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Abstract

Java and the Remote Method Invocation

(RMI) mechanism supported by it make it

easy to build distributed applications and ser-

vices in a heterogeneous environment. When

the applications are interactive and require

low response time, e�cient implementations

of RMI are needed. We explore both trans-

port level protocols as well as object caching

in the RMI framework to meet the perfor-

mance requirements of interactive applica-

tions. We have developed a prototype system

that o�ers new transport protocols and allows

objects to be cached at client nodes. We de-

scribe the design issues and the implementa-

tion choices made in the prototype along with

some preliminary performance results.

1 Introduction

Interactive applications that enable widely

distributed users to cooperate over the Inter-

net will become increasingly common in the

future. Such applications have traditionally

been explored in the area of groupware but as

increased bandwidths become available into
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the home (e.g., cable and digital subscriber

line (xDSL) networks), electronic commerce

and entertainment applications will become

interactive. For example, a consumer located

at home can utilize a graphical user interface

(GUI) to view various retail items he or she

is interested in purchasing. Simultaneously,

a sales associate located at the retail outlet

may also have a copy of the GUI which per-

mits the associate to see what the customer is

selecting and may suggest alternatives which

are then presented in the customer's GUI.

Furthermore, the home consumer may have

requested friends located at other homes to

also participate in this decision making and

therefore they too may be running a GUI and

viewing the possibilities and also making sug-

gestions. Many such interactive application

scenarios can be constructed easily.

Interactive applications will be supported

by shared distributed services. In order for

the internetworked computing infrastructure

to support the above application scenario,

system support is needed to allow the dis-

tributed services and client applications to be

programmed easily. The use of object tech-

nology is becoming an increasingly popular

approach for implementing distributed ser-

vices. This is due to the fact that object

technology provides a uniform mechanism for

accessing local and remote resources and re-

duces the complexity of building applications

in an internetworked computing environment.

The Java language is a popular foundation

for building distributed services and appli-

cations because it hides the problems that



arise due to heterogeneity of server and client

hardware and software platforms. Remote

Method Invocation (RMI) is Java's mecha-

nism for supporting distributed object based

computing [18]. RMI allows client/server

based distributed applications to be devel-

oped easily because a client application run-

ning in a Java virtual machine at one node

can invoke objects implemented by a remote

Java virtual machine (e.g., a remote service)

the same way as local objects.

Although RMI enhances the ease of pro-

gramming for distributed applications, we

have found that it does result in signi�cant

performance penalties for applications com-

pared to message passing [10]. Such loss of

performance is undesirable for interactive ap-

plications in a wide-area environment because

of the need for interactive response time in

the presence of high communication laten-

cies. The additional processing required by

RMI will add some overhead compared to

message passing but there are a number of

techniques that can exploit the communica-

tion structure embodied by RMI to provide

better performance. For example, it may be

possible to exploit the \invocation-response"

nature of RMI communications to develop a

more e�cient communication protocol than

the TCP protocol that is employed by RMI

(such an approach was used in the imple-

mentation of remote procedure call or RPC

[2] which is closely related to RMI). Further-

more, when possible, a client may be able to

cache the state of remote objects and invoke

them locally. In this case, the overhead as-

sociated with communication can be avoided

when there is signi�cant locality of access.

We explore a number of techniques to im-

prove RMI performance and integrate them

into the RMI framework. Since the perfor-

mance of RMI depends on the underlying

communication protocols, we �rst explore a

number of alternate transports that may im-

prove the performance of RMI implementa-

tions. We developed a user datagram pro-

tocol (UDP) based reliable message delivery

protocol that exploits the request-response

nature of RMI communications. Also, when

object state is cached at client nodes, con-

sistency of the replicated object copies has

to be maintained. Consistency protocols for

replicated objects can bene�t from one-to-

many (e.g., multicast) communication and we

have developed a 
exible multicast transport

that is available to RMI implementation. Fi-

nally, we extend the reference layer in the

RMI framework to cache objects at client

nodes. This approach allows clients to trans-

parently invoke remote objects independent

of whether they are being cached. When a

cached copy of an invoked object is available,

the invocation is executed locally. An invali-

dation based protocol has been implemented

to maintain consistency of the cached copies.

All this support has been added to the RMI

framework by extending interfaces that are

provided in the framework. The prototype

system we have implemented has allowed us

to quantify the bene�ts of caching.

We brie
y review the RMI framework in

Section 2. This framework primarily consists

of the transport layer and the reference layer.

The transport layer provides interfaces for

communication protocols that support mes-

sage passing across sites. Section 3 describes

the new protocols that have been added by us

to the transport layer. These include a UDP

based reliable message delivery protocol and a

multicast protocol that is used in maintaining

the consistency of cached object copies. We

explore design issues for object caching in the

RMI reference layer and discuss our imple-

mentation is Section 4. Performance studies

and their discussion is presented in Sections

5 and 6. We describe related work and con-

clude the paper in Sections 7 and 8.

2 The Java RMI Framework

The RMI framework [8] in Java allows dis-

tributed application components to commu-

nicate via remote object invocations. In par-

ticular, a client running at one node can ac-

cess a remote service by invoking a method of

the object that implements the service. Thus,

the RMI framework enables applications to

exploit distributed object technology rather

than low level message passing (e.g., sockets)

to meet their communication needs. A high

level architecture of the RMI framework is

shown in Figure 1.
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Figure 1: RMI Framework

All objects that can be invoked remotely

must implement the interface Remote. This

interface is just a tag that is used to dis-

tinguish remote objects from normal objects.

Remote objects implement one or more in-

terfaces and only through these interfaces are

they visible to the outside world. The rmic

tool is used to generate the skeleton and stub

classes for a given remote object interface.

For a given remote object impl, the stub,

impl Stub, and skeleton, impl Skel, have

the same set of methods that are de�ned in

the interface of impl. impl provides the ac-

tual implementations of the methods de�ned

in its interface.

A server that wants to make an object im-

plemented by it remotely invokable must �rst

export the object. This results in the instanti-

ation of the skeleton object, the stub object,

the reference object and the transport end-

point object in the server's virtual machine.

When this object is bound onto a name server

(e.g., rmiregistry) via the bind or the re-

bind operation, the stub, the client side ref-

erence object and the transport object are se-

rialized and moved into the name server. At

this point, the object is available for remote

invocations from client nodes. To invoke a

remote object impl, a client must �rst obtain

a reference for it. Such a reference can be ob-

tained in one of two ways. A client can do

a lookup on the object which results in the

instantiation of impl Stub and other needed

reference layer objects in the client's VM. All

subsequent method invocations by the client

to the remote object are routed via these ob-

jects. The client can also receive a reference

to the object as an argument of an invoca-

tion. At the time the object reference is un-

marshaled, the impl Stub and other related

objects are instantiated to enable the client

to remotely invoke impl.

A client making an invocation on a remote

object actually makes the call to the stub

object. The remote reference layer is respon-

sible for carrying out the invocation. The

transport layer is responsible for connection

setup, connection management and keeping

track of and dispatching to remote objects.

The skeleton for a remote object makes an

upcall to the remote object implementation

when a request for remote invocation is re-

ceived at the server VM. Once the invoca-

tion is executed, the return value is sent back

to the client via the skeleton, remote refer-

ence layer and transport layer on the server

side, and then up through the transport and

remote reference layers, and stub object on

the client side. If an exception is thrown

while making a call on the server side, this ex-

ception object rather than the result is mar-

shaled and sent back to the client. The client

side has enough machinery to detect that the

received result is actually an exception rather

than the result of the call and throws the cor-

responding exception to the application. A

distributed garbage collector running in the

server VM keeps track of client references for

the remote object impl. In particular, client

nodes lease impl for a certain period of time

and each client reference increments its ref-

erence count by one. If a client's lease ends,

the reference gets decremented and when this

reference count becomes zero, impl can be

garbage collected.

3 E�cient Communication Sup-

port

Although the RMI transport layer is 
exi-

ble enough to include several transport pro-

tocols, at the time we started this work, only

the Transmission Control Protocol (TCP)

was available for RMI related communica-



tion. The more e�cient User Datagram Pro-

tocol (UDP) cannot directly be used since it

does not guarantee reliable delivery of invoca-

tion request and response messages. We take

an approach that implements a reliable mes-

sage delivery protocol based on UDP. We call

this protocol R-UDP. Since RMI communica-

tions follow a \request-response" pattern, it

is possible to exploit this structure in R-UDP

to e�ciently implement the reliable delivery

of messages. In addition to R-UDP, we pro-

vide a 
exible multicast protocol that can be

used by the RMI reference layer when object

caching is employed. These two protocols are

described in this section. The impact of these

protocols on the performance of remote invo-

cations is discussed in a later section.

3.1 R-UDP: UDP based Reliable
Protocol

We believe the use of a protocol like TCP

for all phases of the RMI communication ac-

tivity leads to certain ine�ciencies. In par-

ticular, during the actual remote object invo-

cation phase (after a given object has been

located on the remote host and all neces-

sary initialization has been performed), the

data 
ow would typically fall into a \request-

response" model, with the client sending a

single \request" to the server, followed al-

ways by the server sending a single \reply"

back to the client. Given this, any explicit

acknowledgments used by TCP for requests

can be avoided in a reliable protocol that is

aware of the structure of RMI communica-

tion. A similar argument was used in the

implementation of remote procedure calls by

Birrell and Nelson in [2]. Another area where

we expect to gain some performance improve-

ments is by having explicit control over the

behavior of the transport layer, speci�cally in

the bu�ering and sending of network packets,

rather than allowing the underlying protocol

to make decisions about when to bu�er data

and when it is time to send a network packet.

3.1.1 Implementation Details

For communication between a client and

server running at di�erent sites, RMI al-

lows for the speci�cation of a \Socket Fac-

tory" by both the client and server. Thus,

the default classes Java.net.Socket and

Java.net.ServerSocket do not need to

be used. We designed and implemented

RMISocket and RMIServerSocket classes as

subclasses of Socket and ServerSocket re-

spectively. Since they are subclassed from

the standard TCP socket classes, they must

mimic their functionality. These new classes

will allow a client/server pair to choose the

R-UDP protocol for reliable message delivery

on a setSocketFactory call. All other socket

related processing in the RMI implementa-

tion is unchanged. The implementation of R-

UDP can be broken down into two activities,

(1) connection setup, and (2) reliable sending

and receiving of data.

Connection Setup: During the connection

setup phase, the server side accept method is

simply blocked on a receive on the speci�ed

well known port address. A client wishing to

connect to the server creates a local socket

bound to a transient port, assigns a random

64 bit sequence number, and forwards the se-

quence number and local port number to the

server in a datagram marked as a \Connec-

tion Request". Upon receipt of the connec-

tion request packet, the server creates a lo-

cal socket bound to a transient port, assigns

its own random 64 bit sequence number, and

returns the sequence number and local port

number to the client in a datagram marked

as a \Connection Acknowledgment". When

the client receives this packet, the connec-

tion is established. Of course, the Connec-

tion Request/Connection Ack sequence must

be timed out and retransmitted in the event

of errors.

Reliable Data Transfer: When either

the client or server sends data, the normal

Java.net.Socket paradigm is used, namely

the use of getDataOutputStream and the

writing of stream data to the returned out-

put stream. Our implementation returns an

output stream object of our design, which is

a subclass of ByteArrayOutputStream. Our

stream simply places all data written into

a byte array bu�er until a call to 
ush is

made on the stream. When the 
ush call

is made, the array is passed to a separate

thread (the \SendingThread") to be trans-



mitted to the peer. The sending thread is

blocked on a Java wait call until something is

available to be sent, and is started by a no-

tify call by the 
ush method. The data to be

sent is placed in a datagram along with the

next sequence number, an implicit acknowl-

edgment sequence number (discussed later),

and the actual data. The datagram is sent

to the peer, marked as \Data packet, no ac-

knowledgment required". The sending thread

then blocks on a wait until an implicit ac-

knowledgment is received (discussed next) or

a constant timeout period has elapsed. If

the timeout period elapses without receipt

of an implicit acknowledgment, the sending

thread re-sends the packet, but the second

(and subsequent) tries are marked as \Data

packet, explicit ack requested". As previ-

ously mentioned, all data transmissions to a

peer include an \implicit ack", which noti-

�es the peer of the highest sequence number

packet that has been received. This allows

for a server \reply" packet to serve as the ac-

knowledgment that a client \request" packet

has been received. This works well in the

\request-response" data transmission model

used for remote object invocations.

A host wanting to receive data from

a peer uses the normal paradigm of

getInputDataStream and reading stream

data from the returned object. Our im-

plementation returns an input stream ob-

ject of our creation, which is a subclass of

ByteArrayInputStream, and which is man-

aged by a separate \Receiving" thread. The

receiving thread is blocked on a datagram re-

ceive call, and will �ll data in the byte ar-

ray based on the contents of the received

datagram. If an explicit acknowledgment is

requested by the peer, an acknowledgment

packet is prepared and returned, otherwise

the thread just blocks waiting for the next

message.

In the interest of brevity, the above discus-

sion glosses over or ignores completely many

of the details of a good implementation for re-

liable data transmission, such as the recogni-

tion and processing of duplicate data blocks.

By no means is our implementation a fully

functional TCP implementation, but is ade-

quate for our needs in testing remote objects.

3.2 Multicast Communication

The RMI design is 
exible enough to add

server replication for improved scalability

and fault-tolerance. We also explore object

caching at client nodes to avoid the network

latency when there is locality of access. Con-

sistency protocols need to be employed when

multiple copies of objects exist either due to

replication or caching. Such protocols can

bene�t from multicast communication. By

using multicast as against multiple unicast

channels, we stand to gain in terms of better

usage of network and server resources. For

example, if an invalidation protocol is used

to maintain consistency of replicated object

copies, it is clearly bene�cial to deliver the

invalidation request to all the clients using a

multicast message. However, we note that

the scalability attainable can be limited by

the consistency protocols even when multi-

cast is used. In the case of invalidation pro-

tocols, for example, if the protocol requires

responses from every client caching the ob-

ject, then the scalability levels attainable are

limited (we are exploring other consistency

protocols that do not su�er from this prob-

lem).

We have implemented a reliable multicast

framework along the lines of SRM [6], with a

few novel changes. Like SRM, we use applica-

tion data unit framing, negative acknowledg-

ments, and multicast the retransmit request

and response messages to the whole group.

However, while SRM aims at eventually de-

livering all messages sent to the group, we

aim at eventually delivering only the essen-

tialmessages to all the members of the group.

This is motivated from the fact that the mul-

ticast facility is intended to be used primar-

ily by consistency related messages. Thus, we

can rely on hints from the consistency proto-

col in identifying the essential messages. For

example, if successive multicast messages up-

date the state of the cached objects, the con-

sistency protocol might permit loss of earlier

updates as long as newer updates are deliv-

ered, that is, a newer update makes an ear-

lier update inessential. We do not expend re-

sources towards reliably delivering messages

that have been identi�ed as inessential. We

believe that we stand to bene�t signi�cantly



from the above relaxed de�nition of reliabil-

ity if the fraction of messages identi�ed as

inessential is reasonably high.

As we mentioned above, a retransmit re-

quest for a missed packet is sent to the whole

group, and every member which can service

this request locally enqueues a response with

a random timer associated with it. The re-

sponse is eventually sent out by the member

whose timer expires the earliest. One of the

main disadvantages of this scheme is that ev-

ery member is required to participate in ser-

vicing retransmission requests. We propose

to provide an option to permit the usage of

a separate group address for multicasting re-

transmission requests and responses [12].

We have implemented the multicast proto-

col and used it to send invalidation messages

in the consistency protocol that has been

implemented in the prototype. The perfor-

mance improvements made possible by mul-

ticast communication are discussed in Section

5.

4 Object Caching in the RMI

Framework

Caching of remote objects has been shown

to lead to better performance in systems that

range from �le systems to distributed shared

memories. Clearly, if there is locality of ac-

cess, caching a remote object at the client

site can improve application performance be-

cause methods invoked on the object can be

executed locally. In the RMI framework,

the reference layer, which comes between the

stub/skeleton objects and the transport layer,

is responsible for handling remote method in-

vocations. Thus, the reference layer is the

natural place for providing alternative im-

plementations of remote method invocations

(e.g., using caching). We �rst discuss the de-

sign issues related to object caching at the

reference layer and then present implemen-

tation details of a prototype system that we

have developed for object caching. Our de-

sign of caching in the RMI framework was

motivated by the following requirements.

1. The decision on whether an object is

cacheable or not should be decided by

the object provider at runtime, and not

at compile time. This allows a single im-

plementation of the object's functional-

ity to be easily reused in di�erent sce-

narios. This is all the more important in

Java, because only single inheritance is

available.

2. Cacheable objects should coexist with

uncacheable (UnicastRemoteObjects)

objects. This means that cacheable ob-

jects can have references to uncacheable

objects and vice versa.

3. Caching should be transparent to the

client1, i.e. a client should not treat

cacheable and uncacheable objects dif-

ferently. Also, the invocation, failure and

garbage collection semantics should be as

close to uncacheable objects as possible.

We �rst describe an abstract model of RMI,

and then show how caching can be added to

it.

4.1 Abstract RMI

Based on the discussion in Section 2, we

have presented a model of a non-caching RMI

in Figure 2(a). The server Ps, �rst creates

the server object O. It then exports O us-

ing a certain reference layer which creates the

other four objects at Ps: (1) C, the client

stub, (2) S, the server skeleton, (3) Refc, the

object that implements the functionality of

the client side reference and transport layer,

and (4) Refs, the object that implements the

server side reference and transport layer func-

tionality. Thus, we have combined the refer-

ence and transport layer functionality into a

single object. The server then binds C to a

name server, which results in the marshaling2

of the C and Refc state and unmarshaling at

a name server. A lookup request of a client

will be sent to the name server which will

1There are obviously situations where a client

doesn't want to cache, for example, due to local mem-

ory limitations. These policies can be expressed in a

separate policy object at the client and do not need

to be part of the main control 
ow.
2Referred to as serialization in Java.
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Figure 2: A Model of Non-caching RMI

send the C and Refc objects to the client

(say Pi) in a similar manner. These objects

and the references they hold across them are

shown in Figure 2(a) after the lookup opera-

tion has been completed. Figure 2(b) shows

the reference counting mechanism used for

garbage collection. The count at the server,

counts, is the number of clients that have a

network reference to object O. Each client

(say Pi) also maintains a count of the num-

ber of references it has toO. Pi creates counti
when it �rst gets a reference to O. At that

time, it also informs the server, which incre-

ments counts and creates an IsAlive reference

to Pi. If Pi creates more references to O

(e.g., by cloning), it only increments counti.

When the value of counti drops to zero, the

server is informed, which decrements counts.

O can be garbage collected when counts is

zero and there are no local references to O.

Note that the IsAlive reference is used by the

server to detect that a client has crashed, so

that counts can be decremented. This pre-

vents garbage collection from being stalled

because some client failed without informing

the server.

4.2 Adding Caching

To add caching to this framework, we pro-

vide a di�erent reference layer Cref , with

Crefs being the server side, Crefc the client

side, and Cref 0

s
the client caching layer. The

creation of the server object, export, binding

and lookup are still the same (except for a dif-

ferent reference layer). Figure 3(a) shows the

scenario after a lookup has been done at Pi.

As there are cases when a process may have a

remote reference but may never make an in-

vocation on it (for example, a name server),

we only initiate caching at the �rst invoca-

tion. Figure 3(b) shows the scenario after the

�rst invocation. O0 is the copy of O cached at

Pi. The main di�erences between Refc and

Crefc are

� Initiate caching on �rst invocation, in-

stantiate cached object, and redirect ref-

erence to the cached copy.

� Send every invocation to the cached copy

using the direct reference.

� When marshaled (for example, when

passed as a parameter to some other re-

mote invocation), do not marshal the

direct reference subgraph. This limits
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the architecture to a two level tree with

Crefs at the root and Cref
0

s
s and Crefcs

as the leaves. We can also allow a policy

where someCrefcs never initiate caching

i.e. their invocations always go to the

Crefs.

The job of maintaining the consistency of the

cached object copy resides with Crefs and

Cref 0

s
s.

Garbage Collection: A natural question

to ask is how does caching e�ect RMI garbage

collection. The answer is, it does not. As a

Cref 0

s
only exists in a virtual machine along

with its Crefc, we can still utilize the old

system of counting network references from

Crefcs to Crefs.

Specifying read and write methods: To

initiate a consistency action, Cref 0

s
needs to

know whether a method invocation will only

read the object state, or will also write it. We

allow object programmers to provide infor-

mation that can be used to infer if a method's

execution only reads the object state or the

state is also updated. In particular, the

method code should include the throwing

of read and write exceptions depending on

how the state of the object is accessed by

the method. Information about such excep-

tions is available from the class meta-data

that is created by the Java compiler. We

extended rmic to consult this meta-data to

generate another object, impl MemFuncStat,

along with the impl stub and impl skel

objects. impl MemFuncStat implements a

member function isWriteMethod that returns

whether a certain method reads or modi�es

the state of impl.

Failure Semantics: We consider two types

of failures, server, and client. In case of

server failure, both noncaching RMI and our

caching extension behave the same way, they

stop working. Client failures in noncaching

RMI don't lead to any problems (except

for the GC mechanism detecting the failure

and decrementing the counter). For caching

clients in our caching RMI, the situation is

somewhat complicated and depends on the

cache consistency protocol. For an invalida-

tion protocol, the crash of a client which did

not have the only valid copy is easy to han-

dle. The problem is when a client with the

only valid copy crashes. A simple solution is

for the server to use the last version it has as

the valid copy and continue from there. This

is perfectly acceptable if any updates done

by the crashed client which were lost (and

updates done by the same client after those

lost updates), did not e�ect some part of the



world which can still be seen by the remain-

ing clients. For example, assume that client

P1 updates a cached copy of object O1 (whose

server is at P1), then updates remote object

O2 which resides at P2, and then crashes. The

update on O2 is visible but the previous up-

date on O1 might have been lost because the

new O1 value was not yet sent to the server.

4.3 Implementation of Object
Caching

The functionality provided by the Crefc,

Crefs and Crefs
0 objects shown in Figure 3

has to address a number of problems. First,

to cache an object at a client site, the object

state and implementation have to be made

available to the client. The serialization in-

terface provided by Java is used for trans-

porting object state across nodes. If an ob-

ject has state that is meaningful only at the

server node where the object is instantiated

(e.g., open network connections), new serial-

ization methods are allowed by our system

that override the default Java serialization

methods. The implementation of an object

is in the form of the bytecode which can be

transferred to client nodes (stub bytecode is

already transferred from server to client node

in Java RMI). The client side is initially pro-

vided minimal code and whenever the system

faults on the bytecode, a central code base

speci�ed by the server side is contacted and

the necessary bytecode is downloaded on de-

mand.

The execution of a method with a cached

copy either only reads the object state or it

also modi�es the object state. The consis-

tency protocol actions that need to be ex-

ecuted depend on whether the method will

read or update the object state. We use the

the impl MemFuncStat object described ear-

lier for object impl to determine the access

type.

We employ the standard invalidation pro-

tocol to maintain consistency of cached object

copies. Thus, when a client invokes a method

of an object that can update the object state,

the client communicates with the server node.

The server keeps track of the clients that have

copies of the object and sends them invalida-

tion messages. Once copies at other clients

are invalidated, the client that updates the

object state is allowed to execute the method

with the cached object copy.

We considered the following two ap-

proaches for designing a consistency frame-

work that implements the invalidation proto-

col as well as other consistency protocols.

1. The implementation of a cacheable

object extends a consistency object

whereby it inherits all the methods of the

consistency object which are invoked to

maintain the object's consistency.

2. The caching framework maintains a ref-

erence for a consistency object and all

invocations on the implementation get

monitored by this consistency object.

The �rst approach means that the consis-

tency protocols for a cached object are de-

cided at compile time. The second approach

not only allows us to dynamically link an ob-

ject with a consistency protocol at runtime,

it also allows for object caching to be enabled

or disabled during the life of the object. Fur-

ther, consistency levels and hence protocols

can be changed depending on the degree of

coupling required among the clients. Since

the second approach provides more 
exibil-

ity, we decided to use it in our implementa-

tion of object caching. All the consistency

objects are derived from a base object called

ConsistencyModel which has a generic set

of methods that are common to all consis-

tency objects. A particular consistency pro-

tocol (e.g., server initiated invalidations) is

implemented by a specialized object that ex-

tends the ConsistencyModel object. Instanti-

ation of this consistency object during the de-

serialization of the client side caching frame-

work also forks a consistency thread which

performs all the consistency actions on the

object in a synchronized manner with the ap-

plication thread using the object.



4.3.1 The Caching Framework

Some of the objects that make up the caching

framework on the server and client sides are

shown in Figures 4 and 5. On the server side,

the reference object, CacheableServerRef,

maintains state information so as to in-

stantiate an object either in the caching

or non-caching mode. It can also dynam-

ically disable or enable caching. The ref-

erence layer objects, CacheableServerRef

and CacheableRef are obtained by ex-

tending the default RMI reference classes

UnicastServerRef and UnicastRef. When

the remote object, Impl shown in Figure 4

is instantiated on the server, the object im-

plementor provides enough information re-

garding the nature of caching, the transport

protocol to be used, the consistency algo-

rithm to be used etc. During instantiation,

Impl calls the exportObject method of an-

other class called CacheableRemoteObject.

This instantiates CacheableServerRef, the

reference layer object on the server side,

CacheableRef, the reference layer object for

the client, the consistency object (if needed,

depending on the protocol), the transport

endpoint object for the server VM and a

few other objects. The con�guration infor-

mation speci�ed by the user is stored in a

SystemParams object which is also part of

the reference layer. SystemParams object

stores the name of the implementation, the

name of the skeleton, and the codebase as

its state. When a bind or a rebind opera-

tion is done on Impl, the CacheableRef ob-

ject, the transport endpoint object and sev-

eral other objects are serialized and exported

to the rmiregistry. When a client does

a lookup operation, CacheableRef and the

transport endpoint object are transferred to

the client's VM and are instantiated there. A

ConsistencyObject object is instantiated as

a part of the state of the CacheableRef ob-

ject. During its instantiation, Impl, the skele-

ton for it and the Impl MemFuncStat objects

also get instantiated at the client. A consis-

tency thread which handles the consistency

requests from the server in a synchronized

manner with the application thread is also

forked during this process. The client side

reference layer, from now on forwards all the

invocations to the consistency object.

Impl Impl_Skel

TransportObject

CacheableServerRef
ConsistencyObject

Figure 4: Server side object hierarchy for

caching

The ConsistencyObject object performs

the following sequence of actions before the

actual invocation on the cached object is per-

mitted.

� The cached copy is checked for its va-

lidity. If not valid then the most recent

version of the copy is requested from the

server (the server may communicate with

another client to receive the latest copy).

During this process, the client also ac-

quires a readlock for the object that pins

the object locally to ensure that its state

cannot be invalidated while a method ex-

ecution is in progress.

� The impl MemFuncStat object is con-

sulted to decide on the nature of the

call. If it happens to be a write method,

then the required consistency actions are

executed and a writelock is acquired.

This write lock provides atomicity of the

method execution when the object state

is updated.

� It then does the method invocation on

the local object.

Finally when the application thread is

about to quit, the inbuilt GarbageCollector

is called in to free the resources. The consis-

tency daemon's destruction method is modi-

�ed so that if the client has the most recent



CacheableRef

ImplImpl_Stub Impl_Skel

ConsistencyObject

Impl_MemFuncStat

TransportObject

Application Program 

Figure 5: Client side object hierarchy for

caching

copy of the object, it is sent to the server be-

fore the object is destroyed.

5 Performance Evaluation

We have discussed a number of techniques

that could provide improved performance for

RMI. The goal of this section is to experi-

mentally evaluate the performance improve-

ments (if any) that are made possible by the

alternate transports and by object caching.

Our performance studies are preliminary but

the experiments conducted by us do pro-

vide some evidence of the e�ectiveness object

caching and the use of multicast communi-

cation for maintaining consistency of cached

object copies.

Our experiments were conducted in two

di�erent environments. In the �rst one, con-

trolled experiments were conducted on a clus-

ter of Sun Ultra 2's connected with a 100

Mbs Ethernet. There were no other applica-

tions running on the nodes in the cluster at

the time of the experiments and as a result,

we were able to reproduce the same results

multiple times. We ran each experiment, for

which results are presented in this section,

six times. We present the average execution

for remote method execution. The standard

deviation across these experiments is not in-

cluded because it was insigni�cant. For ex-

ample, the maximum standard deviation ob-

served in these experiments was 0.04.

Since caching is more e�ective when com-

munication latencies are higher, the second

environment we use in our experiments is two

clusters connected via the Internet. These

clusters were at the Georgia Tech and Emory

University campuses which are separated by

approximately six miles. The cluster at

Emory had Sun Sparc 20 machines rather

than Ultras. Although we could not con-

trol network tra�c in the second environ-

ment which could impact the results of the

experiments, we conducted the experiments

late at night when there was minimal inter-

ference from other applications. As a result,

we were able to obtain repeatable results with

small variance across ten runs for most of the

experiments. We present the mean times as

well as the standard deviation for these ex-

periments. In one case that required commu-

nication across several nodes in the wide-area

environment, we could not obtain consistent

results across di�erent runs due to the vari-

ability in the environment. These results are

not reported here. Thus, all the results re-

ported here were obtained across a number

of runs (at least six for each case) and we

present both the mean and the standard de-

viation for them. In both environments, we

used the JDK 1.1.5 distribution of Java with

the just-in-time (JIT) compiling feature.

5.1 Object Caching

Object caching allows a remote invocation

to be completed locally under a number of

conditions. For example, if the valid state

of the object is cached locally and the exe-

cution of an invocation only reads the object

state, the needed consistency actions do not

require remote communication. Similarly, if

the node caches the object in exclusive mode

and the object state is updated by the invoca-

tion's execution, other nodes are not noti�ed

of the update. If a copy of the object does not

exist locally, communication with the server

is required. When the object is requested in

exclusive mode, the server may have to in-



validate other copies before it can return the

state of the object to the requesting client

node. To measure the costs of invocations

under these di�erent conditions, for di�er-

ent size arguments, we measured the costs of

completing a remote invocation in the follow-

ing cases.

� The object is invoked remotely at the

server node without caching it locally.

Thus, this is the base case where the RMI

framework is used to execute the invoca-

tion remotely.

� The object is cacheable but at the time

it is invoked, its valid state is not avail-

able at the client node. In this case, the

client must request the current state of

the object before the invocation can be

executed locally.

� A valid copy of the object is in the cache

and the invocation is executed locally.

Furthermore, the object is cached in a

mode such that the execution of the invo-

cation does not result in communication

with other nodes for maintaining consis-

tency. This could be either because the

execution of the invocation only reads

the object state or in case of an up-

date, the object is cached in an exclusive

mode.

� The invocation is executed with a cached

copy but communication with other

nodes is necessary to maintain consis-

tency. For example, if the state of the

object is updated as a result of executing

the invocation, read-only copies at other

nodes must be invalidated. This is done

by communicating with the server which

sends invalidation messages to the other

clients.

Table 1 shows the results of the experi-

ments that were conducted to evaluate the

e�ectiveness of caching in both cluster and

wide-area environments. For the cluster envi-

ronment, we present average invocation times

of ten runs of each experiments. Since con-

trolled experiments were done in the cluster,

there was very low standard deviation across

the runs (less than 0.04) and Table 1 does not

show it for the cluster environment. Clearly,

executing an invocation with a cached copy

when no communication is required provides

much better performance than invoking the

object remotely. For example, in the cluster

environment when the invocation argument

size is 32 bytes, invocation with a cached ob-

ject completed in 1.53 ms compared to 3.51

ms required when the invocation is executed

remotely at the server. Since caching is trans-

parent to the application invoking the object,

the invocation arguments are marshaled be-

fore the point when the reference layer deter-

mines that the object is cached locally. As a

result, the execution time in the caching case

does include the marshaling and unmarshal-

ing costs.

If the execution of a method with a cached

copy does require consistency actions to be

executed which result in communication with

remote nodes (e.g., invalidation messages),

then the execution time of an invocation with

a cached copy degrades with the number

of invalidation messages. In fact, if com-

munication is required with the server or

other clients, executing the invocation with

a cached object copy requires more time than

its execution at the server. For example,

when a valid copy of the object is fetched from

the server before locally executing the invo-

cation, the invocation execution time with 32

byte argument size is 5.34 ms compared to

3.51 ms when the invocation is executed at

the server. Thus, the bene�ts of caching to

an application will depend on the locality of

access and on the mix of invocations that read

and update the state of the object. Caching

will be e�ective only when after the caching

of an object at a client node, the client ex-

ecutes a number of invocations locally. This

will happen when access con
icts at di�erent

clients (e.g., object is updated at two clients

or one reads it while another one writes the

object) are rare.

We now consider the wide-area environ-

ment. In this environment, we present both

average execution time and the standard de-

viation for ten runs of each experiment. The

improvement in performance for an invoca-

tion that executes locally with a cached copy

is more dramatic in the wide-area environ-

ment. The execution time for 32 byte ar-

gument size invocation with caching is 1.58



ms. which is almost 8 times faster than in-

voking the object at a remote server. Clearly,

caching could be more e�ective when commu-

nication overheads are higher. Notice that

the costs with cached objects are di�erent

in the cluster and wide-area environments.

These di�erences are due to di�erences in the

client hardware (Ultra Sparcs vs. Sparc20s).

We were able to obtain consistent results

across many runs of an experiment in the

wide-area environment when either no mes-

sages were sent or messages were exchanged

between only two nodes. In the case when the

client executing the invocation had to com-

municate with the server, which in turn had

to send an invalidation message to two other

clients, we were not able to get consistent re-

sults across di�erent runs of the experiments

due to lack of control over the network envi-

ronment. Thus, execution times for this case

are not included in Table 1.

The results in Table 1 made use of the TCP

transport to send all messages, including in-

validation messages that are sent to maintain

consistency of cached copies. Since an inval-

idation message has to be sent to multiple

nodes, instead of using separate messages, the

server can send a single multicast invalidation

message to all nodes that need to invalidate

their copies. We used the multicast transport

developed by us to send invalidation mes-

sages. As shown in Table 2, the use of multi-

cast does improve performance of object in-

vocation when invalidation messages are sent

to multiple nodes. For example, when copies

need to be invalidated at four client nodes,

the use of multicast reduces invocation exe-

cution time from 12.6 ms to 9.24 ms when

the argument size is 32 bytes. Thus, it is

desirable to include a multicast transport to

support the communication required by con-

sistency protocols when caching is employed.

The e�ectiveness of caching (e.g., overall

performance improvement for an application

when caching is employed) depends on the

pattern of method invocations. Our measure-

ments indicate that if there is locality of ac-

cess (e.g., an object is accessed several times

before it gets invalidated), caching can result

in signi�cantly better performance, especially

when communication latencies are high. To

precisely characterize the bene�ts of caching,

actual application or workloads are necessary.

We discuss this issue in the next section.

5.2 Reliable UDP Based Protocol

To evaluate the impact of a transport pro-

tocol on the performance of remote method

invocation, we measured the cost of a remote

invocation at the server node when TCP and

R-UDP protocols are used as transports. We

did these experiments in the cluster environ-

ment with various sizes of invocation argu-

ments. These results are presented in Table

3. As can be seen, choosing the R-UDP trans-

port does not provide better performance for

remote method execution. In fact, for an in-

vocation that has 32 byte size arguments, its

execution at server with R-UDP takes 6.36 ms

compared to 3.51 ms with TCP. Although we

obtained better round trip message times (an

invocation results in a request and a reply)

for R-UDP at the transport level compared

to TCP, R-UDP does not provide better exe-

cution times at the remote method invocation

level. There are a number of reasons that can

explain why invocation level performance is

not improved by R-UDP.

We found that the assumptions made by

R-UDP about the reference layer actually do

not match what we observed. For exam-

ple, R-UDP assumes that a flush() call is

made when the reference layer wants an invo-

cation request to be sent to the server and

this is done only once for each invocation.

We found multiple calls to flush(), includ-

ing some when the stream had no data that

needed to be sent. We �xed some of these

problems but our use of several threads to

manage the transmission, retransmission and

acknowledgment of messages, and synchro-

nization between these threads and the appli-

cation thread resulted in signi�cant overheads

for R-UDP. Currently we are redesigning R-

UDP to reduce some of these overheads.



Implementation of remote Invocation Invocation execution time in ms.

method execution argument size Cluster Wide-area

in bytes environment environment

Average Standard Deviation

0 2.54 12.81 0.36

At server via RMI support 32 3.51 13.61 0.24

1024 3.95 15.24 0.49

At client with a valid cached 0 0.90 0.93 0.05

copy, when no consistency related 32 1.53 1.58 0.04

communication is needed 1024 1.61 1.65 0.04

At client, valid copy fetched 0 4.70 25.89 0.38

from server, no other consistency 32 5.34 26.98 0.33

related communication needed 1024 5.45 26.46 0.35

At client, valid copy of object 0 8.51 - -

available, two other client copies 32 9.16 - -

invalidated via server 1024 9.19 - -

Table 1: Caching Performance

Communication generated for Invocation Invocation execution time in ms.

executing remote method argument size TCP Multicast

in bytes protocol protocol

Client communicates with 0 6.96 7.15

server, server invalidates 32 7.54 7.60

one other client 1024 7.64 7.87

Client communicates with 0 8.51 7.28

server, server invalidates 32 9.16 7.93

two other clients 1024 9.19 8.13

Client communicates with 0 11.68 8.40

server, server invalidates 32 12.60 9.24

four other clients 1024 12.68 9.38

Table 2: Caching Performance with TCP and Multicast Protocol

Invocation Invocation execution time in ms.

argument size in Cluster environment

in bytes TCP R-UDP

0 2.54 5.33

32 3.51 6.36

1024 3.95 6.95

Table 3: RMI performance with di�erent transports



6 Discussion

We have explored a number of techniques

for developing e�cient implementations of

RMI and have integrated them in the RMI

framework. The initial performance studies

that have been done by us have helped us un-

derstand when these techniques may provide

improved performance. Clearly, additional

performance studies are necessary to quan-

tify the improvements in RMI performance.

First, there is lot of room for improving the

performance of the new transports that have

been added by us. These improvements could

come from better thread management at the

transport implementation level as well the

use of just-in-time compiling to reduce over-

head of user-level implementations of the new

transports.

The performance bene�ts of object caching

depend on the object access patterns at client

nodes. In particular, the locality of access

and read-write mix of object invocations play

an important role in determining the e�ec-

tivess of caching. We are exploring a range

of interactive applications. In these applica-

tions, shared graphical user interfaces (GUIs)

and visualizations at participating users are

supported by several shared objects. To pro-

vide access time that is independent of net-

work latencies, copies of such objects must

be created at each participant site. Clearly,

caching allows such copies to be made. Fur-

thermore, the current focus-of-attention of

the interactions only requires manipulations

of a small number of the objects. Objects

that are not part of the current focus-of-

attention are not updated and their copies

can be accessed locally to drive the shared

GUIs. We feel that the periodic access re-

quired to refresh the shared GUIs and local-

ized focus-of-attention would lead to access

patterns that are desirable in a caching envi-

ronment (e.g., most accesses will be read-only

and cached copies will be accessed repeat-

edly). However, we have not implemented

and evaluated the applications to quantify the

bene�ts of caching. In our current and future

work, we plan to explore several workloads

and applications to evaluate the e�ectiveness

of caching.

We were able to add the new transports

and object caching by extending the inter-

faces provided by the RMI framework except

a small number of modi�cations to the in-

terfaces themselves. For example, we had to

add a new method to the RemoteProxy class

which returns the name of the stub for the

given class, the Remote interface being imple-

mented either by the class itself or by one of

it's superclasses.

7 Related Work

We have explored a number of tech-

niques for enhancing the performance of RMI.

Communication protocols that exploit the

request-response nature of communication in

distributed applications include T-TCP [3],

VMTP [4] and others. Reliable multicast

communication has been studied extensively

(Isis and related systems [1], SRM [6], RMTP

[16], Log-based [7] and others). Our multicast

protocol is designed speci�cally to meet the

needs of object consistency protocols. As a

result, it can o�er optimizations that are not

possible in generic protocols (e.g., messages

with newer values of an object make messages

containing overwritten values obsolete).

Object caching has been studied in sys-

tems such as Spring [15], Flex [11], Thor [14],

Rover [9] and others. The Spring distributed

operating system presented a generic archi-

tecture for object caching. There are several

di�erences in the approaches taken by Spring

and by us due to di�erences in the system

environments. For example, separate cacher

processes are employed by Spring because of

the low overhead of inter-address space com-

munication. Since such inter-address space

communication support does not exist in

Java, we chose to cache the objects in the

virtual machine that invokes the objects. The

Flex system that we had implemented previ-

ously focused on multiple consistency levels,

and several caching design decisions made by

it di�ered from object caching in Java. Also,

Flex did not explore transport level support

for fast remote invocations. Object replica-

tion and caching in Java independent of the

RMI mechanism have been explored in sys-



tems such as TIE [5] and Mocha [17]. By in-

corporating caching in the RMI framework,

we ensure that applications do not need to

di�erently deal with cached and non-cached

objects.

We chose a straightforward protocol for

maintaining the consistency of cached ob-

jects (similar to one used in the Ivy sys-

tem for maintainingg coherence of distributed

shared memory pages [13]). Considerable

work has been done in the area of object

consistency and consistency protocols. For

example, in distributed �le systems and dis-

tributed shared memories, a number of pro-

tocols have been developed. In our future

work, we will explore di�erent consistency

levels and consistency protocols by develop-

ing a consistency framework similar to the

one developed in Flex [11].

8 Concluding Remarks

Interactive distributed applications pro-

grammed with Java can run on a wide range

of platforms. However, the interactive re-

sponse time needs of such applications in high

communication latency environments require

e�cient support for communication across

sites. We have explored e�cient implemen-

tations of Java RMI because it allows dis-

tributed applications to interact via the re-

mote object invocation mechanism. We were

able to integrate a range of performance en-

hancing techniques in the RMI framework by

extending the interfaces provided by RMI.

The prototype system we implemented al-

lowed us to evaluate the performance bene�ts

made possible by object caching as well as by

multicast communication.

In the future we will undertake detailed

performance evaluation of the system using

actual applications and workloads. In addi-

tion, we will explore fault-tolerance via server

replication and other notions of object con-

sistency and associated consistency protocols

that provide better scalability.
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