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Abstract

File versioning is a useful technique for recording a
history of changes. Applications of versioning include
backups and disaster recovery, as well as monitoring in-
truders’ activities. Alas, modern systems do not include
an automatic and easy-to-use file versioning system. Ex-
isting backup solutions are slow and inflexible for users.
Even worse, they often lack backups for the most recent
day’s activities. Online disk snapshotting systems offer
more fine-grained versioning, but still do not record the
most recent changes to files. Moreover, existing systems
also do not give individual users the flexibility to control
versioning policies.

We designed a lightweight user-oriented versioning
file system called Versionfs. Versionfs works with any
file system and provides a host of user-configurable poli-
cies: versioning by users, groups, processes, or file
names and extensions; version retention policies and
version storage policies. Versionfs creates file ver-
sions automatically, transparently, and in a file-system
portable manner—while maintaining Unix semantics. A
set of user-level utilities allow administrators to config-
ure and enforce default policies: users can set policies
within configured boundaries, as well as view, control,
and recover files and their versions. We have imple-
mented the system on Linux. Our performance evalu-
ation demonstrates overheads that are not noticeable by
users under normal workloads.

1 Introduction
Versioning is a technique for recording a history of
changes to files. This history is useful for restoring
previous versions of files, collecting a log of important
changes over time, or to trace the file system activities
of an intruder. Ever since Unix became popular, users
have desired a versatile and simple versioning file sys-
tem. Simple mistakes such as accidental removal of files
(the infamous “rm *” problem) could be ameliorated
on Unix if users could simply execute a single command
to undo such accidental file deletion.

CVS is one of the most popular versioning tools [2].
CVS allows a group of users to record changes to files in
a repository, navigate branches, and recover any version

officially recorded in a CVS repository. However, CVS
does not work transparently with all applications.

Another form of versioning is backup tools such as
Legato’s Networker [15] or Veritas’s Backup Exec [27]
and FlashSnap [28]. Modern backup systems include
specialized tools for users to browse a history of file
changes and to initiate a recovery of file versions. How-
ever, backup systems are cumbersome to use, run slowly,
and they do not integrate transparently with all user ap-
plications. Worse, backup periods are usually set to once
a day, so potentially all file changes within the last 24-
hour period are not backed up.

Another approach is to integrate versioning into the
file system [4, 17, 24, 25]. Developing a native version-
ing file system from scratch is a daunting task and will
only work for one file system. Instead, we developed
a stackable file system called Versionfs. A stackable
file system operates at the highest possible layer inside
the OS. Versionfs can easily operate on top of any other
file system and transparently add versioning functional-
ity without modifying existing file system implementa-
tions or native on-media structures. Versionfs monitors
relevant file system operations resulting from user ac-
tivity, and creates backup files when users modify files.
Version files are automatically hidden from users and are
handled in a Unix-semantics compliant manner.

To be flexible for users and administrators, Versionfs
supports various retention and storage policies. Reten-
tion policies determine how many versions to keep per
file. Storage policies determine how versions are stored.
We define the term version set to mean a given file and
all of its versions. A user-level dynamic library wrapper
allows users to operate on a file or its version set without
modifying existing applications such as ls, rm, or mv.
Our library makes version recovery as simple as opening
an old version with a text editor. All this functionality
removes the need to modify user applications and gives
users a lot of flexibility to work with versions.

We developed our system under Linux. Our perfor-
mance evaluation shows that the overheads are not no-
ticeable by users under normal workloads.

The rest of this paper is organized as follows. Sec-
tion 2 surveys background work. Section 3 describes
the design of our system. We discuss interesting im-



plementation aspects in Section 4. Section 5 evaluates
Versionfs’s features, performance, and space utilization.
We conclude in Section 6 and suggest future directions.

2 Background
Versioning was provided by some early file systems like
the Cedar File System [7] and 3DFS [13]. The main dis-
advantage of these systems was that they were not com-
pletely transparent. Users had to create versions manu-
ally by using special tools or commands. CVS [2] is a
user-land tool that is used for source code management.
It is also not transparent as users have to execute com-
mands to create and access versions.

Snapshotting or check-pointing is another approach
for versioning, which is common for backup systems.
Periodically a whole or incremental image of a file sys-
tem is made. The snapshots are available on-line and
users can access old versions. Such a system has several
drawbacks, the largest one being that changes made be-
tween snapshots can not be undone. Snapshotting sys-
tems treat all files equally. This is a disadvantage be-
cause not all files have the same usage pattern or storage
requirements. When space must be recovered, whole
snapshots must be purged. Often, managing such snap-
shot systems requires the intervention of the adminis-
trator. Snapshotting systems include AFS [12], Plan-9
[20], WAFL [8], Petal [14], Episode [3], Venti [21], Spi-
ralog [10], a newer 3DFS [22] system, File-Motel [9],
and Ext3COW [19]. Finally, programs such as rsync,
rdiff, and diff are also used to make efficient incre-
mental backups.

Versioning with copy-on-write is another technique
that is used by Tops-20 [4], VMS [16], Elephant File
System [24], and CVFS [25]. Though Tops-20 and VMS
had automatic versioning of files, they did not handle all
operations, such as rename, etc.

Elephant is implemented in the FreeBSD 2.2.8 ker-
nel. Elephant transparently creates a new version of a
file on the first write to an open file. Elephant also pro-
vides users with four retention policies: keep one, keep
all, keep safe, and keep landmark. Keep one is no ver-
sioning, keep all retains every version of a file, keep safe
keeps versions for a specific period of time but does not
retain the long term history of the file, and keep land-
mark retains only important versions in a file’s history.
A user can mark a version as a landmark or the system
uses heuristics to mark other versions as landmark ver-
sions. Elephant also provides users with the ability to
register their own space reclamation policies. However,
Elephant has its own low-level FFS-like disk format and
cannot be used with other systems. It also lacks the abil-
ity to provide an extension list to be included or excluded
from versioning. User level applications have to be mod-
ified to access old versions of a file.

CVFS was designed with security in mind. Each indi-
vidual write or small meta-data change (e.g., atime up-
dates) are versioned. Since many versions are created,
new data structures were designed so that old versions
can be stored and accessed efficiently. As CVFS was
designed for security purposes, it does not have facili-
ties for the user to access or customize versioning.

NTFS version 5, released with Windows 2000, pro-
vides reparse points. Reparse points allow applications
to enhance the capabilities of the file system without re-
quiring any changes to the file system itself [23]. Several
backup products, such as Storeactive’s LiveBackup [26],
are built using this feature. These products are specific
to Windows, whereas Versionfs uses stackable templates
and can be ported to other OSes easily.

Clearly, attempts were made to make versioning a part
of the OS. However, modern operating systems still do
not include versioning support. We believe that these
past attempts were not very successful as they were not
convenient or flexible enough for users.

3 Design
We designed Versionfs with the following four goals:

Easy-to-use: We designed our system such that a sin-
gle user could easily use it as a personal backup
system. This meant that we chose to use per-file
granularity for versions, because users are less con-
cerned with entire file system versioning or block-
level versioning. Another requirement was that the
interface would be simple. For common operations,
Versionfs should be completely transparent.

Flexibility: While we wanted our system to be easy to
use, we also made it flexible by providing the user
with options. The user can select minimums and
maximums for how many versions to store and ad-
ditionally how to store the versions. The system
administrator can also enforce default, minimum,
and maximum policies.

Portability: Versionfs provides portable versioning.
The most common operation is to read or write
from the current version. We implemented Ver-
sionfs as a kernel-level file system so that applica-
tions need not be modified for accessing the current
version. For previous version access, we use library
wrappers, so that the majority of applications do
not require any changes. Additionally, no operat-
ing system changes are required for Versionfs.

Efficiency: There are two ways in which we approach
efficiency. First, we need to maximize current ver-
sion performance. Second, we want to use as little
space as possible for versions to allow a deeper his-
tory to be kept. These goals are often conflicting, so
we provide various storage and retention policies to
users and system administrators.



We chose a stackable file system to balance efficiency
and portability. Stackable file systems run in kernel-
space and perform well [30]. For current version access,
this results in a low overhead. Stackable file systems are
also portable. System call interfaces remain unchanged
so no application modifications are required.

The rest of this section is organized as follows. Sec-
tion 3.1 describes how versions are created. Section 3.2
describes storage policies. Section 3.3 describes reten-
tion policies. Section 3.4 describes how previous ver-
sions are accessed and manipulated. Section 3.5 de-
scribes our version cleaning daemon. Section 3.6 de-
scribes file system crash recovery.

3.1 Version Creation
In Versionfs, the head, or current, version is stored as
a regular file, so it maintains the access characteristics
of the underlying file system. This design avoids a per-
formance penalty for reading the current version. The
set of a file and all its versions is called a version set.
Each version is stored as a separate file. For example,
the file foo’s nth version is named foo;Xn. X is
substituted depending on the storage policy used for the
version. X could be: “f” indicating a full copy, “c” in-
dicating a compressed version, “s” indicating a sparse
version, and “d” indicating a versioned directory. We
restrict the user from directly creating or accessing files
with names matching the above pattern. Previous ver-
sioning systems, like the Cedar File System, have used a
similar naming convention.

Along with each version set we store a meta-data file
(e.g., foo;i) that contains the minimum and maximum
version numbers as well as the storage method for each
version. The meta-data file acts as a cache of the version
set to improve performance. This file allows Versionfs
to quickly identify versions and know what name to as-
sign to a new version. On version creation, Versionfs
also discards older versions according to the retention
policies defined in Section 3.3.

Newly created versions are created using a copy-on-
change policy. Copy-on-change differs from copy-on-
write in that writes that do not modify data will not cause
versions to be created. The dirty bit that the OS or hard-
ware provides is not sufficient, because it does not dis-
tinguish between data being overwritten with the same
content or different one.

There are six types of operations that create a ver-
sion: writes (either through write or mmap writes),
unlink, rmdir, rename, truncate, and owner-
ship or permission modifications.

The write operations are intercepted by our stack-
able file system. Versionfs creates a new version if the
existing data and the new data differ. Between each open
and close, only one version is created. This heuristic ap-

proximates one version per save, which is intuitive for
users and is similar to Elephant’s behavior [24].

The unlink system call also creates a version. For
some version storage policies (e.g., compression), un-
link results in the file’s data being copied. If the stor-
age policy permits, then unlink is translated into a
rename operation to improve performance. Translat-
ing unlink to a rename reduces the amount of I/O
required for version creation.

The rmdir system call is converted into a rename,
for example rmdir foo renames foo to foo;d1.
We only rename a directory that appears to be empty
from the perspective of a user. To do this we execute a
readdir operation to ensure that all files are either ver-
sions or version set meta-data files. Deleted directories
cannot be accessed unless a user recovers the directory.
Directory recovery can be done using the user-level li-
brary that we provide (see Section 3.4).
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A;d1

A;i
A b

b;i

C
C;i

d
d;i

e
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b;f1
b;i

C;d1
C;i

d;f1
d;i

Before rm −rf A After rm −rf A

e;i
e;f1

Figure 1: rm -rf on directory A

Figure 1 shows a tree before and after it is removed
by rm -rf. The rm command operates in a depth-first
manner. First rm descends into A and calls unlink(b).
To create a version for b, Versionfs instead renames b
to b;f1. Next, rm descends into C, and d and e are
versioned the same way b was. Next, rm calls rmdir
on C. Versionfs uses readdir to check that C does not
contain any files visible to the user, and then renames it
to C;d1. Finally, A is versioned by renaming it to A;d1.

The rename system call must create a version of the
source file and the destination file. The source file needs
a version so that the user can recover it later using the
source name. If the destination file exists, then it too
must be versioned so its contents are preserved. Whereas
we preserve the history of changes to the data in a file,
we do not preserve the filename history of a file. This is
because we believe that data versioning is more impor-
tant to users than file-name versioning.

When renaming foo to bar, if both are regular files,
the following three scenarios are possible:

1. bar does not exist: In this case, we create a ver-
sion of foo before renaming foo to bar. If both
operations succeed, then we create the meta-data
file bar;i.

2. bar exists: We first create a version of bar. We
then create a version of foo. Finally, we rename
foo to bar.



3. bar does not exist but bar;i exists: This hap-
pens if bar has already been deleted and its ver-
sions and meta-data files were left behind. In this
case, we first create a version for foo, then rename
foo to bar. For versioning bar, we use the stor-
age policy that was recorded in bar;i.

The rename system call renames only the head ver-
sion of a version set. Entire version sets can be renamed
using the user-level library we provide (see Section 3.4).

The truncate system call must also create a new
version. However, when truncating a file foo to zero
bytes, instead of creating a new version and copying
foo into the version file, Versionfs renames foo to be
the version. Versionfs then recreates an empty file foo.
This saves on I/O that would be required for the copy.

File meta-data is modified when owner or permissions
are changed, therefore chmod and chown also create
versions. This is particularly useful for security applica-
tions. If the storage policy permits (e.g., sparse mode),
then no data is copied.

3.2 Storage Policies

Storage policies define our internal format for versions.
The system administrator sets the default policy, which
may be overridden by the user. We have developed three
storage policies: full, compressed, and sparse mode.

Full Mode Full mode makes an entire copy of the file
each time a version is created. As can be seen in Figure
2, each version is stored as a separate file of the form
foo;fN , where N is the version number. The current,
or head, version is foo. The oldest version in the dia-
gram is foo;f8. Before version 8 is created, its con-
tents are located in foo. When the page A2 overwrites
the page A1, Versionfs copies the entire head version
to the version, foo;f8. After the version is created,
A2 is written to foo, then B1, C2, and D2 are written
without any further version creation. This demonstrates
that in full mode, once the version is created, there is
no additional overhead for read or write. The creation
of version 9 is similar to the creation of version 8. The
first write overwrites the contents of page A2 with the
same contents. Versionfs does not create a version as the
two pages are the same. When page B2 overwrites page
B1, the contents of foo are copied to foo;f9. Further
writes directly modify foo. Pages C2, D3, and E1 are
directly written to the head version. Version 10 is cre-
ated in the same way. Writing A2 and B2 do not create a
new version. Writing C3 over C2 will create the version
foo;f10 and the head file is copied into foo;f10.
Finally, the file is truncated. Because a version has al-
ready been created in the same session, a new version is
not created.

B2 C2 D3 E1A2

B1 C2 D2A2

B1 C1 D1A1

B2 C3A2 Currentfoo

foo;f10

foo;f9

foo;f8N
ew

er
 V

er
si

on
s

Figure 2: Full versioning. Each version is stored as a com-
plete copy and each rectangle represents one page.

Compress Mode Compress mode is the same as full
mode, except that the copies of the file are compressed.
If the original file size is less than one block, then Ver-
sionfs does not use compression because there is no way
to save any space. Compress mode reduces space utiliza-
tion and I/O wait time, but requires more system time.
Versions can also be converted to compress mode offline
using our cleaner, described in Section 3.5.

Sparse Mode When holes are created in files (e.g.,
through lseek and write), file systems like Ext2,
FFS, and UFS do not allocate blocks. Files with holes
are called sparse files. Sparse mode versioning stores
only block deltas between two versions. Only the blocks
that change between versions are saved in the version
file. It uses sparse files on the underlying file system to
save space. Compared to full mode, sparse mode ver-
sions reduce the amount of space used by versions and
the I/O time. The semantics of sparse files are that when
a sparse section is read, a zero-filled page is returned.
There is no way to differentiate this type of page with
a page that is genuinely filled with zeros. To identify
which pages are holes in the sparse version file, Ver-
sionfs stores sparse version meta-data information at the
end of the version file. The meta-data contains the origi-
nal size of the file and a bitmap that records which pages
are valid in this file. Versionfs does not preallocate inter-
mediate data pages, but does leave logical holes. These
holes allow Versionfs to backup changed pages on future
writes without costly data-shifting operations [29].

Two important properties of our sparse format are: (1)
a normal file can be converted into a sparse version by
renaming it and then appending a sparse header, and (2)
we can always discard tail versions because reconstruc-
tion only uses more recent versions.

To reconstruct version N of a sparse file foo, Ver-
sionfs first opens foo;sN . Versionfs reconstructs the
file one page at a time. If a page is missing from
foo;sN , then we open the next version and attempt
to retrieve the page from that version. We repeat this
process until the page is found. This procedure always
terminates, because the head version is always complete.

Figure 3 shows the contents of foo when no versions
exist. A meta-data file, foo;i, which contains the next
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Figure 3: Sparse versioning. Only foo exists.

version number, also exists. Figure 4 shows the version
set after applying the same sequence of operations as in
Figure 2, but in sparse mode.
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Figure 4: Sparse versioning. Each version stores only block
deltas, and each rectangle represents one page. Rectangles
with hatch patterns are sparse. Sparse meta-data is repre-
sented by the rectangle with “SM” inside.

Versionfs creates foo;s8when write tries to over-
write page A1 with A2. Versionfs first allocates a new
disk block for foo;s8, writes A1 to the new block, up-
dates the sparse bitmap and then overwrites A1 with A2
in foo. This strategy helps preserve sequential read per-
formance for multi-block files. The other data blocks are
not copied to foo;s8 yet and foo;s8 remains open.
Next, write overwrites page B1 with the same data.
Versionfs does not write the block to the sparse file be-
cause data has not changed. Next, C2 overwrites C1 and
Versionfs first writes C1 to the sparse file and then writes
C2 to the head version. Versionfs also updates the sparse
meta-data bitmap. Page D is written in the same way as
page C. The creation of version 9 is similar to version
8. The last version in this sequence is version 10. The
pages A2, B2, and C3 are written to the head version.
Only C3 differs from the previous contents, so Versionfs
writes only C2 to the version file, foo;s10. Next, the
file is truncated to 12KB, so D3 and E1 are copied into
foo;s10. The resulting version is shown in Figure 4.

3.3 Retention Policies

We have developed three version retention policies. Our
retention policies, as well as Elephant’s [24] retention
policies, determine how many versions must be retained
for a file. However, we provide policies that are different
from the ones provided by Elephant. We support the
following three retention policies:

Number: The user can set the maximum and minimum
number of versions in a version set. This policy is
attractive because some history is always kept.

Time: The user can set the maximum and minimum
amount of time to retain versions. This allows the
user to ensure that a history exists for a certain pe-
riod of time.

Space: The user can set the maximum and minimum
amount of space that a version set can consume.
This policy allows a deep history tree for small
files, but does not allow one large file to use up too
much space.

A version is never discarded if discarding it violates
a policy’s minimum. The minimum values take prece-
dence over the maximum values. If a version set does
not violate any policy’s minimum and the version set
exceeds any one policy’s maximum, then versions are
discarded beginning from the tail of the version set.

Providing a minimum and maximum version is useful
when a combination of two policies is used. For exam-
ple, a user can specify that the number of versions to be
kept should be 10–100 and 2–5 days of versions should
be kept. This policy ensures that both the 10 most recent
versions and at least two days of history is kept. Min-
imum values ensure that versions are not prematurely
deleted, and maximums specify when versions should
be removed.

Each user and the administrator can set a separate pol-
icy for each file size, file name, file extension, process
name, and time of day. File size policies are useful be-
cause they allow the user to ensure that large files do not
use too much disk space. File name policies are a con-
venient method of explicitly excluding or including par-
ticular files from versioning. File extension policies are
useful because file names are highly correlated with the
actual file type [5]. This type of policy could be used to
exclude large multimedia files or regenerable files such
as .o files. This can also be used to prevent applica-
tions from creating excessive versions of unwanted files.
For example, excluding ˜ from versioning will prevent
emacs from creating multiple versions of ˜ files.

Process name can be used to exclude or include partic-
ular programs. A user may want any file created by a text
editor to be versioned, but to exclude files generated by
their Web browser. Time-of-day policies are useful for
administrators because they can be used to keep track of
changes that happen outside of business hours or other
possibly suspicious times.

For all policies, the system administrator can provide
defaults. Users can customize these policies. The ad-
ministrator can set the minimum and maximum values
for each policy. This is useful to ensure that users do
not abuse the system. In case of conflicts, administrator-
defined values override user-defined values. In case of
conflicts between two retention policies specified by a
user, the most restrictive policy takes precedence.



3.4 Manipulating Old Versions

By default, users are allowed to read and manipulate
their own versions, though the system administrator can
turn off read or read-write access to previous versions.
Turning off read access is useful because system admin-
istrators can have a log of user activity without having
the user know what is in the log. Turning off read-write
access is useful because users cannot modify old ver-
sions either intentionally or accidentally.

Versionfs exposes a set of ioctls to user space pro-
grams, and relies on a library that we wrote, libversionfs
to convert standard system call wrappers into Versionfs
ioctls. The libversionfs library can be used as an
LD PRELOAD library that intercepts each library sys-
tem call wrapper and directory functions (e.g., open,
rename, or readdir). After intercepting the library
call, libversionfs determines if the user is accessing an
old version or the current version (or a file on a file sys-
tem other than Versionfs). If a previous version is be-
ing accessed, then libversionfs invokes the desired func-
tion in terms of Versionfs ioctls; otherwise the stan-
dard library wrapper is used. The LD PRELOAD wrap-
per greatly simplifies the kernel code, as versions are not
directly accessible through standard VFS methods.

Versionfs provides the following ioctls: version
set stat, recover a version, open a raw version file, and
also several manipulation operations (e.g., rename and
chown). Each ioctl takes the file descriptor of a par-
ent directory within Versionfs. When a file name is used,
it is a relative path starting from that file descriptor.

Version-Set Stat Version-set stat (vs stat) returns
the minimum and maximum versions in a version set and
the storage policy for each version. This ioctl also
returns the same information as stat for each version.

Recover a Version The version recoveryioctl takes
a file name F , a version number N , and a destination file
descriptor D as arguments. It writes the contents of F ’s
N -th version to the file descriptor D. Providing a file
descriptor gives application programmers a great deal of
flexibility. Using an appropriate descriptor they can re-
cover a version, append the version to an existing file, or
stream the version over the network. A previous version
of the file can even be recovered to the head version. In
this case, version creation takes place as normal.

This ioctl is used by libversionfs to open a version
file. To preserve the version history integrity, Version
files can be opened for reading only. The libversionfs
library recovers the version to a temporary file, re-opens
the temporary file read-only, unlinks the temporary file,
and returns the read-only file descriptor to the caller. Af-
ter this operation, the caller has a file descriptor that can
be used to read the contents of a version.

Open a Raw Version File Opening a raw version re-
turns a file descriptor to an underlying version file. Users
are not allowed to modify raw versions. This ioctl is
used to implementreaddir and for our version cleaner
and converter. The application must first run version-
set stat to determine what the version number and stor-
age policy of the file are. Without knowing the corre-
sponding storage policy, the application can not inter-
pret the version file correctly. Through the normal VFS
methods, version files are hidden from user space, there-
fore when an application calls readdir it will not see
deleted versions. When the application calls readdir,
libversionfs runs readdir on the current version of
the raw directory so that deleted versions are returned
to user space. The contents of the underlying directory
are then interpreted by libversionfs to present a consis-
tent view to user space. Deleted directories cannot be
opened through standard VFS calls, therefore we use the
raw open ioctl to access them as well.

Manipulation Operations We also provide ioctls
that rename, unlink, rmdir, chown, and chmod
an entire version set. For example, the version-set chown
operation modifies the owner of each version in the ver-
sion set. To ensure atomicity, Versionfs locks the direc-
tory while performing version-set operations. The stan-
dard library wrappers simply invoke these manipulation
ioctls. The system administrator can disable these
ioctls so that previous versions are not modified.

3.4.1 Operational Scenario
All versions of files are exposed by libversionfs. For ex-
ample, version 8 of foo is presented as foo;8 regard-
less of the underlying storage policy. Users can read old
versions simply by opening them. When a manipulation
operation is performed on foo, then all files in foo’s
version set are manipulated.

An example session using libversionfs is as follows.
Normally users see only the head version, foo.

$ echo -n Hello > foo
$ echo -n ", world" >> foo
$ echo ’!’ >> foo
$ ls
foo
$ cat foo
Hello world!

Next, users set an LD PRELOAD to see all versions.

$ LD_PRELOAD=libversionfs.so
$ export LD_PRELOAD

After using libversionfs as an LD PRELOAD, the
user sees all versions of foo in directory listings and
can then access them. Regardless of the underlying stor-
age format, libversionfs presents a consistent interface.
The second version of foo is named foo;2. There are
no modifications required to standard applications.



$ ls
foo foo;1 foo;2

If users want to examine a version, all they need to
do is open it. Any dynamically linked program that uses
the library wrappers to system calls can be used to view
older versions. For example, diff can be used to exam-
ine the differences between a file and an older version.

$ cat ’foo;1’
Hello
$ cat ’foo;2’
Hello, world
$ diff foo ’foo;1’
1c1
< Hello, world!
---
> Hello

libversionfs can also be used to modify an entire ver-
sion set. For example, the standard mv command can be
used to rename every version in the version set.

$ mv foo bar
$ ls
bar bar;1 bar;2

3.5 Version Cleaner and Converter
Using the version-set stat and open raw ioctls we have
implemented a version cleaner and converter. As new
versions are created, Versionfs prunes versions accord-
ing to the retention policy as defined in Section 3.3. Ver-
sionfs cannot implement time-based policies entirely in
the file system. For example, a user may edit a file in
bursts. At the time the versions are created, none of
them exceed the maximum time limit. However, after
some time has elapsed, those versions can be older than
the maximum time limit. Versionfs does not evaluate
the retention policies until a new version is created. To
account for this, the cleaner uses the same retention poli-
cies to determine which versions should be pruned. Ad-
ditionally, the cleaner can convert versions to more com-
pact formats (e.g., compressed versions).

The cleaner is also responsible for pruning directory
trees. We do not prune directories in the kernel because
recursive operations are too expensive to run in the ker-
nel. Additionally, if directory trees were pruned in the
kernel, then users would be surprised when seemingly
simple operations take a significantly longer time than
expected. This could happen, for example, if a user
writes to a file that used to be a directory. If the user’s
new version needed to discard the entire directory, then
the user’s simple operation would take an inexplicably
long period of time.

3.6 Crash Recovery
In the event of a crash, the meta-data file can be regen-
erated entirely from the entries provided by readdir.
The meta-data file can be recovered because we can get

the storage method and the version number from the
version file names. Versionfs, however, depends on the
lower level file system to ensure consistency of files and
file names. We provide a high-level file system checker
(similar to fsck) to reconstruct damaged or corrupt ver-
sion meta-data files.

4 Implementation

We implemented our system on Linux 2.4.20 starting
from a stackable file system template [30]. Versionfs
is 12,476 lines of code. Out of this, 2,844 lines were
for the various ioctls that we implemented to recover,
access, and modify versions. Excluding the code for the
ioctls, this is an addition of 74.9% more code to the
stackable file-system template that we used. We imple-
mented all the features described in our design, but we
do not yet version hard links.

The stackable file system templates we used cache
pages both on the upper-level and lower-level file sys-
tem. We take advantage of the double buffering so that
the Versionfs file can be modified by the user (through
write or mmap), but the underlying file is not yet
changed. In commit write (used for write calls)
and writepage (used for mmap-ed writes), Versionfs
compares the contents of the lower-level page to the con-
tents of the upper-level page. If they differ, then the con-
tents of the lower-level page are used to save the ver-
sion. The memory comparison does not increase system
time significantly, but the amount of data versioned, and
hence I/O time is reduced significantly.

5 Evaluation

We evaluate our implementation of Versionfs in terms
of features as well as performance. In Section 5.1, we
compare the features of Versionfs with several other ver-
sioning systems. In Section 5.2, we evaluate the perfor-
mance of our system by executing various benchmarks.

5.1 Feature Comparison

In this section, we describe and compare the features of
WAFL [8], Elephant [24], CVFS [25], and Versionfs.
We selected these because they version files without
any user intervention. We do not include some of the
older systems like Tops-20 [4] and VMS [16] as they
do not handle operations such as rename, etc. We chose
Elephant and CVFS because they create versions when
users modify files rather than at predefined intervals. We
chose WAFL as it is a recent representative of snapshot-
ting systems. We do not include Venti [21] as it provides
a framework that can be used for versioning rather than
being a versioning system itself.



Feature WAFL Elephant CVFS Versionfs
1 File system implementation method Disk based Disk based Disk based a Stackable
2 Copy-on-Change ✔

3 Comprehensive versioning (data, meta-data, etc.) ✔b

4 Transparent support for compressed versions ✔

5 Landmark retention policy ✔

6 Number based retention policy c ✔

7 Time based retention policy ✔ ✔

8 Space based retention policy ✔

9 Unmodified applications can access previous versions ✔ ✔

10 Per-user extension inclusion/exclusion list to version ✔

11 Administrator can override user policies ✔

12 Allows users to register their own reclamation policies ✔

13 Version tagging ✔

Table 1: Feature comparison. A check mark indicates that the feature is supported, otherwise it is not.
a Log structured disk-based file system with an NFS interface.
b Security audit quality versioning.
c Elephant supports “keep all” and “keep one” policies.

We identified the following thirteen features and have
summarized them in Table 1:

1. File system implementation method: Versionfs is
implemented as a stackable file system, so it can
be used with any file system. WAFL, Elephant,
and CVFS are disk-based file systems and cannot
be used in conjunction with any other file system.
CVFS uses log structured disk layout and exposes
an NFS interface for accessing the device. The ad-
vantage of stacking is that the underlying file sys-
tem can be chosen based on the users‘ needs. For
example, if the administrator expects a lot of small
files to be created in one directory, the user can
stack on top of a hash-tree based or tail-merging
file system to improve performance and disk usage.

2. Copy-on-Change: Versionfs takes advantage of
the double-buffering used by stackable templates.
On writes, Versionfs compares each byte of the new
data with the old data and makes a version only
if there are changes. This is advantageous as sev-
eral applications (e.g., most text editors) rewrite the
same data to disk. CVFS and Elephant use copy-
on-write for creating new versions, creating ver-
sions when there actually is no change.

3. Comprehensive versioning: Comprehensive ver-
sioning creates a new version on every operation
that modifies the file or its attributes. This is par-
ticularly useful for security purposes. Only CVFS
supports this feature.

4. Transparent support for compressed versions:
Versionfs supports a policy that allows versions to
be stored on disk in a compressed format. In Ele-
phant, a user-land cleaner can compress old files. In

Versionfs, users can access the data in compressed
files directly by using libversionfs. In Elephant
users cannot access the version files directly.

5. Landmark retention policy: This policy retains
only important or landmark versions in a file’s his-
tory. Only Elephant supports this policy.

6. Number based retention policy: This policy lets
the user set upper and lower bounds on the number
of versions retained for a file. Versionfs supports
this policy. Elephant supports “keep one” policy
that retains 0 versions and “keep all” policy that re-
tains infinite versions.

7. Time based retention policy: This policy retains
versions long enough to recover from errors but
versions are reclaimed after a configured period of
time. Versionfs supports this policy. Elephant’s
“keep safe” policy is functionally similar to Ver-
sionfs’s time based policy.

8. Space based retention policy: This policy limits
the space used by a file’s versions. Only Versionfs
supports this policy.

9. Unmodified application access to previous ver-
sions: Versioning is only truly transparent to the
user if previous versions can be accessed without
making modifications to user-level applications like
ls, cat, etc. This is possible in Versionfs (through
libversionfs) and in WAFL. Elephant and CVFS
need modified tools to access previous versions.

10. Per-user extension inclusion and exclusion lists
to version: It is important that users have the abil-
ity to choose the files to be versioned and the pol-
icy to be used for versioning, because all files do
not need to be versioned equally. Versionfs allows
users to specify a list of extensions to be excluded



from versioning. Elephant allows groups of files to
have the same retention policies, but does not allow
explicit extension lists.

11. Administrator can override user policies: Pro-
viding flexibility to users means users could mis-
configure the policies. It is important that adminis-
trators can override or set bounds for the user poli-
cies. Versionfs allows administrators to set an up-
per bound and lower bound on the space, time, and
number of versions retained.

12. Allows users to register their own reclamation
policies: Users might prefer policies other than the
system default. Elephant is the only file system that
allows users to set up custom reclamation policies.

13. Version tagging: Users want to mark the state of
a set of files with a common name so that they can
revert back to that state in the future. Only Elephant
supports tagging.

5.2 Performance Comparison
We ran all the benchmarks on a 1.7GHz Pentium 4 ma-
chine with 1GB of RAM. All experiments were located
on two 18GB 15,000 RPM Maxtor Atlas hard drives
configured as a 32GB software Raid 0 disk. The ma-
chine was running Red Hat Linux 9 with a vanilla 2.4.22
kernel. To ensure a cold cache, we unmounted the file
systems on which the experiments took place between
each run of a test. We ran each test at least 10 times. To
reduce I/O effects due to ZCAV we located the tests on
a partition toward the outside of the disk that was just
large enough for the test data [6]. We recorded elapsed,
system, and user times, and the amount of disk space
utilized for all tests. We display elapsed times (in sec-
onds) on top of the time bars in all our graphs. We also
recorded the wait times for all tests, wait time is mostly
I/O time, but other factors like scheduling time can also
affect it. It is computed as the difference between the
elapsed time and system+user times. We report the wait
time where it is relevant or has been affected by the test.
We computed 95% confidence intervals for the mean
elapsed and system times using the Student-t distribu-
tion. In each case, the half-widths of the confidence in-
tervals were less than 5% of the mean. The space used
does not change between different runs of the same test.
The user time is not affected by Versionfs as it operates
only in the kernel. Therefore we do not discuss the user
times in any of our results. We also ran the same bench-
marks on Ext3 as a baseline.

5.2.1 Configurations
We used the following storage policies for evaluation:

• FULL: Versionfs using the full policy.
• COMPRESS: Versionfs using the compress policy.
• SPARSE: Versionfs using the sparse policy.

We used the following retention policies:

• NUMBER: Versionfs using the number policy.
• SPACE: Versionfs using the space policy.

For all benchmarks, one storage and one retention
configuration were concurrently chosen. We did not
benchmark the time retention policy as it is similar in
behavior to space retention policy.

5.2.2 Workloads

We ran four different benchmarks on our system: a
CPU-intensive benchmark, an I/O intensive benchmark,
a benchmark that simulates the activity of a user on a
source tree, and a benchmark that measures the time
needed to recover files.

The first workload was a build of Am-Utils [18]. We
used Am-Utils 6.1b3: it contains over 60,000 lines of C
code in 430 files. The build process begins by running
several hundred small configuration tests to detect sys-
tem features. It then builds a shared library, ten binaries,
four scripts, and documentation: a total of 152 new files
and 19 new directories. Though the Am-Utils compile is
CPU intensive, it contains a fair mix of file system oper-
ations, which result in the creation of multiple versions
of files and directories. We ran this benchmark with all
storage policies and retention policies that we support.
However, we report only one set of results as they are
nearly identical. This workload demonstrates the perfor-
mance impact a user sees when using Versionfs under a
normal workload. For this benchmark, 25% of the op-
erations are writes, 22% are lseek operations, 20.5%
are reads, 10% are open operations, 10% are close
operations, and the remaining operations are a mix of
readdir, lookup, etc.

The second workload we chose was Postmark [11].
Postmark simulates the operation of electronic mail
servers. It does so by performing a series of file sys-
tem operations such as appends, file reads, creations,
and deletions. This benchmark uses little CPU, but is
I/O intensive. We configured Postmark to create 5,000
files, between 512–1,045,068 bytes, and perform 20,000
transactions. For this configuration, 58% of the oper-
ations are writes, 37.3% are reads and the remaining
are a mix of operations like open, flush, etc. (We
use Tracefs [1] to measure the exact operation mix in
the Am-Utils and Postmark benchmarks.) We chose
1,045,068 bytes as the file size as it was the average in-
box size on our large campus mail server.

The third benchmark we ran was to copy all the incre-
mental weekly CVS snapshots of the Am-Utils source
tree for 10 years onto Versionfs. This simulates the mod-
ifications that a user makes to a source tree over a period
of time. There were 128 snapshots of Am-Utils, totaling
51,636 files and 609.1MB.



The recover benchmark recovers all the versions of all
regular files in the tree created by the copy benchmark.
This measures the overhead of accessing a previous ver-
sion of a file. We end the section with statistics to com-
pare Copy-on-write with Copy-on-change.

5.2.3 Am-Utils Results

Figure 5 and Table 2 show the performance of Versionfs
for an Am-Utils compile with the NUMBER retention
policy and five versions of each file retained. During
the benchmark, all but 15 of the files that are created
have less than five versions and the remaining files have
between 11 and 1,631 versions created. Choosing five
versions as the limit ensures that some of the retention
polices are applied. After compilation, the total space
occupied by the Am-Utils directory on Ext3 is 33.3MB.
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Figure 5: Am-Utils Compilation results. Note: benchmark
times use the left scale. Space occupied by each configuration
at the end of compilation is represented by the black bars and
use the right scale.

Ext3 Full Compress Sparse
Elapsed 193.7s 199.1s 201.6s 196.6s
System 43.4s 45.2s 50.3s 45.4s
Wait 10.8s 12.7s 10.7s 10.8s
Space 33.3MB 43.5MB 38.8MB 40.4MB

Overhead over Ext3
Elapsed - 3% 4% 1%
System - 4% 16% 5%
Wait - 18% -1% 0%

Table 2: Am-Utils results.

For FULL, we recorded a 3% increase in elapsed time,
a 4% increase in system time, and an 18% increase in
wait time over Ext3. The space consumed was 1.31
times that of Ext3. The system time increases as each
page is checked for changes before being written to disk.
The wait time increases due to extra data that must be
written. With COMPRESS, the elapsed time increased
by 4%, the system time increased by 16%, and the wait

time decreased by 1% over Ext3. The space consumed
was 1.17 times that of Ext3. The system time and conse-
quently the elapsed time increase because each version
needs to be compressed. COMPRESS has the least wait
time, but this gain is offset by the increase in the system
time. With SPARSE, the elapsed time increased by 1%
and the system time increased by 5% over Ext3. The
wait time was the same as Ext3. The space consumed
was 1.21 times that of Ext3. SPARSE consumes less disk
space than FULL and hence has smaller wait and elapsed
time overheads.

5.2.4 Postmark Results
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Figure 6: Postmark results. Note: benchmark times use the
left scale. Space occupied by each configuration at the end of
the test is represented by the black bars and use the right scale.

Ext3 Full Compress Sparse
Elapsed 521s 1097s 4988s 969s
System 128s 368s 3873s 313s
Wait 373s 708s 1093s 634s
Space 0GB 15.34GB 12.85GB 9.43GB

Overhead over Ext3
Elapsed - 2.1 × 9.6× 1.9×
System - 2.9 × 30.3× 2.4×
Wait - 1.9 × 2.9× 1.7×

Table 3: Postmark results.

Figure 6 and Table 3 show the performance of Ver-
sionfs for Postmark with the NUMBER retention policy
and nine versions of each file retained. We chose to re-
tain nine versions because eight is the maximum number
of versions created for any file and we wanted to retain
all the versions of the files. Postmark deletes all the files
at the end of the benchmark, so on Ext3 no space is oc-
cupied at the end of the test. Versionfs creates versions,
so there will be files left at the end of the benchmark.

For FULL, elapsed time was observed to be 2.1 times,
system time 2.9 times, and wait time 1.9 times that of
Ext3. The increase in the system time is because extra
processing has to be done for making versions of files.



The increase in the wait time is because additional I/O
must be done in copying large files. The overheads are
expected since the version files consumed 15.34GB of
space at the end of the test.

For COMPRESS, elapsed time was observed to be 9.6
times, system time 30.3 times and wait time 2.9 times
that of Ext3. The increase in the system time is due to
the large files being compressed while creating the ver-
sions. The wait time increases compared to FULL despite
having to write less data. This is because in FULL mode,
unlinks are implemented as a rename at the lower level,
whereas COMPRESS has to read in the file and compress
it. The version files consumed 12.85GB of space at the
end of the benchmark.

SPARSE has the best performance both in terms of the
space consumed and the elapsed time. This is because
all writes in Postmark are appends. In SPARSE, only the
page that is changed along with the meta-data is written
to disk for versioning, whereas in FULL and COMPRESS,
the whole file is written. For SPARSE, elapsed time
was 1.9 times, system time 2.4 times, and wait time 1.7
times that of Ext3. The residual version files consumed
9.43GB. The 9.43GB space consumed by SPARSE is the
least amount of space consumed for the Postmark bench-
mark. For a similar Postmark configuration, CVFS, run-
ning with a 320MB cache, consumes only 1.3GB, be-
cause it uses specialized data structures to store the ver-
sion meta-data and data. Versionfs cannot optimize the
on-disk structures as it is a stackable file system and has
no control over the lower-level file system.

9.43GB is more than 9 times the amount of RAM in
our system, so these results factor in the effects of double
buffering and ensure that our test generated substantial
I/O. This benchmark also factors in the cost of read-
dir in large directories that contain versioned files. At
the end of this benchmark, 40,053 files are left behind,
including versions and meta-data files.

5.2.5 Am-Utils Copy Results

Number Retention Policy Figure 7 and Table 4 show
the performance of Versionfs for an Am-Utils copy with
the NUMBER retention policy and 64 versions of each
file retained. We chose 64 versions as it is median of
the number of versions of Am-Utils snapshots we had.
Choosing 64 versions also ensures that the effects of
retention policies will also be factored into the results.
GNU cp opens files for copying with the O TRUNC flag
turned on. If the file already exists, it gets truncated and
causes a version to be created. To avoid this, we used
a modified cp that does not open files with O TRUNC
flag but instead truncates the file only if necessary at the
end of copying. After copying all the versions, the Am-
Utils directory on Ext3 consumes 9.9MB.
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Figure 7: Am-Utils copy results with NUMBER and 64 ver-
sions being retained. Note: benchmark times use the left scale.
Space occupied by each configuration at the end of copy is
represented by the black bars and use the right scale.

Ext3 Full Compress Sparse
Elapsed 78.0s 84.6s 93.6s 84.2s
System 7.5s 11.2s 28.9s 11.3s
Wait 69.6s 72.6s 63.8s 72.0s
Space 9.9MB 141.6MB 44.5MB 127.4MB

Overhead over Ext3
Elapsed - 8% 20% 8%
System - 49% 285% 51%
Wait - 4% -8% 3%

Table 4: Am-Utils copy results with NUMBER and 64 versions
being retained.

For FULL, we recorded an 8% increase in elapsed
time, a 49% increase in system time, and a 4% increase
in wait time over Ext3. FULL consumes 14.35 times the
space consumed by Ext3. The system time increases due
to two reasons. First, each page is compared and a ver-
sion is made only if at least one page is different. Sec-
ond, additional processing must be done in the kernel for
making versions.

For COMPRESS, we recorded a 20% increase in
elapsed time, a 285% increase in system time, and an
8% decrease in wait time over Ext3. Copy-on-change
combined with data compression results in wait time less
than even Ext3. This is offset by the increase in the sys-
tem time due to the compression of version files. As all
the versioned files are compressed, the space occupied
is the least among all the storage modes and it consumes
4.51 times the space consumed by Ext3.

For SPARSE, we recorded an 8% increase in elapsed
time, a 51% increase in system time, and a 3% increase
in the wait time over Ext3. Even though SPARSE writes
more data than COMPRESS, SPARSE performs better as
it does not have to compress the data. The performance
of SPARSE is similar to FULL mode since even a small
change at the beginning of the file results in the whole
file being written. SPARSE consumes 12.91 times the
space consumed by Ext3.



Space Retention Policy Figure 8 and Table 5 show the
performance of Versionfs for an Am-Utils copy with the
SPACE retention policy and each version set having an
upper bound of 140KB. We chose 140KB as it is median
of the product of the average number of versions per file
and the average version file size when all versions are
retained. We observed that the number of version files
increased for SPARSE and COMPRESS and decreased for
FULL. The space occupied by version files decreased.
This is because fewer versions of larger files and more
versions of smaller files were retained.
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Figure 8: Am-Utils copy results with SPACE and 140KB being
retained per version set. Note: benchmark times use the left
scale. Space occupied by each configuration at the end of copy
is represented by the black bars and use the right scale.

Ext3 Full Compress Sparse
Elapsed 78.3s 79.5s 93.6s 80.1s
System 7.7s 11.3s 29.2s 11.6s
Wait 69.9s 67.4s 63.6s 67.6s
Space 9.9MB 33.7MB 27.5MB 37.0MB

Overhead over Ext3
Elapsed - 2% 20% 2%
System - 47% 279% 51%
Wait - -4% -9% -3%

Table 5: Am-Utils copy results with SPACE and 140KB being
retained per version set.

For FULL, we recorded a 2% increase in elapsed time,
a 47% increase in system time, and an 4% decrease in
the wait time compared to Ext3. FULL consumes 3.40
times the space consumed by Ext3.

For COMPRESS, we recorded a 20% increase in
elapsed time, a 279% increase in system time, and 9%
decrease in the wait time over Ext3. COMPRESS con-
sumes 2.78 times the space consumed by Ext3.

SPARSE has a 2% increase in elapsed time, a 51% in-
crease in system time, and a 3% decrease in wait time
over Ext3. SPARSE consumes 3.74 times the space con-
sumed by Ext3. SPARSE takes more space than FULL

as it retains more version files. This is because SPARSE

stores only the pages that differ between two versions
of a file and hence has smaller version files. Conse-
quently, SPARSE packs more files and approaches the
140KB limit per version set more closely.

For all the configurations in this benchmark, we ob-
served that Versionfs had smaller wait times than Ext3.
This is because Versionfs can take advantage of Copy-
on-change and does not have to write a page if it has
not changed. Ext3, however, has to write a page even if
it is the same data being overwritten. The system time
increases for all configurations as a combined effect of
increased lookup times and copy-on-change compar-
isons. System time is the most for COMPRESS as the
system has to compress data in addition to the other over-
heads. Wait time is the least for COMPRESS as the least
amount of data is written in this configuration.

5.2.6 Recover Benchmark Results
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Figure 9: Recover results. READ is the time to read all files
if they were stored as regular files. FULL, COMPRESS, and
SPARSE are the times to recover all versions of all files in the
corresponding modes.

Figure 9 shows the time required to recover all the
versions of all files (3,203 versions) that were created by
the copy benchmark and the time to read all the versions
if they are stored as regular files. The average times to
recover a single file in FULL, COMPRESS, SPARSE, and
READ were 1.2ms, 1.5ms, 1.4ms, and 0.53ms respec-
tively. The recover times for FULL, COMPRESS, and
SPARSE were 2.2, 2.8, and 2.5 times that required to
READ, respectively. FULL was the fastest as the recov-
ery time in FULL is the time to copy the required version
inside of the kernel. The wait time for FULL increases
as the data has to be read from the version file and then
written into the recover file. COMPRESS was the slow-
est as it has to decompress each version. The amount of
I/O in COMPRESS is the least as it has to read the least
amount of data. However, the time gained in I/O is lost
in the system time used for decompressing data. SPARSE

mode has the most amount of I/O as it has to reconstruct
files from multiple versions as described in Section 3.2.



Benchmark FULL-COW FULL-COC COMPRESS-COW COMPRESS-COC SPARSE-COW SPARSE-COC

Am-Utils copy 370.7MB 141.6MB 168.4MB 44.5MB 370.9MB 127.4MB
Am-Utils compile 43.5MB 43.5MB 38.8MB 38.8MB 41.63MB 40.4MB

Table 6: Copy-on-write (COW) vs. Copy-on-change (COC).

5.2.7 Copy-on-Write vs. Copy-on-Change

Table 6 shows the space consumed by all the stor-
age policies for the Am-Utils copy and Am-Utils com-
pile benchmarks with Copy-on-write and with Copy-on-
change. In the Am-Utils copy benchmark, there were
considerable savings ranging from 73.6% for COM-
PRESS to 61.8% for FULL. The savings were good as
users generally tend to make minor modifications to the
files that copy-on-change can take advantage of.

For the Am-Utils compile benchmark, there is a 2.9%
savings in space utilization with copy-on-change in the
SPARSE mode and no savings in the FULL and COM-
PRESS modes. This is because there are more changes to
files in Am-Utils compile. Only SPARSE can take advan-
tage of copy-on-change in Am-Utils compile as SPARSE

works at a page granularity.

In summary, our performance evaluation demon-
strates that Versionfs has an overhead for typical work-
loads of just 1–4%. With an I/O-intensive workload,
Versionfs using SPARSE is 1.9 times slower than Ext3.
With all storage policies, recovering a single version
takes less than 2ms. Copy-on-change, depending on the
load, can reduce disk usage and I/O considerably.

6 Conclusions

The main contribution of this work is that Versionfs al-
lows users to manage their own versions easily and ef-
ficiently. Versionfs provides this functionality with no
more than 4% overhead for typical user-like workloads.
Versionfs allows users to select both what versions are
kept and how they are stored through retention policies
and storage policies, respectively. Users can select the
trade-off between space and performance that best meets
their individual needs: full copies, compressed copies,
or block deltas. Although users can control their ver-
sions, the administrator can enforce minimum and max-
imum values, and provide users sensible defaults.

Additionally, through the use of libversionfs, unmod-
ified applications can examine, manipulate, and recover
versions. Users can simply run familiar tools to access
previous file versions, rather than requiring users to learn
separate commands, or ask the system administrator to
remount a file system. Without libversionfs, previous
versions are completely hidden from users.

Finally, Versionfs goes beyond the simple copy-on-
write employed by past systems: we implement copy-
on-change. Though at first we expected that the com-
parison between old and new pages would be too expen-
sive, we found that the increase in system time is more
than offset by the reduced I/O and CPU time associated
with writing unchanged blocks. When more expensive
storage policies are used (e.g., compression), copy-on-
change is even more useful.

6.1 Future Work

Many applications operate by opening a file using the
O TRUNC option. This behavior wastes resources be-
cause data blocks and inode indirect blocks must be
freed, only to be immediately reallocated. As the exist-
ing data is entirely deleted before the new data is written,
versioning systems cannot use copy-on-change. Unfor-
tunately, many applications operate in the same way and
changing them would require significant effort. We plan
to implement delayed truncation, so that instead of im-
mediately discarding truncated pages, they are kept until
a write occurs and can be compared with the new data.
This can reduce the number of I/O operations that occur.

We will extend the system so that users can register
their own retention policies.

Users may want to revert back the state of a set of files
to the way it was at a particular time. We plan to enhance
libversionfs to support time-travel access.

Rather than remembering what time versions were
created, users like to give tags, or symbolic names, to
sets of files. We plan to store tags and annotations in the
version meta-data file.

We will also investigate other storage policies. First,
we plan to combine sparse and compressed versions.
Preliminary tests indicate that sparse files will compress
quite well because there are long runs of zeros. Second,
presently sparse files depend on the underlying file sys-
tem to save space. We plan to create a storage policy
that efficiently stores block deltas without any logical
holes. Third, we plan to make use of block checksums
to store the same block only once, as is done in Venti
[21]. Finally, we plan to store only plain-text differences
between files. Often when writes occur in the middle of
a file, then the data is shifted by several bytes, causing
the remaining blocks to be changed. We expect plain-
text differences will be space efficient.
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