
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Embedded Systems Workshop
Cambridge, Massachusetts, USA, March 29–31, 1999

Using Mobile Code Interfaces to Control
Ubiquitous Embedded Systems

Kari Kangas and Juha Röning
University of Oulu

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

8VLQJ�0RELOH�&RGH�,QWHUIDFHV�WR�&RQWURO�8ELTXLWRXV�(PEHGGHG�6\VWHPV

Kari Kangas and Juha Röning

8QLYHUVLW\�RI�2XOX��'HSDUWPHQW�RI�(OHFWULFDO�(QJLQHHULQJ
&RPSXWHU�(QJLQHHULQJ�/DERUDWRU\

3�2��%2;�������),1�������2XOX��)LQODQG
�^PDFFRQHQ��MMU`#HH�RXOX�IL

$EVWUDFW

Devices controlled by embedded computers are be-
coming an integral part of our everyday life, as proces-
sor and memory capacities continue to increase while
their cost decreases. In some embedded systems, how-
ever, the limited input and output capacities are begin-
ning to restrict the design of complex functionality.
Furthermore, as wireless communication devices are
becoming commonplace even in embedded systems, the
communication and interoperation between different
systems will be increasingly important in the future.
This paper describes a flexible, yet powerful concept
that explains how a mobile code can be conveniently
utilized by mobile users to control ubiquitous and di-
verse embedded systems in different environments.
Apart from providing flexibility, the concept also aims
to keep the embedded systems as simple as possible.
We will illustrate the concept by presenting as an ex-
ample a virtual user interface for a videocassette re-
corder. We will also discuss the possible benefits and
drawbacks of the system. The concept described here
can be extended to allow the mobile code to be used as
interconnecting “glue” in diverse embedded systems.
This glue could connect systems from several manu-
facturers to create smart environments that can be con-
trolled by a single simple device.

��� ,QWURGXFWLRQ

This paper describes the use of a mobile code to create
Virtual User Interfaces (VUIs) that can be used to con-
veniently control ubiquitous embedded systems. Di-
verse embedded systems are becoming an integral part
of our everyday life. We already encounter a large
number of embedded systems not only at home but also
elsewhere in our daily life. In the near future, embedded
systems will be used to make up smart environments;
i.e. environments that contain a very large number of
objects controlled by a hidden, or embedded, computer
[1]. In such environments, it is desirable that the same
underlying technology and a single simple device can
be used to control several embedded systems. We do
not want every system to require a separate remote

control unit or to include a complete user interface, as is
usually the case at the present. Furthermore, the same
technology should also be available to a mobile user.
The mobile user should be able to control the unknown
embedded systems that he or she may encounter in
various environments. In addition, the communication
between the embedded systems and the controlling de-
vice should be as local as possible, so that low-power
and high-bandwidth communication devices, such as
Bluetooth [2], could be used. Internet connection
should only be required in exceptional situations. Local
communication is closely related to the principle of
self-containment. The embedded system in itself should
contain at least the most important components required
for controlling it. In this paper, we describe a concept
that is our first step towards a system that can be used
to control truly ubiquitous embedded systems in future
mobile computing.

The functionality of embedded systems has traditionally
been restricted by the high cost of processor power and
memory capacity [3]. Low cost is especially important
in consumer electronics. As the cost of powerful proc-
essors, memory, and other microelectronics has
dropped dramatically, a large variety of extended func-
tionality is being designed for embedded systems [4].
However, input and output capabilities have not im-
proved at the same pace as the other capacities and
some cases where complex functionality is imple-
mented even require design compromises.

Embedded systems, such as Videocassette Recorders
(VCRs) and microwave ovens, usually have displays
that provide only very limited functionality for dis-
playing text and high-resolution graphics. These dis-
plays are usually constructed by using Light Emitting
Diodes (LEDs) or Liquid Crystal Displays (LCDs).
Furthermore, these systems usually contain limited in-
put devices, such as miniature keyboards, that may be
inconvenient to use. Cost is the main reason why high-
quality interfaces cannot be included in all embedded
systems. However, this is not necessarily the only rea-
son. Display and keyboard size is strictly limited in
devices such as cellular phones or personal heart rate
monitors.

Thus, the input and output capabilities are becoming the
limiting factor in embedded systems in the future. This
is especially problematic in the field of consumer elec-
tronics where most devices now fulfil their basic func-
tionality requirements, and extended features are in-
cluded to attract consumers. Setting up a VCR to record
a TV show at a desired time without first consulting the
manuals is already too difficult for some users. As em-
bedded devices are becoming increasingly ubiquitous in
the future, there will be an even more diverse user
population while at the same time the necessity of being
able to control various embedded systems will increase.
To make the new users comfortable with new systems,
we will need descriptive error messages in plain text,
context-sensitive online help facilities, and automated
configurations instead of cryptic error codes and sig-
nals.

Creating a virtual user interface by using the capabili-
ties of an external control device (also referred as a cli-
ent), such as a Personal Digital Assistant (PDA), can
provide abundant input and output capabilities for an
embedded system. In addition, the same device can be
used to create virtual user interfaces for various sys-
tems, and it therefore also provides a notably cost-
efficient solution compared to the alternative of in-
cluding these input and output capabilities in each indi-
vidual embedded system.

This paper describes a technique for creating virtual
user interfaces by using a mobile code. For the purpose
of this paper, mobile code is a software component that
comes from one computer system and is executed by
another. Java applet is an example of such a mobile
code component. For the mobile code to be utilized, the
embedded system must contain the code that is re-
quested and used by an external control device to create
a virtual user interface. This virtual user interface is
then used to control the embedded system. The virtual
user interface and the embedded system communicate
by using an internal protocol that is completely invisi-
ble to the outside system. Below, a PDA will be used as
an example of a control device.

The mobile code technique has three main goals. The
first and most important goal is to minimize the proces-
sor and memory requirements of an embedded system
while still providing enough flexibility and scalability
to allow the technique to be used in diverse applica-
tions. This is achieved as follows. The software in the
embedded system can be constructed by using tradi-
tional programming conventions and languages. The
embedded system is not required to contain a virtual
machine or to use software written in any specific pro-
gramming language. In addition, different system
manufacturers only need to agree on a very simple mo-
bile code protocol. The only purpose of this protocol is

to help the PDA user to identify different systems and
to transfer the mobile code. Furthermore, the technique
presented in this paper does not place any restrictions
on the actual mobile code that is used to create a virtual
user interface, nor does it restrict the appearance of the
virtual user interfaces.

The second goal is to make it possible to construct self-
contained embedded systems that can be controlled by
using only local communication between the embedded
system and the PDA. This would make it possible to
use only low-power and high-bandwidth devices for
communication. Local communication is achieved by
storing the mobile code in each individual embedded
system. It should be noted that the flexibility mentioned
above is not sacrificed, as some parts of the mobile
code may come, for example, from a server in the
Internet. Storing parts of the mobile code in an external
server violates the self-containment principle, but may
be beneficial in some situations.

The third goal is to enable mobile computing. In mobile
computing, the user roams in different environments
and may encounter embedded systems previously un-
known to him or her. It is therefore important that the
PDA can adapt to new environments and new systems.
In addition, the communication between the embedded
systems and the PDA may be sporadic and the connec-
tions highly volatile. Adaptation to new systems is
achieved by downloading the mobile code from each
embedded system. The PDA is not required to identify
the embedded system, but only to be able to execute the
mobile code. A connectionless message based commu-
nication protocol is used to match the volatile commu-
nication channels.

This paper has been organized as follows. Chapter 2
will present related work. Chapter 3 will describe in
detail the concept of utilizing a mobile code to create
virtual user interfaces. Chapter 4 will describe an ex-
ample system constructed to demonstrate how the mo-
bile code concept can be implemented. Chapter 5 will
discuss the benefits and drawbacks related to the mobile
code technique. Chapter 6 will draw a conclusion and
illustrate future work.

��� 5HODWHG�:RUN

Creating remote displays by using the X Window pro-
tocol in Unix or in systems utilizing teleporting [5] can
be considered similar to creating virtual user interfaces.
To make a clear distinction between these systems and
the virtual user interface concept presented in this pa-
per, such systems are said to utilize a display protocol.
The systems utilizing a display protocol are constructed
so that an embedded system executes a program and a
PDA displays a user interface of that program by using
its display capabilities. These two systems share a

common display protocol that is used to exchange dis-
play information. The PDA uses the information sent
by the embedded system to construct and modify the
user interface. When the user performs an action using
the remote user interface, the PDA sends data contain-
ing the user commands to the embedded system for
processing.

As obvious, designing a general-purpose display proto-
col usable in every possible application is by no means
a trivial task. For example, the protocol must be flexible
enough to meet the requirements of the different appli-
cations. Flexibility may, in some situations, mean that
the protocol will be very complex and difficult to im-
plement and use. Flexibility is usually achieved by in-
cluding a redundant code to be utilized in future appli-
cations, and this redundant code may require too much
storage to be usable in some embedded systems. Fur-
thermore, the protocol must only require a small
amount of communication bandwidth to be usable in
systems with very limited communication resources.
Even if such a general-purpose protocol can be de-
signed, it must be widely accepted by the competing
industry and be standardized. This can be very difficult,
especially in the highly dynamic field of consumer
electronics.

One way to reduce the required communication band-
width is to use a lightweight version of the display
protocol to create a remote user interface. An example
of such a protocol is the Virtual Network Computing
(VNC) protocol [6]. These protocols usually differ from
normal display protocols in that the level of message
abstraction is raised in order to reduce the amount of
data transmitted between the embedded system and the
PDA. In other words, whereas normal display protocols
usually describe the remote user interface in great de-
tail, lightweight protocols only describe the overall
structure and rely on the more complex display services
provided by the remote computer. This naturally re-
duces the need for communication but also reduces
flexibility.

Another drawback in designing a standard communica-
tion protocol is that the embedded system generates the
protocol messages that are used by the PDA to display
the user interface. This means that the command mes-
sages arriving from the PDA as a result of user interac-
tion must be translated into corresponding user inter-
face messages. These messages are then sent back to
the PDA. Assuming that the embedded system is rela-
tively simple, the resource requirements for keeping
track of the remote user interface status and generating
correct messages may increase to undesirable extend.

One way to reduce the bandwidth requirement of re-
mote user interfaces is not to use a display protocol at
all, but to use some other relatively lightweight and

possibly ubiquitous and well-known communication
protocol instead. One possibility is to use the Hypertext
Transfer Protocol (HTTP), usually combined with
Common Gateway Interface (CGI) programs [7, 8]. The
PDA requests Hypertext Markup Language (HTML)
pages from the embedded system and displays them
using a web browser. CGI programs can be used to
construct these pages dynamically, so that they reflect
the current status of the system. In addition, CGI pro-
grams are used to receive the commands issued by the
web browser user. The benefit in this approach is that
ubiquitous web browsers can be used to control the
embedded system. Furthermore, the utilization of
HTML pages and CGI programs is a simple and well-
known technique. The drawbacks include the require-
ments of the embedded system to execute a TCP/IP
stack and at least a minimal HTTP server. In addition to
this, HTML pages have several limitations when used
to create remote user interfaces. First of all, HTML
pages cannot display data with temporal characteristics
by default i.e. an HTML page can only be used to dis-
play a static snapshot of the system status. One way to
display the dynamics is to use the HTTP push tech-
nique, but it may, in some circumstances, take up too
much communication bandwidth. As an example, con-
sider a situation where a new HTML page is pushed to
the PDA every second, or every tenth of a second.

Another and more flexible way to create remote user
interfaces is to use the HTTP and CGI programs in
combination with Java applets, as outlined in [9]. The
PDA uses the HTTP to request a Java applet. When the
Java applet is run, it communicates with the embedded
system using an application-specific protocol. The use
of HTTP and Java applets naturally requires the em-
bedded system to contain a communication component
in addition to an HTTP server. The communication
component communicates with the Java applet using an
application-specific protocol. HTTP can also be used
for communication between the Java applet and the
embedded system, using CGI programs as described
earlier. In essence, the principle in the HTTP and Java
applet combination is the same as in the mobile code
approach presented in this paper: to use a commonly
agreed protocol to obtain a mobile code from the em-
bedded system and then to use this code to create a re-
mote user interface. An application-specific protocol is
then used for subsequent communication between the
remote user interface and the embedded system. The
main problem with HTTP is that it is usually used in
combination with the TCP/IP protocol. Most of the em-
bedded systems in smart environments can be expected
to be relatively simple; thus the TCP/IP protocol may
be too heavyweight for such systems if they do not oth-
erwise require an Internet connection.

The commercial systems Inferno [10] and Jini [11] also

offer a solution for controlling networked embedded
systems, and the control aspects of Jini are very similar
to the HTML and Java applet approach described
above. However, both Inferno and Jini rely heavily on
running a virtual machine in the embedded system and
use a restricted set of programming languages. Fur-
thermore, as they have both been designed by default to
operate by using an Internet connection and the TCP/IP
protocol, they would require slight customization to be
suitable for wireless mobile computing. The reader
should note that both Inferno and Jini provide a rich set
of features other than control interfaces, which means
that placing a virtual machine in an embedded system
may be suitable in some applications. However, we feel
that the manufacturer of the embedded system should
not be forced to use a specific virtual machine or pro-
gramming language.

Systems utilizing a mobile code for controlling embed-
ded systems have also been described in [12] and [13].
Both of these systems rely on mobile code servers and
the Internet for obtaining the user interface code. We
feel that the possibility to construct self-contained em-
bedded systems is so important that it justifies the
hardware overhead in our approach compared to these
systems.

��� 9LUWXDO�8VHU�,QWHUIDFH�DV�D�&RQFHSW

A system utilizing mobile code virtual user interfaces is
presented schematically in Figure 1. The main require-
ment for the complete system is that the embedded
system and the client (e.g. a PDA) are connected via a
communication channel of arbitrary form. This channel
can be implemented by using an Infrared (IR) or wire-
less radio link or a cable. The channel is used for com-
munication between the embedded system and the cli-
ent. The communication includes the creation of a vir-

tual user interface and the subsequent communication
between the virtual user interface code and the embed-
ded system. The client requests the mobile code from
the embedded system by using a mobile code protocol.
Both the embedded system and the client agree on the
format of this protocol. The mobile code protocol pro-
vides only very limited services. These services can be
used to identify the basic parameters of the selected
system and to transfer the mobile code. Messages trans-
ferred through the communication channel that do not
match the mobile code protocol can be considered to
follow an internal communication protocol. This inter-
nal protocol is used between the virtual user interface
and the control module in the embedded system, and it
can be relayed directly through the mobile code proto-
col.

In addition to the component providing the mobile code
protocol, the embedded system consists of a mobile
code and a control module. The mobile code is stored
on a non-volatile storage medium, such as an Electri-
cally Erasable Programmable Read Only Memory
(EEPROM) or Flash ROM, and sent to the client when
required. The client then executes the code to create a
virtual user interface. The embedded system may con-
tain different types of mobile code to be sent to differ-
ent types of clients. The amount of mobile code that can
be stored in any particular embedded system depends
on how much non-volatile storage can be afforded or
feasibly included.

The control module acts as a communication relay be-
tween the virtual user interface in the client and the
actual physical embedded system. The control module
typically receives command messages, such as user
requests to start VCR playback, originating from the
virtual user interface. It transforms these commands
into internal signals and sends them to the physical de-
vice. The control module also receives status signals
from the physical device. The status signals reflect the
effects of the commands issued and other external
events, such as error conditions. The control module
transforms these signals into status messages and sends
them to the virtual user interface in the client. These
command and status messages form the private com-
munication protocol between the control module and
the virtual user interface. The protocol can be chosen to
match the exact requirements for each particular appli-
cation. In other words, this internal communication
protocol is likely to vary from one application to an-
other. However, the system designer could also use a
standardized communication protocol as an internal
protocol; provided a suitable protocol is available.

The client consists of a component providing the mo-
bile code protocol and a mobile code execution engine.
The engine executes the mobile code and provides an

Embedded system

Control
module Mobile

code

Mobile code
protocol

Client

VUI

Communication
channel

Mobile code
protocol

Engine

Remote server

Mobile
code

Network

Cache

Physical device

)LJXUH����$Q�RXWOLQH�RI�D�V\VWHP�XWLOL]LQJ�PRELOH
FRGH�WR�FUHDWH�YLUWXDO�XVHU�LQWHUIDFHV�

execution environment for it. The engine provides an
abstraction layer of the actual client by providing basic
services for the mobile code. As an example, such
services may include a communication channel that can
be used to communicate with the embedded system
where the mobile code originated. Different engines
may offer different services and provide varying levels
of abstraction. As an example, even the client’s operat-
ing system can operate as an execution engine for the
mobile code. This requires that the mobile code is a
complete executable binary image for that particular
operating system.

It is also worth noting that the embedded system can
contain only parts of the mobile code required to create
a virtual user interface. In other words, some parts of
the mobile code can be obtained from other code
sources than the embedded system. Remote mobile
code servers can operate as such code sources. Whether
the mobile code is obtained fully from the embedded
system or partly from the remote code server can be
invisible to the client. This can be achieved by design-
ing the mobile code in the embedded system to operate
as a bootstrap code. This bootstrap code downloads the
rest of the mobile code from the remote code server.
This technique is suitable in situations where the total
size of the mobile code is very large, or some parts of
the mobile code are rarely required in everyday use. In
an extreme situation, the embedded system may only
contain a few lines of bootstrap code that is used by the
mobile code engine to download the actual code from
the remote server.

In order to minimize the need to constantly transfer the
mobile code from the embedded system to the client for
execution, mobile code caching can be utilized. For this
purpose, the mobile code protocol may include a serv-
ice that can be used to query the time when (if ever) the
mobile code stored in the embedded system was last
changed.

The technique described earlier in this Chapter can be
considered to follow both the code-on-demand (COD)
and the remote evaluation (REV) paradigms [14]. Both
the embedded system and the client can initialize the
creation of a virtual user interface. When the client ini-
tiates VUI creation, as is usually the case, the COD
paradigm is followed. When the embedded system ini-
tiates VUI creation, the REV paradigm is followed. An
example of VUI creation that is initialized by the em-
bedded system is a situation where the embedded sys-
tem uses a virtual user interface to notify the client of
an exceptional situation. Such a situation could be the
outcome of a scenario where the embedded system has
detected a minor hardware failure during a self-check
and wants to notify this to the first client that estab-
lishes a communication channel with it. To illustrate

this with a concrete example, a smoke detector could
notify a maintenance person walking by of a battery
low condition.

��� ,PSOHPHQWDWLRQ�RI�D�9LUWXDO�8VHU�,QWHU�
IDFH�6\VWHP

This Chapter explains how the concepts described in
the previous Chapter can be utilized in an actual sys-
tem. The example system provides a virtual user inter-
face for a simple VCR device. This system was con-
structed to gain deeper understanding of the virtual user
interface and the mobile code as a problem domain. The
reader should note that the example system utilizes only
a small fraction of the possibilities implicit in the mo-
bile code approach. Furthermore, we agree that the
VCR is not a good example in a sense that most of the
current VCRs use also a TV screen to output status in-
formation.

All the software components in the system were con-
structed using the Java programming language. The
main reason for this was the desire to be able to run the
example system in a variety of hardware platforms. In a
real system, the program run in the embedded system
would probably be constructed by using a low level
programming language, such as C or Assembler. The
example system is presented schematically in Figure 2.

The system logically consists of four components: an
actual VCR device, a VCR adapter, a communication
channel, and a client system. It was difficult to find a
VCR that could provide suitable feedback for the VCR
adapter, mainly because the current VCRs usually pro-
vide only visual status signals. We can easily issue
commands to the VCR via an infrared transmitter, but
there is the risk that the VCR and the adapter enter an
inconsistent state when, for example, the tape reaches
the end. This was the reason why the actual VCR was
not included in the system and a VCR program was
constructed to simulate the physical device. Given that
we can find a VCR with suitable feedback capabilities,
it can be used to replace the VCR program in the future.

VCR VCR
adapter

Client

Communication
channel

VUI

)LJXUH����$Q�H[DPSOH�V\VWHP�SUR�
YLGLQJ�D�YLUWXDO�XVHU�LQWHUIDFH�IRU�D
9&5�GHYLFH�

&RPPXQLFDWLRQ�FKDQQHO

The VCR adapter and the VCR program were run in
one computer and the client was run in another. In the
example system, these computers were connected to the
network by using the TCP/IP protocol. We constructed
a simple communication protocol stack and used it for
communication between the two computers. The stack
is presented in Figure 3. The stack operates on top of a
TCP/IP protocol stack and follows loosely the OSI ref-
erence model [15]. The stack consists of four layers: a
physical layer, a datalink layer, a transport layer and a
mobile code layer.

The physical layer was simulated using the UDP broad-
cast packets provided by the TCP/IP protocol. This was
done to model the operation of communication devices
that use radio waves or some other broadcast medium
for communication. In broadcast communication, each
data frame is received by every active system within the
communication range.

The datalink layer provides services for sending and
receiving directed and broadcast frames. Directed
frames contain both source and destination addresses
and are received only by the host indicated by the desti-
nation address. Broadcast frames contain only the
source address and are received by all the active sys-
tems, except the broadcasting system.

The transport layer provides services for reliably trans-
mitting and receiving messages of arbitrary length. It
also provides a service for locating other active sys-
tems.

The mobile code layer provides the following services:

� Locating active systems
� Requesting information from the selected system
� Requesting a mobile code of the desired type from
the selected system
� Transmitting the mobile code with the initialization
parameters to the selected system for execution
� Transmitting data messages of arbitrary length to
the selected system

The mobile code protocol is a very lightweight mes-
sage-based protocol. The reason for this was the desire
to keep the embedded system as simple as possible. Our
goal was to provide only basic functionality that could
be used to implement more complex communication
mechanism, such as the Remote Procedure Call (RPC)
system, if that were required in some applications.

Data messages of arbitrary length are sent through the
mobile code layer using the notion of channels. When a
data message is sent, an integer number indicating the
channel is attached to it. The receiving mobile code
layer can use this channel number to identify the desti-
nation component. In a sense, the channel number is
similar to the port number in the TCP/IP protocol.

The protocol stack described above requires only a
physical device with a capacity to broadcast fixed-
length data frames to be utilized in various applications.
Furthermore, the use of existing protocol stacks with
the mobile code layer is very straightforward: it only
requires services that can be used to locate and reliably
transfer messages of an arbitrary length.

The main reason for constructing a complete ad-hoc
protocol stack was the desire to model the operation of
a low-range packet-based radio network as well as pos-
sible without actually using any wireless communica-
tion devices. We wanted to test the system first in a
familiar environment, which could be easily monitored.
We will use a standard protocol stack to replace the
layers below the mobile code protocol if a suitable one
can be found when, for example, Bluetooth is released.

&OLHQW

The purpose of the client system was to simulate a de-
vice that could be used to display virtual user interfaces

Mobile code layer

Transport layer

Datalink layer

Physical layer

Mobile code services

Reliable transport of
messages of arbitrary size

Sending and receiving
frames, address

Physical communication
medium (UDP simulated)

Protocol
stack

)LJXUH����&RPPXQLFDWLRQ�SURWRFRO
VWDFN�IRU�WKH�H[DPSOH�V\VWHP�

Client

Communication
channel

Mobile code
protocol

SMAF engine

VUISMAF
agent

VUIComm
module

Control module

Channel
VUI

Client user interface

)LJXUH����6WUXFWXUH�RI�WKH�FOLHQW�V\VWHP�

for different embedded systems. Such devices include
PDAs, future cellular phones and laptop computers.
The structure of the client system is presented in Figure
4. The client system consists of the following software
components:

� Mobile code protocol
� Control module
� Modified SMAF engine
� VUIComm module

The mobile code protocol operates as described earlier
in this Chapter. The control module coordinates the co-
operation of the other software modules. In addition, it
also creates a user interface for the client. The user
utilizes this user interface to control the client.

The Simple Mobile Agent Facility (SMAF) system
(also referred as the SMAF engine) is used to run the
VUI code. The SMAF system is a mobile code frame-
work constructed by the authors to operate as a test
bench for various mobile code paradigms. It also pro-
vides more profound knowledge of the implementation
techniques needed for the mobile code systems. The
SMAF system was not intended to compete in function-
ality with any of the existing mobile code frameworks.

The SMAF system was constructed using the SUN JDK
(Java Development Kit) version 1.2. Java was selected
as the implementation language for several reasons.
First of all, Java contains several features that enable
relatively easy implementation of various mobile code
paradigms. Secondly, Java is platform independent in
the sense that the compiled Java byte code is interpreted
by the Java virtual machine (JVM). JVM is currently
available for all the major computer platforms.

The overall architecture of the SMAF system follows
the guidelines of the Mobile Agent System
Interoperability Facility (MASIF) specification [16]
from the Object Management Group (OMG). MASIF
was formerly known as the Mobile Agent Facility
(MAF) specification. The SMAF system operates as an
execution environment for SMAF agents by providing
basic services, such as agent transfer from one SMAF
system to another.

When a SMAF agent is created, the Java byte codes
that make up the agent are stored in an archive congru-
ent with the Java Archive (JAR) file format. These byte
codes are used for subsequent class loading during the
agent’s lifetime. The JAR file is transferred with the
agent execution state when the agent moves from one
SMAF system to another. In this way the agent does not
need any external code servers for class loading during
its lifetime. When implementing mobile code para-
digms, the SMAF system utilizes a weakly mobile
technology [14]. Systems utilizing a weakly mobile
code technology do not preserve the precise execution

state of the mobile code when the code is transferred
from one system to another. Instead, only parts of the
execution state are stored at the source host and trans-
ferred with the mobile code to the destination. The re-
ceiver uses this data to reconstruct some parts of the
mobile code execution state. If the execution needs to
be resumed, it can be implemented by, for example,
using state variables to select the desired execution
branch at the receiver.

The weakly mobile technology is implemented in the
SMAF system by using Java Object Serialization. The
mobile code state is serialized and the code is trans-
ferred to the destination with the serialized state data.
When the mobile code is reconstructed at the receiver,
the serialized state data is used only to restore the val-
ues of the objects’ member variables. The state of local
the variables in the member functions is lost.

The SMAF system used in the example system was
modified slightly, so that it could be used to execute
special virtual user interface agents (VUISMAF agent).
The VUISMAF agent differs from the ordinary SMAF
agent only in the sense that it contains additional func-
tions that can be used to communicate with the embed-
ded system where the agent code originated. The client
in the example system can only execute a mobile code
that is congruent with the VUISMAF or the SMAF
agent structure.

The VUIComm module acts as a relay between the
control module and the module that implements the
mobile code protocol. It does this by creating and
maintaining a channel list that is used to direct data
received from the mobile code protocol to the correct
virtual user interface. When a new VUI is created, the
VUIComm module creates and assigns a channel object
to that VUI. This channel object can be used to send
and receive messages between the VCR adapter and the
VUI. In other words, by using the channel objects, the
virtual user interface can remain unaware of the actual
mechanism that is used for communication between the
client and the embedded system. The current version of
the VUIComm module is implemented by assuming
that VUISMAF agents will not move from one SMAF
system to another, although this is possible.

9&5�DGDSWHU

The purpose of the VCR adapter is to simulate a device
that could be used to implement the virtual user inter-
face functionality for different embedded systems. The
VCR adapter acts as an interface between the actual
VCR device and the rest of the system. The structure of
the VCR adapter is presented in Figure 5.

As shown in the Figure, the VCR adapter consists of
three components:

� Mobile code protocol
� Control module
� Mobile code

The mobile code protocol was described earlier in this
Chapter.

The control module contains detailed information about
the actual VCR device. It receives commands from the
virtual user interface through the mobile code protocol
and converts these commands into physical signals that
manipulate the VCR. In addition, the control module
transmits the messages that reflect the status of the
VCR device to the virtual user interface. The mobile
code contained in the VCR adapter follows the VUIS-
MAF agent structure.

9LUWXDO�XVHU�LQWHUIDFH

Figure 6 presents the virtual user interface for the ex-
ample VCR device. It resembles a user interface for a
standard VCR. The mobile code creates this VUI by
using the standard Java class libraries located at the
client. In other words, the mobile code uses the user
interface primitives provided by the standard Java class
library to construct a desired user interface.

When the user presses the control buttons, such as Play
and Stop, the VUI sends command messages to the
VCR adapter. These command messages have a very
simple structure, consisting of only a few bytes. The
VCR adapter receives these command messages and
transforms them into internal messages. These internal
messages are then sent to the program simulating the
actual VCR device. The VCR adapter constructs status
messages from the replies it receives from the VCR
device and sends them to every virtual user interface
that is currently active. In this way a given VCR can be
inspected and manipulated by several virtual user inter-
faces at the same time.

The size of the JAR file containing the mobile code for
the virtual user interface presented in Figure 7 is ap-
proximately 25 Kbytes. However, the current version of
the interface was not designed or programmed so that
the amount of code would be minimized. It is probable
that the size of the JAR file can be reduced to fewer
than 20 Kbytes.

��� 'LVFXVVLRQ

The technique for creating virtual user interfaces by
using a mobile code offers several benefits compared to
the existing approaches described in Chapter 2, but it
also has some drawbacks. The benefits and drawbacks
must be weighed carefully for every application if this
technique is to be utilized in an actual system. This
Chapter explains the benefits and drawbacks to allow
proper evaluation of the suitability of this technique.

%HQHILWV

The mobile code VUIs offer several benefits when
compared to the existing approaches. The mobile code
approach:

� is flexible, simple, and easy to implement
� is adaptable and utilizes efficient local communi-
cation
� is open
� allows a diverse set of value-added services

Flexibility is one of the main benefits of the mobile
code VUIs. The mobile code uses the services provided
by the execution engine to implement a desired user
interface. Even though different execution engines and
client systems may impose restrictions on the behavior
of the mobile code, the approach presented in this paper
does not in itself restrict functionality in any way.

Furthermore, flexibility does not make the approach
complex or hard to implement. Traditional program-

VCR adapter

Control
module Mobile

code

Mobile code
protocol

Communication
channel

Physical
VCR

)LJXUH����7KH�VWUXFWXUH�RI�WKH
9&5�DGDSWHU�)LJXUH����9LUWXDO�XVHU�LQWHUIDFH�IRU�WKH�9&5�GHYLFH�

ming conventions and languages can be used to pro-
gram the software for the embedded system, and pro-
ductive high-level programming languages, such as
Java, can simultaneously be used for the VUI. The in-
ternal communication protocol between the embedded
system and the VUI can also be tailored to suit the
needs of each particular application.

Even an existing embedded system would require only
minor and inexpensive modifications to include VUI
functionality. The easiest way to include a VUI in an
existing embedded system would be to add an I/O port
for an external adapter, as in the VCR example. This
port could be used to receive commands from the
adapter and to send out status messages reflecting the
status of the embedded system. The adapter would pro-
vide the VUI functionality, and the embedded system
itself would need no further modifications. This adapter
could be sold as an option for each embedded system.

Adaptation is one of the most important benefits when
the mobile code approach is used in mobile computing.
The mobile code VUIs allow mobile users to control
diverse embedded systems without knowing anything
specific about them. The only requirement is that the
client and the embedded system can communicate with
each other and that the client can execute the VUI code.
It is a lot easier to agree on standard interfaces for exe-
cution engines than for a diverse set of embedded sys-
tems, at least if the execution engine provides sufficient
services for the mobile code. Adaptation would be hard
without a mobile code. The client would have to share a
control protocol with every embedded system, or to
have a separate control program installed for every pos-
sible system.

Efficient local communication is another important
benefit for mobile computing. Embedded systems can
be controlled by using a local communication, which
means that low-power, high-bandwidth communication
devices can be used and the client is not required to
maintain a possibly expensive connection with the
Internet or a remote server. However, flexibility ensures
that the VUI can obtain some parts of the mobile code
from the remote servers, possibly by using the network
connection provided by the client. In this way, the in-
frequently used parts of the mobile code, or possibly the
parts that implement functionality that requires network
connection, can be obtained from the remote server.

The mobile code VUIs also offer an open solution, as
the approach does not require any special programming
language or hardware to be used. An embedded system
may even contain a different mobile code to be used
with different clients. Furthermore, if the mobile code
in the embedded system is stored in a re-programmable
ROM memory, services facilitating software updates
can be easily implemented. The main reason for easy

update is the clear distinction between the mobile code
and the control software in the embedded system. The
mobile code is not executed by the embedded system
and dynamic software update techniques are therefore
not required.

As an example, consider a situation where a new type
of client with a new mobile code engine is introduced.
If the user wants to use this client instead of the old
one, he or she simply obtains a new VUI mobile code
and updates it in the embedded system. One way to do
this is to include a special update code in the embedded
system that can be used to create a special VUI for
software updates. This VUI code can then obtain the
new mobile code from the remote server and upload it
to the embedded system. Software updates can naturally
be done if the mobile code is stored in a separate ROM
chip that can be replaced with a new one. In this way,
the software in the embedded system can be kept sim-
pler, as it does not need to provide software update
services.

The most interesting advantage in the mobile code ap-
proach is how different types of value-added services,
which have previously been very hard to implement, if
not totally unfeasible, could be provided for embedded
systems. One example is the software update service
described above. Another example is the integration of
embedded systems in external services. For example,
the VCR VUI can use an Internet connection provided
by the client to contact a remote TV guide server in
order to obtain TV program data. The user could then
use this data to select the programs to be recorded and
the VUI would convert the selections to record com-
mands and sent them to the VCR. The mobile code for
this service could be stored in a server in the Internet,
so that it could be easily modified if there were a
change, for example, in the TV guide server. Storing
the mobile code in a remote server makes sense in this
system, as this service requires an Internet connection
for obtaining the TV guide data.

'UDZEDFNV

The approach presented in this paper does not come
without drawbacks. These drawbacks include:

� A need for additional hardware and maintenance
� Communication overhead in some situations
� Code mobility is still a relatively immature tech-
nology
� Information security

As described in Chapter 3, the main requirement for the
mobile code approach is that the embedded system
contains communication hardware. Furthermore, stor-
ing the mobile code in the embedded system requires a
variable amount of non-volatile memory. The addition
of this extra hardware can be problematic in systems

where the total cost of the product must be kept to the
absolute minimum and the virtual user interface does
not result in substantial competitive advantage. How-
ever, some form of communication hardware is re-
quired in any case if we want to add remote control
functionality to an embedded system.

Maintenance may also be a problem when the mobile
code is stored in the embedded system. For example,
non-automated software updates are completely unsuit-
able if embedded systems become truly ubiquitous. We
hope that most of the software updating can be auto-
mated, as outlined earlier in this Chapter.

Downloading the mobile code from the embedded sys-
tem can also increase the communication overhead in
situations where the actual communication session only
lasts for a short period. This can be reduced or, in some
situations, prevented by using mobile code caching at
the client. For example, the frequently used mobile
code, such as that used to control embedded systems at
home, can remain stored in a client’s cache.

The code mobility, while not new as a concept, is still
relatively immature and not applied in a large scale.
The designers and developers lack experience com-
pared to their colleagues, who are using more tradi-
tional programming paradigms, such as the client-
server. This can be very problematic, especially as it
may be difficult to provide acceptable security in mo-
bile computing.

Information security is probably the most important
problem in mobile code VUIs that needs to be solved.
Even though it is not recommended, we may ignore
most of the security problems if the mobile code ap-
proach is used only at home or in other relatively closed
environments, much like security is mostly ignored in
the current remote control units. For example, we may
be tempted to assume that we never encounter mali-
cious mobile code or that no eavesdropping is possible.

However, information security is an essential require-
ment in mobile computing. In mobile computing, the
user may want or need to control unknown systems,
which makes it necessary to be able to shield clients
against malicious mobile code. In addition, we cannot
ignore eavesdropping if the communication involves
sensitive data. Furthermore, embedded systems must
also be shielded against unauthorized use.

The techniques providing information security for mo-
bile computing, especially for systems utilizing mobile
code, are still very immature. Most of the security tech-
niques for mobile code systems have been designed for
applications with specified features and restrictions, and
are not necessarily suitable for other applications. In a
sense, however, the security requirements for mobile
code VUIs are very similar to the security requirements

for Java applets, and we are therefore optimistic and
expect that a suitable security mechanism can be con-
structed. Because security in mobile code systems in
general is a very complex issue, only a brief outline of
the problems and solutions is presented here. For a
more complete description of the problem and the pos-
sible solutions, refer to [17]. The security requirements
include:

� Protecting the client against malicious mobile code
� Authenticating the client (or the user)
� Authenticating the embedded system
� Preventing eavesdropping
� Ensuring mobile code integrity
� Protecting the executing mobile code against mali-
cious clients

The client should be shielded in such a way that the
downloaded mobile code is not able to perform mali-
cious actions once executed. This can be implemented
by a sandbox security model that is used to limit the
operations that can be performed by the mobile code.
An example of such sandbox security can be seen in
[18].

The authentication of both communicating parties can
be performed by using digital signatures. Authentica-
tion is important in systems that need to restrict the
number of persons allowed to control the system. Fur-
thermore, if the source of the mobile code can be
authenticated, varying sandbox restrictions can be util-
ized on the mobile code, depending on the degree of
trust the client has in that particular source.

Communication can be encrypted to prevent eaves-
dropping [19]. Eavesdropping must be prevented in
systems that transmit sensitive information that should
not be exposed to outsiders.

Digital signatures can also be used to ensure mobile
code integrity. Mobile code integrity ensures that the
code is not altered after its distribution.

Protecting the mobile code against malicious clients is a
very hard problem, mainly because the client can in-
spect the code during its execution. Initial solutions on
how to protect the mobile code from inspection suggest
that the mobile code should be constructed so that the
actual purpose of execution is not revealed. Code ob-
fuscation [20] or cryptographic solutions [21] can be
used to achieve this. Malicious clients may, for exam-
ple, inspect mobile code to find ways to control the
embedded system without authorization.

As mentioned earlier, information security in mobile
code systems is a very complex issue and largely de-
pendent of the different applications at hand. The level
of security acceptable for a VCR device with a short-
range IR transceiver may be totally unacceptable for
some other system, such as the access control systems

of our future homes.

��� &RQFOXVLRQ�DQG�)XWXUH�:RUN

This paper described a flexible, yet powerful concept of
a mobile code used to control ubiquitous and diverse
embedded systems. The approach to create mobile code
VUIs offers several benefits compared to the alternative
techniques. These benefits include simplicity, efficient
local communication, adaptation, openness, and most
notably, flexibility. Furthermore, the fact that a single
simple device can be used to control different embed-
ded systems offers a cost-efficient and convenient con-
trol solution. The approach is well suited for the highly
dynamic computing environments of mobile computing
in the future. However, it is also usable in static envi-
ronments.

In a wider sense, our goal is to inspect the possibility to
use mobile code as an interconnecting glue to integrate
various embedded systems. The mobile code VUI con-
cept presented in this paper is the first step towards this
goal. We feel that the concept can be utilized and ex-
tended in future embedded systems to provide other
functionality than just control. Such functionality could
include delivering communication protocols and device
drivers as mobile code to the other devices in the sys-
tem. It is also interesting to envision the range of possi-
ble value-added services that could easily be imple-
mented for different systems.

However, further work is needed to construct actual
clients and embedded systems that utilize the mobile
code concept in a way that allows it to be tested in a
real-world situation. We have already constructed an
early version of a system that uses radio modems for
communication. In addition, we have constructed sev-
eral early prototypes of virtual user interfaces for vari-
ous embedded systems and also for other real-world
objects. These prototype VUIs will be utilized in our
future research as we try to fully understand the poten-
tial offered by the mobile code. We are also actively
looking for suitable security techniques for VUIs with
varying security requirements.

��� 5HIHUHQFHV

[1] M. Weiser, “The Computer for the 21st Century,”
6FLHQWLILF�$PHULFDQ, September 1991, pp. 66-75.

[2] J. Haartsen, M. Naghshineh, J. Inouye, O. J. Joer-
essen, and W. Allen, “Bluetooth: Visions, Goals,
and Architecture,” 0RELOH�&RPSXWLQJ�DQG�&RP�
PXQLFDWLRQV�5HYLHZ, Vol. 2, No. 4, 1998, pp. 38-
45.

[3] M. Schlett, “Trends in Embedded Microprocessor
Design,” &RPSXWHU, August 1998, pp. 44-49.

[4] V. V. Badami and N. W. Chbat, “Home Appli-
ances Get Smart,” ,(((�6SHFWUXP, August 1998,
pp. 36-43.

[5] K. R. Wood, T. Richardson, F. Bennet, A. Harter,
and A. Hopper, “Global Teleporting with Java:
Toward Ubiquitous Personalized Computing,”
&RPSXWHU, February 1997, pp. 53-59.

[6] T. Richardson, Q. Stafford-Fraser, K. R. Wood,
and A. Hopper, “Virtual Network Computing,”
,(((�,QWHUQHW�&RPSXWLQJ, January-February
1998, pp. 33-38.

[7] I. D. Agranat, “Engineering Web Technologies
For Embedded Applications,” ,(((�,QWHUQHW
&RPSXWLQJ, May-June 1998, pp. 40-45.

[8] R. Itschner, C. Pommerell, and M. Rutishauser,
“GLASS: Remote Monitoring of Embedded Sys-
tems In Power Engineering,” ,(((�,QWHUQHW�&RP�
SXWLQJ, May-June 1998, pp. 46-52.

[9] A. Puliafito, O. Tomarchio, L. Vita, and K. S.
Trivedi, “Increasing Application Accessibility
Through Java,” ,(((�,QWHUQHW�&RPSXWLQJ, July-
August 1998, pp. 70-77.

[10] S. M. Dorward, R. Pike, D. L. Presotto, D. M.
Ritchie, H. W. Tickey, and P. Winterbottom, “The
Inferno Operating System,” %HOO�/DEV�7HFKQLFDO
-RXUQDO, Vol. 2, No 1, 1997, pp. 5-18.

[11] Sun Microsystems, Inc., “Jini Technology,” 1998,
http://java.sun.com/products/jini/

[12] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, and
L. Rowe, “Composable Ad-hoc Mobile Services
for Universal Interaction,” 3URF��RI�WKH��UG�DQQXDO
$&0�,(((�,QW��&RQI��RQ�0RELOH�&RPSXWLQJ�DQG
1HWZRUNLQJ��02%,&20¶���, September 26-30,
1997, Budapest, Hungary, pp. 1-12.

[13] G. Kortuem, Z. Segall, and M. Bauer, “Context-
Aware, Adaptive Wearable Computers as Remote
Interfaces to ‘Intelligent’ Environments,” 3URF��RI
WKH��QG�,QW��6\PS��RQ�:HDUDEOH�&RPSXWHUV
�,6:&¶���, October 19-20, 1998, Pittsburgh,
Pennsylvania, USA.

[14] A. Fuggetta, G. P. Picco, and G. Vigna, “Under-
standing Code Mobility,” ,(((�7UDQVDFWLRQV�RQ
6RIWZDUH�(QJLQHHULQJ, Vol. 24, No. 5, May 1998,
pp. 342-361.

[15] M. Rose, “The Open Book: A Practical Perspec-
tive on OSI,” Prentice-Hall, Inc, New Jersey,
1990, pp. 651.

[16] Object Managegent Group (OMG), “Mobile
Agents Revision,” July 28, 1998, (MASIF Revi-
sion), Available online
ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf

[17] D. Chess, “Security Issues in Mobile Code Sys-
tems,” G. Vigna (Ed.) Mobile Agents and Security
LNCS 1419, Springer-Verlag, Berlin, 1998, pp. 1-
14.

[18] G. Karjoth, D. Lange, and M. Oshima, “A Secu-
rity Model for Aglets,” ,(((�,QWHUQHW�&RPSXWLQJ,
July-August 1997, pp. 68-77.

[19] C. Kaufman, R. Perlman, and M. Speciner, “Net-
work Security: Private Communication in a Public
World,” Prentice Hall PTR, New Jersey, 1995. pp.
505.

[20] F. Hohl, “Time Limited Blackbox Security: Pro-
tecting Mobile Code Agents From Malicious
Hosts,” G. Vigna (Ed.) Mobile Agents and Secu-
rity LNCS 1419, Springer-Verlag, Berlin, 1998,
pp. 92-113.

[21] T. Sander and C. Tschudin. “Protecting Mobile
Agents Against Malicious Hosts” G. Vigna (Ed.)
Mobile Agents and Security LNCS 1419,
Springer-Verlag, Berlin, 1998, pp. 44-60.

