPU, max = 492
delayed write, AIPU, max = 801

Figure 4-4: Local random reads, slow system (histogram of response times)

I cannot provide a definite explanation, but I with a 30-second interval between updates (but still
suspect that the cause may be the difference in the using a 30-second age threshold for writing back
number of delayed-write blocks actually written to dirty blocks). This took more CPU time than AIPU
disk. Both algorithms scan every delayed-write with a 1-second interval, but still less than PU.
block in the buffer cache, and since the AIPU algo- Table 4-3 shows that AIPU scans far more blocks
rithm does this 30 times more often, this suggests that than PU, because PU scans each block exactly once,
the cost of actually scanning blocks does not but AIPU may scan a dirty block many times before
dominate the CPU time; the time is probably spent in deciding that it is old enough to write to disk.

3the device driver . I ran additional trials using AIPU However, AIPU actually writes fewer blocks than
PU, because AIPU allows the average dirty block to
stay in the cache longer. Recall that with PU, the

3Note that for the kernel-build benchmark, PU with average age of a block when written to disk is 15
delayed writes scans 16749 blocks in 6.0 CPU seconds,

seconds, but with AIPU the average is 30 seconds,placing a lower bound of 6/16.7 = 0.36 msec per block
assuming a uniform rate of file writes. (AIPU-30,scanned. This corresponds to several hundred instruction

executions, much more than could be accounted for by the with a 30-second threshold and a 30-second interval
scanning loop itself, so most of this time must be spent in between updates, yields an average age of 45
the disk driver.

36.5 3937 37.5 38 38.5
mean read response time (msec)

18

32

20

22

24

26

28

30

st
d.

 d
ev

. o
f

re
ad

 r
es

po
ns

e
tim

e
(m

se
c)

asynch write, periodic update, PrestoServe

delayed write, periodic update, PrestoServe

delayed write, periodic update, no PrestoServe

asynch write, interval periodic update, PrestoServe

delayed write, interval periodic update, PrestoServe

delayed write, interval periodic update, no PrestoServe

Figure 4-5: Remote random reads

7 107.5 8 8.5 9 9.5
mean read response time (msec)

14

28

16

18

20

22

24

26

st
d.

 d
ev

. o
f

re
ad

 r
es

po
ns

e
tim

e
(m

se
c) periodic update

PrestoServe, periodic update

interval periodic update

PrestoServe, interval periodic update

Figure 4-6: Remote sequential reads

Periodic Approx. interval Relative
update periodic update elapsed time

Asynch writes 3280 sec. elapsed 3234 sec. elapsed 0.986
40548 writes 37854 writes

Delayed writes 3298 sec. elapsed 3206 sec. elapsed 0.972
31523 writes 25966 writes

Mean values for 3 trials

Table 4-2: Elapsed time on kernel-build benchmark

seconds, and so does slightly fewer writes than of clean blocks, and hence fewer writes to disk. I
AIPU-1). counted the number of modifications of currently

dirty blocks (in the brelse() routine); the numbers areA dirty block that stays in the cache for a longer
shown in table 4-3. AIPU with delayed writes resultstime is more likely to be modified again before being
in moderately more dirty-block modifications (426Kwritten to disk, which results in fewer modifications
vs. 419K for PU); the difference in dirty-block

PU, PU, AIPU-1, AIPU-1, AIPU-30, AIPU-30,
async writes delayed writes async writes delayed writes async writes delayed writes

CPU time used 4.3 sec. 6.0 sec. 2.0 sec. 2.3 sec. 2.7 sec. 2.7 sec.
by /etc/update
(mean of 3 trials)

Blocks scanned 9531 16749 290214 508448 14593 25847
by /etc/update

Blocks written 9531 16749 5375 10023 5266 9519
by /etc/update

Dirty blocks modified 391K 419K 393K 426K 405K 426K
during benchmark

biowait() sleep events 8234 8274 7607 8121 7496 7751
during benchmark

Table 4-3: Statistics for kernel-build benchmark

modifications is roughly the same as the difference in PU, AIPU-1, and AIPU-30. In all cases, the update
delayed-write disk I/Os. period (age at which a block is queued to the disk)

was 30 seconds.The reduction in actual disk I/Os, caused by
longer cache lifetimes and more dirty-block With AIPU-1, since blocks are queued 30 seconds
modifications, may account for all of the elapsed- after the corresponding file write, the burstiness in
time advantage of AIPU over PU on the kernel-build queue-batch size directly mirrors the burstiness in the
benchmark. As table 4-3, with AIPU-1 and espe- file-write pattern (with 1-second granularity).
cially AIPU-30, the kernel ‘‘sleeps’’ less often for The results are shown in figure 4-7, in the form of
disk I/O than it does with PU (although I could not cumulative distributions for the number of blocks
measure the total sleep time). However, this effect written as a function of the burst size. Each policy
should not contribute to the random-access results in writes a different number of blocks (see table 4-3), so
sections 4.1 and 4.2, since these experiments were the curves do not end at the same ordinate. For
constructed to avoid any cache hits on file writes. AIPU-1 (with 1 second between updates and a 30-

second period), 95% of all delayed-write blocks writ-
4.5. Burstiness of file writes ten were queued by bflush_smooth() in bursts of 40

The advantage of AIPU over PU is that the latter blocks or fewer. The largest burst contained 104
clumps together all delayed writes from a 30-second blocks. In other words, the application delivered
period into a single burst of writes, while the former relatively small bursts of writes to the file system.
preserves the original spacing of the file writes (with For PU (with 30 seconds between updates), 95%
1-second resolution). If the file writes themselves of the delayed-write blocks queued were in bursts of
arrive in bursts, this eliminates AIPU’s advantage. In more than 62 blocks, and 50% were queued in bursts
the worst case, when all file writes during a 30- of more than 182 blocks. The largest burst contained
second period occur nearly at once, both policies 344 blocks, which (assuming an 18 msec. mean ac-
should perform the same. cess time) delayed any subsequent synchronous

In the experiments reported in sections 4.1 and operation by over 6 seconds.
4.2, the write-load generator distributed file writes To summarize figure 4-7, the kernel-build
uniformly over time, which is the best case for AIPU. benchmark does indeed spread out its writes over
The kernel-build benchmark should be more repre- periods longer than a second. This results in far
sentative of real use; how bursty is its file-write pat- smaller disk-queue bursts when AIPU-1 is used than
tern? (Note that this kind of single-user benchmark is when PU is used.
more likely to exhibit burstiness than a multi-user
benchmark, because the latter will tend to spread out

5. Future workthe file-system load among several jobs.)
Carson and Setia proposed using a periodic up-I modified the bflush() and bflush_smooth()

date with read priority (PURP) policy. Although Iroutines to keep a histogram of the number of blocks
resisted implementing PURP, because of its greaterthey queue for the disk on each invocation. I then ran
complexity, in the general case one cannot avoid longone trial of the kernel-build benchmark for each of
disk queues even with IPU or an approximation. For

0 35050 100 150 200 250 300
Number of blocks written per sync() or smooth_sync()

0

20000

5000

10000

15000
C

um
ul

at
iv

e
nu

m
be

r
of

 b
lo

ck
s

w
ri

tte
n

1-sec. approx. interval periodic update
30-sec. approx. interval periodic update
Periodic update

Figure 4-7: Burst-size distributions for writes during kernel-build benchmark

example, if an application manages to dirty the entire able limits, will not make a big difference, but this
buffer cache within a second or so, thirty seconds should be the subject of additional experiments.
later an IPU policy will schedule writes for all those Some UNIX file system implementations attempt
blocks, and the effect will be the same as with the PU to cluster several blocks together when performing a
policy. In other words, IPU depends on a relatively disk write [8, 11]. That is, if the cache contains
uniform distribution of file writes (across time) to several dirty blocks that are adjacent on disk, the file
achieve its more uniform distribution of disk writes. system or disk driver attempts to write them all at

If long disk queues are inevitable, and most of the once, which improves throughput by eliminating
entries on such queues are inherently asynchronous, seeks and rotational delays. Clustering can be done
then giving priority to reads and synchronous writes in several different ways, and may interact with the
should improve response time. I suspect that, even delayed write policy (that is, are all data writes
with a priority scheme, an IPU policy could outper- delayed, or only partially-filled blocks?) and with the
form PU. Suppose the buffer cache is entirely filled update policy. The ULTRIX systems tested in section
by dirty blocks; then, a read operation must wait until 4 use a clustering algorithm; I have not done experi-
the system cleans a block before it can complete. ments to see if this affects the relative performance of
The IPU policy generates clean blocks once a second update policies.
or so (assuming a uniform distribution of disk writes,
across time), but the PU policy only does this every 6. Summary and conclusions
30 seconds. Thus, with PU, reads would be more The experiments described in this paper show that
likely to block waiting for a free buffer. This is • Use of delayed writes can improve overall file
speculation; we need experiments, simulation, or

system performance, including read responsemore formal analysis to discover the truth.
times, on both synthetic and actual workloads,

Peacock [11, 12] has described several systems
• But when delayed writes are combined with thethat use PURP, but apparently did not explore

traditional periodic update policy, variance inmodified update policies. He found that adding read
read response time increases significantly, andpriority to System V Release 4, in which the buffer

cache can be quite large, actually reduced benchmark benchmark performance may decrease,
performance by preventing asynchronous requests • So one should use a better update policy, such
from getting a sufficient share of the disk. as interval periodic update or an approximation,

My experiments have all used a 30-second period whenever one uses a delayed write policy.
for PU and for the lifetime of dirty blocks in IPU, and

I also showed that one can easily implement an
a one-second granularity for IPU. I suspect that use

approximate interval periodic update policy, with
of different periods and granularities, within reason-

remarkably limited changes to the kernel of a tradi- [10] John K. Ousterhout, Herve Da Costa, David
Harrison, John A. Kunze, Mike Kupfer, and Jamestional operating system.
G. Thompson. A Trace-Driven Analysis of the
UNIX 4.2 BSD File System. In Proc. 10th Sym-

Acknowledgements posium on Operating Systems Principles, pages
Scott Carson and Sanjeev Setia helped to en- 15-24. Orcas Island, WA, December, 1985.

courage me to perform these experiments. John Ous-
[11] J. Kent Peacock. The Counterpoint Fast Fileterhout, Jim Gray, Kent Peacock, and the anonymous
System. In Proc. Winter 1988 USENIX Conference,reviewers provided useful comments during the
pages 243-249. Dallas, TX, February, 1988.preparation of this paper.
[12] J. Kent Peacock. File System Multithreading in
System V Release 4 MP. In Proc. Winter 1992References
USENIX Conference, pages 19-29. San Antonio, TX,
June, 1992.[1] Mary G. Baker, John H. Hartman, Michael

D. Kupfer, Ken W. Shirriff, and John K. Ousterhout. [13] Dennis M. Ritchie. Private communication.Measurements of a Distributed File System. In Proc. 1994.
13th Symposium on Operating Systems Principles,
pages 198-212. Pacific Grove, CA, October, 1991. [14] D.M. Ritchie and K. Thompson. The UNIX

Time-Sharing System. AT&T Technical Journal[2] Scott D. Carson and Sanjeev Setia. Analysis of 57(6):1905-1929, July-August, 1978.the Periodic Update Write Policy For Disk Cache.
IEEE Transactions on Software Engineering [15] V. Srinivasan and Jeffrey C. Mogul. Spritely
18(1):44-54, January, 1992. NFS: Experiments with Cache-Consistency

Protocols. In Proc. 12th Symposium on Operating[3] Anna Hac. Design Algorithms for Asynchronous
Systems Principles, pages 45-57. Litchfield Park,Write Operations in Disk-Buffer-Cache Memory. J. AZ, December, 1989.

Systems Software 16(3):243-253, November, 1991.

[4] John Hartman. Private communication. 1993. UNIX is a registered trademark of X/Open Company,
Ltd. ULTRIX and DECstation are trademarks of Digi-[5] John L. Hennessy and David A. Patterson.
tal Equipment Corporation. PrestoServe is aComputer Architecture: A Quantitative Approach.
trademark of Legato, Inc.Morgan Kaufmann, San Mateo, CA, 1990.

[6] Samuel J. Leffler, Marshall Kirk McCusick,
Jeffrey Mogul received an S.B. from the Massa-Michael J. Karels, and John S. Quarterman. The

chusetts Institute of Technology in 1979, and hisDesign and Implementation of the 4.3BSD UNIX
M.S. and Ph.D. degrees from Stanford University inOperating System. Addison-Wesley, Reading, MA,

1989. 1980 and 1986. Since 1986, he has been a researcher
at the Digital Equipment Corporation Western

[7] Rick Macklem. Not Quite NFS, Soft Cache Con-
Research Laboratory, working on network andsistency for NFS. In Proc. Winter 1994 USENIX
operating systems issues for high-performance com-Conference, pages 261-278. San Francisco, CA,
puter systems. He is a member of ACM, Sigma Xi,January, 1994.
ISOC, and CPSR, the author or co-author of several

[8] L. W. McVoy and S. R. Kleiman. Extent-like Internet Standards, an associate editor of
Performance from a UNIX File System. In Proc. Internetworking: Research and Experience, and was
Winter 1991 USENIX Conference, pages 33-43. Dal- Program Committee Chair for the Winter 1994
las, TX, January, 1991.

USENIX Technical Conference.
[9] Michael N. Nelson, Brent B. Welch, and John Address for correspondence: Digital Equipment
K. Ousterhout. Caching in the Sprite Network File Corporation Western Research Laboratory, 250
System. ACM Transactions on Computer Systems University Avenue, Palo Alto, California, 94301
6(1):134-154, February, 1988.

(mogul@wrl.dec.com)

