
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Secure Delegation for Distributed Object Environments

Nataraj Nagaratnam
Syracuse Univeristy

Doug Lea
State University of New York, Oswego

Secure Delegation for Distributed Object

Environments

Nataraj Nagaratnam, Department of ECS, Syracuse University

Doug Lea, Department of Computer Science, SUNY Oswego

email: nataraj@cat.syr.edu, dl@cs.oswego.edu

Abstract

SDM is a Secure Delegation Model for Java-
based distributed object environments. SDM
extends current Java security features to sup-
port secure remote method invocations that
may involve chains of delegated calls across
distributed objects. The framework supports
a control API for application developers to
specify mechanisms and security policies sur-
rounding simple or cascaded delegation. Del-
egation may also be disabled and optionally
revoked. These policies may be controlled ex-
plicitly in application code, or implicitly via
administrative tools.

1 Introduction

Open distributed computing environments
must address four symmetrical security issues:

Services need not trust Users. For exam-
ple, a database service may require that
only certain users be able to modify
records.

Users need not trust Services. For exam-
ple, a person using an unknown word-
processor application may not wish it to
delete existing �les.

Users need not trust Users. For example,
a system administrator may only tran-
siently allow an ordinary user to access
a resource such as a tape drive.

Services need not trust Services. For ex-
ample, a distributed database service may
limit rights of di�erent application pro-
grams that use it.

This paper describes the delegation-based
mechanisms that underly a proposed frame-

work, the Secure Delegation Model. SDM in-
tegrates support for these di�erent aspects of
security in Java-based distributed systems.

SDM is an architectural framework for
structuring remote method invocations (RMI)
among distributed components. It does not
involve new encryption techniques, authen-
tication protocols, or language constructs.
SDM instead builds upon existing mecha-
nisms, mainly those already established in the
Java JDK1.2 security framework, to establish
a practical basis for constructing
exible yet
secure components and support infrastructure.

This paper focuses on the way in which del-
egation is structured and used in SDM to sup-
port secure operation when multiple compo-
nents together provide a given service. Other
aspects of the framework are described only
brie
y. Readers may �nd further details in
[6].

The remainder of this paper is structured as
follows. Section 2 de�nes Java-based security
concepts and terminology surrounding Princi-
pals, Permissions, Privileges, Roles, and Secu-
rity Domains. Section 3 introduces the SDM
delegation framework. Section 4 describes the
details of the resulting protocols, which are ex-
tended in Section 5 to handle dynamic revoca-
tion of delegated privileges. Section 6 brie
y
compares SDM to other approaches.

2 Concepts and Terminology

Principals. All parties associated with se-
cure computation in SDM are known via prin-
cipals: identities (unique names) that can be
authenticated. We further restrict attention
to scoped principals, for example Syracuse's

Nataraj, where the scope represents an organi-
zational domain (which may in turn be further

CodeExecutor

String getServiceName()

Date timeExecStarted()

URL residingURL()

Role[] getActiveRoles()

DelegateIdentity

ExecutorIdentity

Delegate

Principal getInitiator()

Certificate getDelegationCert

Privilege[] getPrivileges()

Role

java.security.Identity

java.security.acl.Principal

String getRoleName()

RoleCertificate getRoleCertificate

Role[] getInheritedRoles()

Privilege[] getPrivileges()

RoleIdentity

Figure 1: Principals in SDM

structured and scoped in any fashion). Prin-
cipals are most often associated with individ-
ual people. However, they may also be associ-
ated with entities such as departments (as in
Acme's MarketingDept, entire companies, or
any other authenticatable unit. In SDM, we
further categorize principals in terms of the
properties and usages as discussed in the re-
mainder of this paper and implemented via the
classes and interfaces illustrated in Figure 1.

Signing. Java software components may be
signed. The CodeSource associated with a
component (i.e., one or more related classes)
includes a set of signers recording the prin-
cipals who developed that piece of code, or
those who authorize the validity of the code.
In the current Java model, a CodeSource en-
capsulates a set of signers who signed the class

�les, and the URL representing the location
from which those class �les are to be down-
loaded. Access can then be controlled based
on such a CodeSource.

CodeExecutors. A signed component may
be obtained from a software vendor and then
executed used by a variety of users. Normally,
the principal executing the code is di�erent
from the one that signed the classes. To clarify
the resulting distinctions, we introduce the the
concept of a CodeExecutor to be the principal
invoking a given service, and upon which au-
thentication, delegation or access control can
be based.

Permissions. A permission is a named
value conferring the ability (or formal consent)
to perform actions in a system. We focus

mainly on permissions based on Access con-
trol policies, that grant permissions to princi-
pals on the basis of security attributes or priv-
ileges typically maintained via Access Con-
trol Lists (ACLs). In order to make an con-
trol decision, access decision functions com-
pare the permissions granted to a principal
against the permissions required to perform an
operation. For example, permission to read a
�le /tmp/foo.txt can be denoted as
FilePermission: read:/tmp/foo.txt.

Privileges. A privilege is a security at-
tribute which may be shared by possibly many
principals. We focus on the kinds of privileges
de�ned in the XGSS and CORBA speci�ca-
tions, that include groups, roles, clearances
and capabilities [7]. For example, Bill Clinton
might have the privileges:

role: President-of-USA
capability: OccupyWhiteHouse
group: AmericanPresidents
accessId: WilliamClinton

Note that the permission to occupy the White
House may be a capability transiently issued
to him, with an expiration at the end of his
presidency.

2.1 Roles

A given person or principal need not always
have the same set of privileges. Rather than
continually change them across di�erent con-
texts, it is convenient to introduce the notion
of a role, a set of actions and responsibilities
associated with a particular activity [11] that
might be adopted by any principal. A role is
normally represented as a set of privilege at-
tributes that a principal or set of principals
can exercise within a context of an organi-
zation. The notion of a role does not add
any power to a security framework, but in-
stead improves manageability by adding an
optional level of indirection. Role-based ac-
cess control provides a higher level of granular-
ity than approaches limited only to individu-
als. Because roles make transient privilege as-
signment much easier to administer, they have
been widely adopted in security frameworks.

Role Certi�cates. A Role Certi�cate is an
authenticatable device that provides evidence
that a given principal possesses the attributes

of a given role. In SDM, an executing Identity
adopting a role is represented as a RoleIden-
tity. A RoleIdentity contains a RoleCerti�-
cate within it that it can be presented to any
server. RoleCerti�cates have associated names
and privileges, along with any other role hier-
archy information; for example rules stating
that all Managers are also Employees. When
a principal authenticates itself and presents a
valid role certi�cate, the privileges associated
with that role becomes e�ective for the prin-
cipal.

Adopting Roles. Roles may be used to
obtain both extensions and reductions of
privileges[1]. Reductions are typically per-
formed in accord with a \least privilege" pol-
icy in which principals have only the privileges
they need to accomplish a given task. Exam-
ples include:

� An administrator may want to have the
powers of ordinary users most of the time,
except when performing installation or
user account creation.

� Users invoking untrusted software might
want to reduce their powers before doing
so.

� Users wishing to delegate only some of
their privileges to others.

A principal A may adopt role R and act
with the identity (A as R) when transiently
obtaining or reducing powers. The privileges
associated with a role work in the same way as
those associated with principals. For example,
a Manager role might have privileges:

group: CEOAnnouncementRecipi-
ents
group: companyBudgetReviewers
capability: MakeAppointmentO�er
-grantedBy Company
capability: ChargeCompanyCredit-
Card
-grantedBy Company

A principal plays a role by associating itself
with one of its roles for a particular period of
time. Thus, these privilege attributes must be-
come associated with the principal. In SDM,
this is accomplished by querying the RoleIden-
tity for its privileges.

Multiple Roles. A given principal can play
multiple roles at the same time. So long as
those selected roles are allowed to co-exist (i.e.,
they are not mutually disjoint roles), the prin-
cipal can exercise the roles simultaneously, and
thus obtain the union of privileges associated
with them. To extend the above example, in
a company intranet environment, access to a
budget information �le might be limited to
the group named companyBudgetReviewers.
A principal who has been assigned role of a
Manager can access this information , due its
privilege which contains the group member-
ship. This group membership need not be ex-
plicitly assigned to the identity, but can just be
associated with a role, in this case Manager.
Similarly, the capability to make an o�er to
a candidate is automatic for a Manager as it
contains the capability MakeAppointmentOf-
fer having been granted by the company itself.

2.2 Domains

Protection Domains. A protection do-

main is an administrative scoping construct
for establishing system and service security
policies. The Java 1.2 security architecture
provides support for protection domains and
domain based access control. Currently, the
creation of domains is based on a CodeSource
indicating a URL and code signers. SDM ex-
tends this framework to include explicit sup-
port for principals.

Principal Domains. In SDM, each service
is run on behalf of some principal, the Code-
Executor, who takes the responsibility for that
service. In particular, given a remote service
running on a machine at a port (mapping to a
URL), there is an authoritative CodeExecutor
responsible for that service. Implementation
of SDM requires that the JDK1.2 domain
model be extended to include principals, so
that each CodeSource will also have a prin-
cipal associated with it. One domain will be
formed for each such <CodeExecutor, Code-

Source>. Further authentication and access
control (and delegation) may then be based
on the CodeExecutor.

To support PrincipalDomains, the Java run-
time system must maintain a mapping from
<CodeSource, CodeExecutor> pair to their
protection domains and also the mapping be-
tween protection domains and their privileges.

This could, for example, be implemented at
the execution stack level with the aid of class
blocks and the executing environment frame,
as illustrated in Figure2. More complete de-
tails can be found in [6].

3 Delegation

Secure delegation occurs when one object
(the delegator or initiator) authorizes another
object (the delegate) to perform some task us-
ing (some of) the rights of the delegator. The
authorization lasts until some target object
(end-point) provides the service. The essence
of secure delegation is to be able to verify
that an object that claims to be acting on an-
other's behalf, is indeed authorized to act on
its behalf[14].

The problem becomes more complicated in
practice when we consider mobile objects,
agents and downloadable content being passed
around an open network, where the initiator
need not have a clue of where all its representa-
tive objects are passed around. Additionally, a
number of practical issues must be solved: The
framework must be scalable in wide area net-
works, remain e�cient under widespread use,
and remain secure when dealing with complex
trust relationships that can emerge in prac-
tice. Toward these ends, SDM provides a mul-
tifaceted approach, supporting any of several
styles and protocols, including both simple
(impersonation) and cascaded (chained) dele-
gation, as well as means to disable and revoke
delegation.

3.1 Protection Domains and Delega-

tion

In Java (as of release 1.2), a protection do-
main is created for each CodeSource. In SDM,
this notion is extended to form Principal-

Domains based on CodeExecutors as well. A
target (or intermediate) controls access to its
methods based on protection domains, i.e.,
<PrincipalDomain, ProtectionDomain> pair.
Access is then controlled via the permission as-
sociated with both the CodeExecutor and/or
CodeSource.

SDM delegation protocols are based on the
notion that when a client delegates its rights
to one object in a domain (i.e., when it enables
delegation before invoking on a target object),
it e�ectively delegates its rights to all the ob-

Execution

Environment

Class Block

Exec Frame

CS1

CS2

CS3

Alice

Bob

CS1

CS2

.

.

.

I.class

X.class

J.class

Y.class

Execution
Stack

CS3

CS2
J.class

Y.class X.class

I.class

CodeExecutors

CodeSources
PrincipalDomain

Alice Bob
PrincipalDomain

Figure 2: Obtaining domain information from execution stack

jects in that domain. This is implemented
via DelegationCerti�cates, that behave anal-
ogously to RoleCerti�cates. In particular, a
DelegationCerti�cate passed to a delegate can
only be used by the object it is issued for.

A set of security requirements is associated
with each object. If an intermediate object
needs delegation from initiator, it speci�es the
delegation mode in its security requirements.
Depending on the context (see Section 4), a
delegation session may be established. If the
target does not need to further delegate ac-
tions, no delegation certi�cate is generated by
the client.

When initiating a delegation session, infor-
mation about the initiating principal (Code-
Executor) is associated with the context of
invocation. This is propagated through the
underlying layer to the remote server (target)
and gets associated (principal and CodeSource
pair) with a protection domain. The target
may provide access based on the identity of an
individual or based on privileges it has (based
on its e�ective role during invocation).

3.2 Modes and Chaining

A series of objects may be involved in a
given service request. For example, suppose
some object A (client) invokes a method on
another object B (target). Object B might
complete the task on its own or might in turn
invoke a method on another object, C. In this

context, object B which was earlier the tar-
get (for A's invocation) becomes a client for
the method invocation on object C. Thus ob-
jects that are at �rst targets may later be-
come clients. This e�ectively forms a dele-

gation chain where object A is the initiator,
object C is the �nal target and object B is an
intermediate.

There are three di�erent approaches, or
modes, that may apply to such chains (see Fig-
ure 3):

NoDelegation. The intermediate exercises
its own rights for further access.

SimpleDelegation. Impersonation; either
restricted or unrestricted.

Client Intermediate FinalTarget

Client Intermediate FinalTarget

Client Intermediate FinalTarget

client’s privileges

client’s privileges

client’s privileges

intermediate’s privileges

client’s privileges

client’s + intermediate’s
privileges

NoDelegation

SimpleDelegation

CascadedDelegation Both initiator’s and intermediate’s privileges are combined

Only the initiator’s privileges are propogated

Only the invoking object’s privileges are propogated

Figure 3: Delegation Chaining

CascadedDelegation. Combining rights of
initiator and delegates.

After obtaining the delegation certi�cate
from a delegator, an intermediate object might

invoke a method on another object down the
chain. At this point, the intermediate may de-
cide to use only the delegator's privileges or
combine it with its own privileges. This de-
cision of either passing delegator's privileges
only (impersonation) or combining its priv-
ileges too (composite) is based on the del-
egation mode speci�ed for the intermediate
object. Mode speci�cation may be explicit
through the application, or may be implicitly
set by the administrator of that object service.

3.3 Controlling Delegation

Objects can explicitly enable delegation
at the application level. This is accom-
plished by using an AccessControllerobject.
The AccessController method enable-

Privileged() permits delegation. Method
enablePrivileged(RoleType) is similar, ex-
cept that when a role type is passed, the
available privileges for that session are ex-
tended or restricted to the privileges associ-
ated with that enabled role. This functional-
ity is not restricted to delegation. It can also
be used whenever access to local methods and
resources need special control. For example,
consider a system administrator who logged
in as a normal user but would like to exercise
super-user privileges for an account creation.
In this case, the administrator could invoke
enablePrivileged(superUser) to enable su-
per user privileges.

Either implicit or explicit enabling can be
used to specify control in cases of Cascaded
Delegation where the intermediary objects are
unaware of secure delegation. If the interme-
diate is unaware, then the underlying security
layer must e�ectively carry out either Simple
Delegation or a special delegation mode set by

public class TravelAsst {

:

public void makeReservation() {

:

AccessController.enablePrivileged(managerRole);

AccessController.enableSimpleDelegation();

remoteAdmin.purchaseTicket();

AccessController.disableDelegation();

AccessController.disablePrivilege();

:

}

}

Figure 4: Sample Usage

an administrator. In SDM, explicitly speci-
�ed modes are settable at the application level
may and override the default mode set by the
administrator. Either way, delegation require-
ments become attached to an intermediate ob-
ject's reference. This set of requirements is
made available to any client holding a refer-
ence to this remote (intermediate object) ref-
erence.

In contrast, a delegation-aware intermedi-
ate might explicitly enable delegation for a
method call. In SDM, this explicit delegation
may be performed at the application level. If
delegation is enabled, the client may generate
a delegation certi�cate and pass it on to the
intermediate object. Otherwise, no delegation
certi�cate is generated and the intermediate
provides service using only its privileges and
none of the delegator's (in which case, NoDel-
egation is the delegation mode).

An intermediate may also explicitly enable
delegation using the AccessControllermeth-
ods enableSimpleDelegation() and en-

ableCascadedDelegation(). The speci�ed
delegation mode is taken into account when
privileges of the intermediate need to be pre-
sented to consecutive objects in the method
invocation chain. Whether the intermediate's
privileges are combined with the delegator's
is based on the mode of delegation. The sys-
tem can obtain the security requirements at-
tached to any remote reference. The delega-
tion, if required by the speci�ed requirements
(and target object is thus willing to act as a
delegate), is activated appropriately from the
context. Using the context of invocation, dele-
gator's AccessControler determines the Code-

Executor who is executing client's code. This
CodeExecutor becomes the Signer of a delega-
tion certi�cate, and thus e�ectively the initia-
tor of a delegation.

An example of application-level control is
shown in the code segment in Figure 4.
This code could be used to handle situa-
tions in which a client object invokes method
makeReservation() on an object of type
TravelAsst. The TravelAsst object might in
turn invoke methods on a remoteAdmin object.
In the sample code, the travelAsst explicitly
enables delegation before further invocation on
remoteAdmin.

3.4 Delegation Certi�cates

When an object decides to delegate a task
to another object (e�ectively to the Code-
Executor of that object), it creates a delega-

tion certi�cate. This certi�cate speci�es the
initiator, role it is delegating, any constraints
that are bound to the delegation, a nonce, va-
lidity period and its DelegationServer name for
handling queries regarding delegation revoca-
tion. A role certi�cate is associated with the
role being delegated, which might contain a
set of privileges associated with it.

A delegation certi�cate is generated using
the CodeExecutor as FromPrincipal and the
CodeExecutor of the remoteAdmin object as
the ToPrincipal. Implementations could be
based on public key cryptography using X.509
certi�cates, as illustrated in Figure 5. The as-
sociated role (and hence, set of privileges) is
speci�ed in the certi�cate.

A delegation certi�cate is issued for every

--Signature--

DelegationCertificate

DelegationCertInfo

ToPrincipal

ToPrincipal-key
DelegationPeriod
FromPrincipal

DelegationID

SubjectName
SubjectPublicKey
ValidityPeriod
IssuerName
SerialNumber
Algorithm
Issuer
IssuerID
SubjectID

DelegatedRoleName
RoleCertificate or RoleServerURL
DelegationQueryServerURL
DelegationConstraints

DelegationCertInfo

(meaning in delegation cert)
X509CertInfo

X509Certificate

X509CertInfo

--Signature--

Delegation

Identity getInitiator()

Identity getDelegator()

long getDelegationID()

Role getDelegatedRole()

String[] getDelegateChain()

boolean isValid()

Certificate

boolean isRevocable()

URL getInitiatorServer()

Privilege[] getPrivileges()

Identity getDelegate()
 Principal p)

boolean isPermittedDelegate(

boolean isDelegatable()

Figure 5: X.509 and Delegation Certi�cates

delegation session unless an earlier delegation
has been set to remain valid for consecutive
sessions. The type of the delegation cer-
ti�cate (SimpleDelegationCert or Cascaded-
DelegationCert) re
ects the kind of delegation
that is activated for this session. If the dele-
gation is revocable, the end-point makes sure
that the delegation certi�cate is not revoked
before it provides access.

Selection of consecutive delegates is made
by an intermediate. Selected principal (Code-
Executor of the selected object for further del-
egation) is veri�ed to be a permitted delegate
by invoking the isPermittedDelegate(Prin-
cipal)method on the certi�cate (Delegation-
Certi�cates must implement the Delegation

interface shown in Figure 5). This method will
scan through the list of exempted delegates
(if any) and accordingly will return a boolean

value, indicating whether or not the principal
is a valid delegate.

4 Delegation Protocols

SDM employs a set of basic protocols that
underly the usages described in Section 3.
SDM delegation protocols specify what infor-
mation gets exchanged when an object A in-
vokes a method on object B. The underlying
layer must determine the delegation mode to
be enabled from the context and security re-
quirements attached to the target (remote ref-
erence B). Thus, the security policy for an in-
termediate object governs which privileges and
delegation mode to apply at any given context.
(See Figure 6.)

Di�erent rules apply for each of the combi-
nations of required and speci�ed modes that

associate DCabwith the its delegateIdentity
combine B’s privileges if mode is CascadedDelegation
access any method or resource as ’BforA’

DelegationCertificate

DelegationCertificate

authentication

getSecurityRequirements

DCbc Certificate within

getSecurityRequirements

authentication

B C

check if

check if C is not in delegate-exception list in

nest the DCab

DCab is delegatable further

DCab

DelegationCertificateDCabcreate

become DelegateIdentity’Cfor’BforA’’

if revocable, contact initiator A
combine privileges if Cascaded

access methods as ’Cfor’BforA’’

DCbc with DelegateIdentityassociate

DelegationCertificate BtoCcreate DCbc

become a DelegateIdentity ’BforA’

A

Figure 6: Main Delegation Protocol in SDM

can occur in a sequence of invocations from
object A to object B to C. (i.e A ! B ! C):

does not enable Delegation, spec-

i�es NoDelegation. Delegation is disabled
for this session. No delegation certi�cates are
generated. Methods on object B are invoked
as if invoked by object A, and methods in-
voked by object B on the next object in the
delegation chain are invoked with object B 's
privileges and so on. Any object that is in-
voked by B will not get any information that
re
ects that A has delegated to B to complete
the task.

does not enable Delegation, spec-

i�es Simple or Cascaded Delegation.

Delegation is disabled for this session even
though B requires it. When the operation that
requires delegation from A to B is attempted,

an exception is thrown and the operation is
not carried out.

enables Delegation, requires

NoDelegation. If the security requirements
attached to B specify that delegation not be
enabled for this session, then no delegation
certi�cate is generated. The method on ob-
ject B is invoked as if invoked by object A,
and method invoked by object B on the next
object in the delegation chain is invoked with
object B 's privileges and so on.

enables Delegation, requires Del-

egation. If B requires delegation, A must
generate a delegation certi�cate, DCab, to B.
This delegation certi�cate is available to B for
any further invocation. Consider when B need
to invoke a method on another object C. Such
invocation on object C is carried out by B as

a DelegateIdentity (B for A) (i.e., B is a del-
egate and A is the initiator).

enables Delegation, speci�es Simple

Delegation. Further invocations (and dele-
gations, if any) made by B are made as (B for

A) with only the privileges of A being used.
In other words, B impersonates A (B as A).
Any target that receives a request from B will
authenticate B and obtain the delegation cer-
ti�cate DCab. Further control will be based
on privileges of A and B 's capacity to act as a
delegate.

enables Delegation, speci�es Cas-

caded Delegation. Further invocations
and delegations are made by B by combin-
ing both the privileges of A (using delegation
certi�cate DCab) and B (by providing neces-
sary role certi�cates or identity certi�cates).
In other words, B represents A by combining
the privileges of both A and B. Any target re-
ceiving a request from B will base its access
decision on A being a initiator and B being a
delegate, with the combined privileges of both
A and B.

4.1 Chained Invocations

Once the intermediate B has obtained the
delegation certi�cate DCab from A, it has the
authority to speak for A. To complete the
service, B might have to invoke methods on
other objects. When B selects C to be the
next target, B represents an entity (B for

A) and requires access to method invocation.
At this point B exercises the type Delegate-
Identity and during the process of becoming a
DelegateIdentity, the delegation mode is con-
sidered to calculate the privileges of the del-
egate (here, B). In this case of B being a
DelegateIdentity, B can authenticate for it-
self. Also, it provides the delegation certi�-
cate DCab to prove that A has indeed dele-
gated the task to B. C authenticates that it
is actually B it is talking to, through normal
authentication procedures. It veri�es the del-
egation certi�cate to be signed by A by ver-
ifying the digital signature of A that is en-
graved in the certi�cate DCab. These provide
proof of the fact that \B speaks for A", ab-
breviated as or (B for A)[1]. The delegate's
(B 's) getPrivileges() method returns the
privileges associated with B, which is either

only the privileges gained through delegation
(A's privileges only), or also includes the priv-
ileges of the delegate identity itself (both B 's
privileges and A's privileges). Thus the set of
privileges returned by the delegate re
ects the
privilege of the identity (B for A) during that
context.

Based on access control policies on the tar-
get C, the method invocation and any related
resource accesses are controlled. These access
control policies may be based on only the ini-
tiator (A) or might depend on the delegates as
well.

If C requires delegation from its requester
and B is a delegate for A possessing a delegate
certi�cate DCab, i.e., (B for A) then:

1. B �rst checks if this delegation is forward-
able, i.e., delegatable to further interme-
diaries.

2. If it is forwardable, B checks whether C

is present in an exception list provided
with the delegation certi�cate DCab (i.e,
whether A disapproves any further dele-
gation to C).

3. If delegation to C is not prohibited, B

generates a delegation certi�cate DCbc

and passes on DCab with it to C. The del-
egation certi�cate DCbc may contain: i)
A's privileges only, ii) B 's privileges only,
or iii) a combination of both, depending
on the delegation mode speci�ed in the
delegate identity B. Once B delegates to
C, the delegation chain becomes A ! B

! C, i.e., (C for (B for A)).

In contrast, if B is not a delegate for A, that
is if B had not speci�ed delegation in its se-
curity requirements, then A would not have
generated (and passed on) the delegation cer-
ti�cate DCab to B. In this case, when a re-
quest is issued to C, it is not possible for B

to establish A as the original initiator due to
the lack of a delegation certi�cate. So C must
treat it as if the request originated from B and
handle it accordingly, without having any idea
about the involvement of A in the complete
invocation chain. Extending this chain to one
more principal, we get A! B ! C ! D. If B
does not require delegation and C does, then
when the request reaches D, D will treat the

request to have initiated from B and delegated
through C.

Thus, at any given time, control is based
only on currently available information on the
delegation chain and the speci�ed modes and
policies. SDM does not support any means
of tracing back calls through intermediaries to
obtain predecessor delegation certi�cates.

4.2 An Example

Consider an example of an user, A, using the
services of a TravelAgent object, B. Let object
B provide services related to travel reserva-
tions and travel arrangments. It might in turn
need to make use of the services of AirlinesSer-
vices provided by an object, C. A obtains the
reference of B and invokes the makeReserva-

tion method on B. Object B might specify,
attached with its object reference, a set of se-
curity requirements. Let the security require-
ments specify that Delegation is required. In
SDM, our system will analyse this security re-
quirement attached to an intermediate object
(in this case, object B) and whether A is will-
ing to delegate (known fromA's security speci-
�cation attached to its object reference). Map-
ping this example to the delegation protocol
described in Figure 6, the underlying system
generates a delegation certi�cate and passes it
on to B.

Let the travel agent B contact the airline
object, C, to make an airline reservation by
invoking the purchaseTicket method. At this
point, B provides its certi�cates (preferred
travel agent certi�cate, certi�ed travel agent,
etc) along with the delegation certi�cate is-
sued by A. B acts as a delegate, acting on
behalf of A, and makes a request to C. For
this request B combines its own privileges (of
being a preferred travel agent, authorizzation
to make reservations, etc) along with the priv-
ileges of the intiator A (as the service might
make use of A's credit card, or a travel coupon
issued explicitly to A). Thus B makes use of
CascadedDelegation facility provided by SDM
while invoking the purchaseTicket method on
the object C.

5 Revocation

Sometimes users and services need to re-

voke privilege assignments. Users change their
minds; people leave groups, services change

functionality, and so on. Even though it adds
complexity, any practical delegation protocol
must support revocation.

In SDM, revocability is an optional at-
tribute of delegation. If performance is an
issue, or revocation is somehow known to
never ne necessary, the delegation can be made
non-revocable. This facility to explicitly en-
able or disable revocation is again carried
out using the AccessController object. The
changed revocation status remains valid, until
it gets changed again. The AccessController
method setRevocableDelegation(true) en-
ables delegation to be revocable until it is set
otherwise.

If delegation is revocable, then the end-
point (but not necessarily any of the interme-
diate delegates) of a chain must be able to �nd
out. In SDM, the DelegationID and delega-
tion server (URL) associated with certi�cates
de�ne the uniqueness of a delegation certi�-
cate. If the endpoint has not seen the dele-
gation certi�cate earlier, it must contact the
DelegationServer of the initiator and verify its
validity. And if it is not a one-shot delegation
(a delegation that is valid for one access re-
quest only), the end point registers itself as a
DelegationRevocationListener with the initia-
tor.

When an end-point receives a service re-
quest from a principal, its AccessControl-
ler checks if the service has been delegated
through the invoking principal, and if so
whether the delegation is revocable. If the
delegation is not revocable, it goes ahead to
provide/deny access according to the delegates
privileges.

But if the delegation is revocable:

� The AccessController �rst checks if
the delegation certi�cate is in a local
<delegationCertificate, status> table.

� If the certi�cate is not present in the ta-
ble, then this must be the �rst time this
delegation certi�cate has been obtained.
It contacts the DelegationServer of the
initiator querying the status of the del-
egation.

� If the delegation is not one-shot, the user
setting is analyzed to see if the change-

of-status noti�cation is periodic or aperi-
odic.

� In the default aperiodic case, the end-
point registers itself as a DelegationSta-
tusListener with the delegation server for
future updates only upon status changes.

� In the periodic case, the end-point reg-
isters itself as a DelegationStatusListener
with the delegation server for future peri-
odic updates at a given update interval.

� If the delegation is revoked (i.e., the del-
egation is no longer valid), the access is
denied. Otherwise, the AccessController
then provides or denies access according
to resulting status and deletage privileges.

5.1 Revocation Noti�cations

In SDM, revocation is possible even when
the initiator does not know the endpoint a-
priori. When an end-point (�nal target) re-
ceives a revocable delegation request, it reg-
isters with the initiator as being interested in
receiving revocation noti�cations. Thus each
of such end-points register themselves as Del-
egationStatusListeners to the initiator. The
initiator in turn maintains a list of end-points
to whom its delegation has propagated. These
end points will implement the Noti�cation-
Handler interface, to handle any event noti-
�cation.

If the end point contacts the initiator ev-
ery time before servicing a delegated request,
then the end point is considered to follow a

pure pull mechanism to obtain the status in-
formation from the initiator. A common al-
ternative is pure push mechanisms, in which
the initiator continually broadcasts out revo-
cation information. Analyses of similar proto-
cols using Broadcast Disks [3] show that pure
pull provides extremely fast response time for
a lightly loaded server, but as the server be-
comes loaded, its performance degrades, un-
til it ultimately stabilizes. The performance
of pure push is independent of the number
of clients listening to the broadcast. But if
the number of interested clients (end points) is
large, then its a wastage of resources to send ir-
relevant data. A more serious problem is that
the servers might not deliver the speci�c data
needed by clients in a timely fashion. One so-
lution suggested by Zdonik [3], is to allow the

clients to provide a pro�le of their interests to
the servers.

In SDM, the clients are the end points who
are interested in the revocation status of cer-
tain delegations (serviced by those end points).
When an end-point receives a delegated re-
quest, the �rst time around it pulls informa-
tion from the initiator about revocation sta-
tus and at the same time registers itself to re-
ceive delegation-related events. The pro�les
of those end points of interest in SDM, are the
details on whether they require periodic push
or aperiodic push. A aperiodic push is event
driven { a data transmission is triggered by
an event such as data update (in SDM, it is a
change delegation status). Hence, end points
(and hence, the Noti�cationHandlers) are no-
ti�ed of any change in delegation or its privi-
leges by the initiator (which might use a helper
object that implements EventGenerator inter-
face). A periodic push is performed according
to some pre-arranged schedule. The end point,
when it registers itself with the initiator, will
specify the time interval of periodic updates
(pushes). Hence, the initiator will push del-
egation details at speci�ed time intervals to
the registered end points. This leaves it to the
end point to specify whether it needs aperiodic
or periodic (if so, the necessary time interval)
pushes. Thus the end point need not pull in-
formation after its initial \pull" as the initiator
will \push" (revocation) data to registered lis-
teners (end-points). Either periodic or aperi-
odic, this pull-once-push-many approach sup-
ports revocation where an end point receives
revocation noti�cations from an initiator.

An end point will decide to specify its in-
terest in periodic or aperiodic pushes from the
initiator based on how critical the revocation
a�ects its service and its resources. For ex-
ample, if the end point is a TelephoneDirec-
tory service then providing information to a
requesting delegate (a secretary object) about
a revoked number is not very crucial, as the
delegate might not misuse the telephone num-
ber. In this case, periodic pushes from the
service department is not necessary and the
end point might settle in for aperiodic pushes
only. On the other hand, if the requested ser-
vice is providing classi�ed information, then
the end point needs to know the revocation of
the delegate (for example, a secretary object)
immediately. In this case, short-interval peri-

odic pushes from the service department may
be selected. The load on the server to keep
pushing revocation status of its delegates be-
comes worth its cost when compared to the
risk involved in providing classi�ed informa-
tion to any revoked delegate.

6 Status and Future Work

This paper has focussed on the way in
which delegation is structured and used in
SDM to support secure operation when multi-
ple components together provide a given ser-
vice. SDM builds upon exisitng mechanisms,
mainly those already established in the Java
JDK1.2 security framework, to establish a
practical basis for constructing
exible yet se-
cure components and support infrastruture.
SDM extends the JDK1.2 framework to in-
clude explicit support for principals. We have
provided implementation strategy for SDM to
be built over the JDK1.2 framework.

As outlined in section 2.2, implementation
of SDM requires that the JDK1.2 domain
model be extended to include principals, so
that each CodeSource will also have a prin-
cipal associated with it. One domain will be
formed for each such <CodeExecutor, Code-

Source>. Further authentication and access
control (and delegation) may then be based
on the CodeExecutor.

To support PrincipalDomains, the Java run-
time system must maintain a mapping from
<CodeSource, CodeExecutor> pair to their
protection domains and also the mapping be-
tween protection domains and their privileges.
This could, for example, be implemented at
the execution stack level with the aid of class
blocks and the executing environment frame,
as illustrated in Figure2.

In future, we intend to implement our SDM
delegation framework over the JDK1.2 secu-
rity framework. We have already implemented
access control mechanisms [16] based on Code-
Source information. We plan to extend the
mechanism to include the information on prin-
cipals to further control any access requests.

7 Discussion

SDM provides a realistic security framework
for Java-based distributed object systems. It
isolates the complexities of the underlying pro-

tocols necessary to provide a very wide range
of security policies and trust levels. It presents
application writers and system administrators
with a
exible, uniform API. SDM appears to
be the most conservative extension of the Java
1.2 security architecture that simultaneously
supports both delegation- and role-based se-
curity, along with revocation mechanisms that
are often needed in practice.

The design of SDM has also bene�ted from
other work in security architectures, but dif-
fers from previous systems in signi�cant ways:

DSSA. Roles are not explicit in DSSA[4]
and are achieved through their notion of
groups, whereas explicit support for roles is
provided in SDM. DSSA supports only com-
bined delegation, whereas SDM supports both
combined delegation and composite delega-
tion.

Varadharajan et al. The main revoca-
tion strategy proposed by Varadharajan et al
[14] propagates revocations through delegates.
These revocations might not take e�ect due
to network problems or other distributed fail-
ures. Another solution proposed in [14] as-
sumes prior-known end point. This is also sup-
ported in SDM. Approaches suggested in their
paper require changing the key associated with
a principal. This is not e�ective in public key
systems, which are generally more manageable
and scalable in distributed system (and are
supported in SDM). They also suggest passing
a read capability of the delegation token and
not the token itself. Our approach is vaguely
similar in that the end point need to contact
the initiator before servicing. But by using the
pull-once-push-many approach, SDM does not
need to contact initiator because the initiator
will multicast revocation details, if needed.

SESAME. SDM provides both simple and
cascaded (composite, combined) delegation
with support for constraints whereas SESA-
ME[8] supports only simple delegation. Also,
unlike SESAME, SDM also supports scalable
distributed naming schemes.

Kerberos. In Kerberos[13], the end-point
contacts authentication server for every signa-
ture authentication as it uses shared key ap-
proach. SDM allows implementation via pub-

lic keys and hence need not contact an au-
thentication server every time. Kerberos does
not support roles. Principals can restrict their
privileges before delegation. Also, kerberos
does not support cascaded delegation. There
is no mechanism mentioned for revocation.

Taos. Taos[15] has no mechanism for revo-
cation implemented. It supports the notion
of a Privileges Server. Every time an access
is processed by the end-point, it contacts the
privileges server to validate the certi�cate.

DCE. DCE[2] does not provide any facility
for revocation. Also, DCE uses shared key au-
thentication which is not as scalable in dis-
tributed environments.

7.1 Limitations

We are aware of the following limitations of
SDM, that re
ect some of engineering trade-
o�s encountered in its design:

� SDM relies on initiators to enable delega-
tion. If they do not, delegation will never
be enabled and hence no delegation cer-
ti�cates will be generated. If delegation
is not initially enabled, at a later stage
during method execution (through dele-
gation), a target object cannot determine
the original initiator of the request. The
only way to �nd out the original initiator
would be to use a call back trace mecha-
nism, which is not supported in SDM.

� SDM does not support any means to
check whether a principal adopts mutu-
ally disjoint roles. SDM cannot ensure
that roles adopted by a principal do not
con
ict (for example simultaneously re-
quiring and prohibiting rights).

� Although the pull-once-push-many ap-
proach is an e�cient approach, event noti-
�cation does not carry any real-time guar-
antees due to possible network latency.
Before a revocation event noti�cation ar-
rives to a listener, the listener might have
already allowed the revoked delegation.
Hence, the event noti�cation across dis-
tributed systems in SDM is not atomic.

References

[1] M. Abadi et al, \A Calculus for Access
Control in Distributed Systems", ACM

Transactions on Programming Languages

and Systems, pp 706-734 Sept 1993.

[2] M. Erdos, J. Pato, \Extending the OSF
DCE Authorization System to Support
Practical Delegation", PSRG Workshop

on Network and Distributed System Se-

curity, Feb 1993.

[3] M. Franklin, and S. Zdonik, \A Frame-
work for Scalable Dissemination-Based
Systems", Proceedings of OOPSLA '97,

pp Oct 1997.

[4] M. Gasser, E. McDermott, \An Archi-
tecture for Practical Delegation in a Dis-
tributed System", Proceedings of the 1990
IEEE Symposium on Security and Pri-

vacy, p20-30, May 1990.

[5] L. Gong, \Java Security Architecture
(JDK1.2)," Draft document, Revision

0.5, available from Java Developer Con-

nection, http://java.sun.com .

[6] N. Nagaratnam, \Secure Practical Del-
egation for Distributed Object Environ-
ments," PhD Dissertation, Syracuse Uni-
versity, 1997.

[7] Object Management Group, CORBA: Se-
curity Service Speci�cation

[8] T. Parker, D. Pinkas, \Sesame V4 -
Overview", Issue 1, Dec 1995.

[9] R. Sandhu et al., Role-Based Access Con-

trol Models, IEEE Computer

[10] R. Sandhu et al., Role-Based Access Con-

trol, Proc of 10th Annual Computer Se-
curity Applications Conference, 1994, pp
54-62.

[11] R. Sandhu, and P. Samarati, \Access
Control: Principles and Practice", IEEE
Computer, pp 40-48, Sept 1994.

[12] Karen Sollins, \Cascaded Authentica-
tion,", Proceedings of the IEEE Sym-

posium on Security and Privacy, IEEE
Computer Society, 1988, pp 156-163.

[13] J. Steiner et al, \Kerberos: An authenti-
cation service for open network systems",
Proceedings of the Usenix Winter Confer-

ence, 1988, pp 191-202.

[14] Varadharajan et al., \ An Analysis of the
Proxy Problem in Distributed Systems",
Proceedings of the IEEE Symposium on

Security and Privacy, 1991, pp 255-275.

[15] Wobber, Abadi, Burrows, and Lampson,
\Authentication in Taos Operating Sys-
tem", ACM Transactions on Computer

Systems, Vol. 12, No. 1, February 1994.

[16] N. Nagaratnam, and S. B. Byrne, \Re-
source Access Control for an Internet
User Agent", Proceedings of the USENIX
Conference on Object Oriented Technolo-

gies and Systems '97, June 1997.

[17] A. Wollrath, R. Riggs, and J. Waldo, \A
Distributed Object Model for the Java
System," Proceedings of the USENIX

Conference on Object-Oriented Technol-

ogy and Systems '96, July 1996.

