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Distributed Tarpitting: Impeding
Spam Across Multiple Servers

Tim Hunter, Paul Terry, and Alan Judge – eircom.net

ABSTRACT

This paper describes an Irish ISP’s attempts to combat the abuse of resources caused by
unsolicited commercial email. We describe the extension of a multicast system, used to implement
POP-before-SMTP relaying, to share information about remote mail servers between multiple mail
systems. The information may then be used to tarpit abusive servers – placing delays between
SMTP protocol answers thus mitigating their impact on our systems. We then examine how
effective this has been, and come up with some ideas for future development.

We also discuss building a policy around this and other measures we use to combat spam. An
ISP is in the business of sending and receiving mail – this makes slowing or blocking mail a
delicate subject.

Introduction & Problem Statement

Unsolicited commercial email (spam) is a prob-
lem that, by now, needs no introduction. If you know
about email, you know about spam. There are whole
books on how to stop it, and it’s even on the nightly
news [1, 2]. The spam problem from an ISP perspec-
tive is also reasonably well known – spam is expen-
sive in terms of time spent receiving it, space spent
storing it, and staff months spent dealing with com-
plaints and the technical aspects of cleaning up after it.

Our company, eircom.net, is the ISP division of
eircom, the largest telecommunications provider in Ire-
land. It is also the largest internet provider in Ireland,
serving approximately 500,000 customers. To put this in
context, a recent survey estimated that around 766,000
adults in the south of Ireland use the Internet at home
[3]. As such, any impact on our services is very visible
– and is often reported in the media. Our problems with
spam are probably fairly average – both the consistent
low-level spam that slowly fills up our filesystems, and
high-volume assaults1 that have at least once slowed
even our recently retooled mail system solution [4].
However the impact of it, in terms of customer impres-
sion and our reputation, is relatively severe.

There are any number of popular solutions for
individual and group spam blocking available. The
simple ones are a good start – things like: don’t run an
open relay; don’t allow multiple recipients for null
sender; and verify that envelope sender contains a
valid domain. Yet the spammers seem to have worked
around them. Using a blocking list involves handing a
fair amount of responsibility and control to a third
party – something that would not make for a good
response to a customer unhappy with missed mail.
Content analysis tools bring up privacy issues [5], cost

1Which seem to frequently come on a Friday evening or over
the weekend. Ours is not always a polite adversary.

a lot in processing power, and tend to require tuning
for each individual recipient.

Having rejected those options, we looked around
for others and came upon tarpitting. The idea, when
applied to SMTP, is that when a sender has triggered the
tarpit, the SMTP server places an intentional delay
between processing of the sender’s ‘‘RCPT TO
<address>’’ command, and it’s ‘‘250 OK’’ response [6].
The tarpit delay is initially triggered by a particular rate
of sending mail. The delay can be increased if the sender
continues on sending at the maximum rate allowed.

This seemed to us to be a good middle ground –
it would dampen the blow of a dictionary attack2 or
other high-volume mailshot from a single source, pre-
venting server overload. If the sender turns out to be a
legitimate source, we have not entirely blocked the
flow of information to (or from) our customers. In
either case, while the server’s performance would not
reveal anything amiss, any high tarpit delay can be
used to trigger an alert to our operations group –
enabling them to examine the situation and decide to
block the sender entirely, or remove the delay. The
general customer base doesn’t see a problem, a mis-
takenly-captured legitimate sender is not entirely
blocked, and we remain in control of the situation.

An additional advantage of this approach was
that it fitted easily into our existing infrastructure.

Our Environment

We currently run several mail servers in parallel,
each providing POP and SMTP services using qmail
1.03 and vpopmail 5.0 for local deliveries [8, 9]. The
latter allows us to serve two ISPs (eircom.net and
indigo.ie) using the same hardware and software. We

2A dictionary attack is the attempt by a spammer to guess
user names on a server by using a large combination of com-
mon words, common names, and numbers [7].
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use a number of qmail patches from the general com-
munity, as well as local modifications to both qmail
and vpopmail. An SQL database is used to store provi-
sioning and configuration information.

Our current servers have dual one gigahertz Pen-
tium III CPUs, a gigabyte of memory, and run
FreeBSD. Together they handle 1200 messages per
minute on average, and many times that at peak times.
Traffic is distributed among these systems via a pair of
server load balancers. User and domain mail is stored
on shared NetApp [10] filers.

One of the services we provide is POP-before-
SMTP. This allows a user who is downloading their
mail from outside of our IP range to relay mail through
our servers for a certain amount of time after a success-
ful POP authentication. As a customer’s SMTP connec-
tion may reach a different server than the POP connec-
tion, potentially only a split second later, this informa-
tion must be rapidly shared between the servers. So the
information about who has POP’d, and when, is passed
between servers via multicast,3 and stored in a shared
memory table on each individual server. This table is
queried by a small application that runs in the
tcpserver4 exec chain and sets an environment variable
if the outside IP is allowed to relay. This is the basis
for our distributed tarpit information, and is covered in
greater detail in the following sections.

Existing Solutions & Other Work

In October 2002, when we began looking into
tarpitting in earnest, we did some searching about for
existing solutions – but generally assumed that we’d
have to do most of the work ourselves, and that the
information to be shared would fit fairly well into the
existing POP-before-SMTP infrastructure. We really
only came up with one close match – Chris Johnson’s
tarpit.patch [13]. It’s a good starting point, but doesn’t
implement, or have hooks for, the cross-session and
cross-server functionality we need.

In going back to look for prior art for this paper,
we came across the 2002 LISA paper on ‘‘Spam
Blocking with a Dynamically Updated Firewall Rule-
set’’ [14]. While this system wouldn’t have worked at
our site without changes, it certainly matches well
with our desire for a non-permanent/partial blocking
mechanism that is easily controlled. The modularity –
in passing data in and out of a central agent responsi-
ble for determining what is blocked – also matches

3Multicast [11] is a network protocol that allows one host
to send a packet to a selected set of hosts. It’s a middle
ground between sending to just one host (unicast), or all
hosts on the same LAN (broadcast). An application/host
‘‘signs in’’ to a multicast session by connecting to a desig-
nated multicast IP address.

4tcpserver is part of D. J. Bernstein’s ucspi-tcp package of
TCP client-server application tools [12]. We use it as a re-
placement for inetd, to monitor a port and invoke a program
or series of programs for each connection.

well with our solution (and the general qmail way of
doing things). Elements of their design may well be
incorporated into future updates of our system.

POP-before-SMTP Implementation: auth-record,
auth-monitord, and auth-lookup

qmail provides POP and SMTP service via two dif-
ferent daemons: qmail-pop3d and qmail-smtpd. In order
to implement POP-before-SMTP, we need each instance
of the POP daemon to record the IP address and times-
tamp, of a successful non-local authentication, into a
table shared across our mail servers. The timestamp indi-
cates when the entry should expire. When a subsequent
connection is made to the SMTP daemon, this daemon
must check for the connection IP address in the shared
table. If the IP address is found, and the entry has not
expired, then the SMTP service will allow relaying.

Like a number of D. J. Bernstein’s tools, qmail
separates functions into mutually untrusting programs.
These often run each other in a chain by having each
program do its bit and then exec any remaining com-
mand line arguments. Use of root is minimized and pro-
grams sometimes run as separate users. This approach
keeps programs small, promotes security and modularity
and also, incidentally, makes it easy for us to create new
programs and add new features without making exten-
sive (or sometimes any) changes to the existing code.

We use this modular approach to split up the
POP-before-SMTP tasks: sending out a multicast
packet containing the IP address; writing the IP
address and a timestamp into a shared memory table;
and reading the shared table. The first task happens
during the POP session, as a part of the exec chain,
which looks like this:

tcpserver → vchkpw → auth-record → qmail-pop3d

• The tcpserver process listens on port 110 and
forks a new exec chain for each incoming con-
nection, setting $TCPREMOTEIP, the IP
address of the remote system, among other
environment variables.

• vchkpw reads the username and password from
the network, and checks the entries against our
user database. If the username and password
are valid, vchkpw does a chdir() into the user’s
directory and execs auth-record. An invalid
username and password, a timeout, or the
QUIT command will result in the program exit-
ing and the connection being closed.

• If the IP address is not on our local network,
and the user is of a type allowed remote access,
auth-record sends a multicast packet containing
the IP address in $TCPREMOTEIP, and then
execs qmail-pop3d.

• qmail-pop3d takes POP3 protocol transaction state
commands (LIST, RETR, DELE, etc.) from the
connection and returns the appropriate response.

The second task is performed by a daemon called
auth-monitord. This program runs on each mail server
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and listens to the multicast session that auth-record talks
to. It reads the IP address contained in the multicast
packet and writes it, along with a timestamp in the
future, into a shared memory table. For example, if IP
address 1.2.3.4 establishes an authenticated POP con-
nection on server A at 14:45, auth-record on server A
sends a multicast packet that is picked up by servers A,
B, and C. Given a 15 minute timeout, the auth-monitord
process on these servers will write an entry into their
system’s shared memory table that looks like this:
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Figure 1: POP-before-SMTP example flow.

IP Address SMTP relay allowed until
1.2.3.4 15:00

auth-monitord scans the table on a regular basis
to clean out expired entries. The entry above will be
removed during the first scan after 15:00. However, if
another timestamp containing ‘1.2.3.4’ arrives at
14:55, the timestamp will be updated to 15:10 and the
entry will not be removed until after that time.

The use of multicast allows us to have the same
information in a shared memory table on each mail
server. It also removes any difficulty with race condi-
tions – multiple simultaneous writes are placed into a
(not necessarily ordered) queue by UDP/IP. auth-mon-
itord needs no table locking code – it merely pulls
entries one at a time from the queue.

Multicast is not a reliable protocol, so there is
some chance that the tables will not be exactly the
same across the mail servers. In general the chances of
this are quite low. However, if a mail server is
rebooted, or a new server is started, that server will
begin with an empty shared memory table, which
could be quite noticeable depending on the timeout
period. To rectify this, the newly-started auth-moni-
tord sends a multicast packet asking for a table dump
from the other servers. The replies consist of multicast
packets containing multiple entries with both IP
addresses and their appropriate timeouts.

The final POP-before-SMTP task, looking for an
entry in the shared memory table, is performed by
auth-lookup. This program is invoked as part of the
qmail-smtpd exec chain:

tcpserver → auth-lookup → qmail-smtpd
auth-lookup checks for the IP address, contained in
environment variable $TCPREMOTEIP, in the shared
memory table. If a table entry is present and has not
expired, auth-lookup sets the environment variable
$RELAYCLIENT with a null value. If this value is
set, qmail-smtpd will allow the incoming connection
to relay mail.

Figure 1 continues with our example data, and
illustrates the flow of information between mail client
and mail servers, and in between the mail servers
themselves. In order to simplify the diagram, the only
programs shown are auth-record, auth-monitord, and
auth-lookup. The POP-before-SMTP process proceeds
as follows:

1. At 14:45, the mail client on IP 1.2.3.4 estab-
lishes a POP3 connection with mail server A.
The client gives a valid username and password
to vchkpw, which then invokes auth-record.

2. auth-record sends a multicast packet that indi-
cates that ‘1.2.3.4’ has an authenticated POP3
connection. This packet is received by the auth-
monitord process on mail servers A, B, and C.

3. On each server, the auth-monitord program writes
an entry into the shared memory table for 1.2.3.4,
with a relay expiration time of 15:00.

4. At 14:50, after the mail client has downloaded
mail via POP3, it establishes an SMTP connec-
tion which is routed to server C.

5. auth-lookup is invoked, which checks for
1.2.3.4 in the shared memory table. As there is
an entry, and it has not yet expired, auth-lookup
then sets the $RELAYCLIENT environment
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variable and invokes qmail-smtpd (not shown).
The mail client on 1.2.3.4 will now be able to
relay mail through server C.

Tarpit Implementation

Theory

An SMTP tarpit, as we have implemented it,
starts off as a simple idea. If a particular remote sys-
tem has sent us more than r_max mail messages, we
insert a delay D between SMTP RCPT commands
from the remote system and responses from our sys-
tem. Then, as the number of messages continues
above r_max, we increase delay D again once we have
received r_max + r_tarpit_inc messages. We continue
to increase D each time the total received messages5

has increased by r_tarpit_inc. If we call the received
message count r_count, we get:

r_count < r_max → D = 0
(1)r_count = r_max → D = 1

r_count > r_max → D = 1 + Z

where Z = int
⎛
⎜
⎝

r_count − r_max

r_tarpit_inc

⎞
⎟
⎠

(and the int() function returns the number given with
any fractional portion stripped away, i.e., int(x) is 1 if
(x ≥ 1 and x < 2)).

We also set a maximum value for D, so that the
SMTP conversation does not violate the relevant
standards.6

Figures 2 and 3 illustrate how this should work
for a single SMTP session. For these examples we’ve
set r_max to 1000 messages, and r_tarpit_inc to 100.
The delay value is zero for the first 1000 messages,
and then increases in a linear fashion as more mes-
sages are sent in. The impact on how long it takes to
send messages to more than a thousand recipients is
shown in Figure 3. For this example, we assume that
the sender is sending to 4000 recipients, and can send
to five recipients per second. As shown, it takes less
than four minutes to inject the first 1000 recipients.
However, after this the sender is limited to one recipi-
ent per second (60 per minute) – and after another 100
recipients, 30 per minute, and so on. As the delay
increases, the time needed to insert another 1000
recipients increases exponentially.

5Unless specifically noted otherwise, when we’re talking
about number of messages in this paper, we’re referring to
the number of deliveries that the mail system is being asked
to make. Someone opening an SMTP connection to our
server can insert 100 messages with 1,000 recipients each –
and the server will attempt 100,000 deliveries as a result.
This is why the delay is inserted at the RCPT command, in-
stead of any other.

6Section 4.5.3.2 of RFC 2821 [6] indicates that an SMTP
client must wait five minutes for the response to an RCPT
command. It goes on to say ‘‘A longer timeout is required if
processing of mailing lists and aliases is not deferred until
after the message was accepted.’’ This could be interpreted
to mean that a longer delay would not directly violate the
standard.
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Figure 2: Behavior of Delay D as r_count increases.

0 1 2 3 4 5 6 7 8 9 10 11 12
time in hours

0

1000

2000

3000

4000

recipients

Figure 3: Cumulative recipients accepted over time.

Now, if we extend this idea beyond a single
SMTP session, we need to store r_count and an IP
address across sessions. We’ll get into the detail of
how this is done below – but you’ve already got the
basics from the discussion of auth-monitord and
friends. However, this brings up another problem. Any
remote mail server will eventually build up an r_count
larger than r_max, given enough time. We don’t want
to end up tarpitting every mail server that ever talks to
us. It’s impolite. Thus we need some way to periodi-
cally decrement the r_count values – slow enough that
we’ll catch real spammers, but fast enough that we
don’t tarpit benign mail servers.
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Here’s where things could get quite complicated –
an accurate view of how many messages were received
during a given time period would require multiple coun-
ters and at least one additional time counter. We don’t
want the shared memory table to be too large, so instead
we will store a single count value that we’ll periodically
modify using two more variables, r_divide_int and
r_subtract_int, in the following equation:

(2)r_count = int
⎛
⎜
⎝

r_count

r_divide_int

⎞
⎟
⎠

− r_subtract_int

struct table_entry {
struct in_addr client_address; /* Clients address */
time_t pop_expire_time; /* Expire time for POP check */
int r_count; /* RCPT TO’s issued (rough guess) */
time_t r_rop_time; /* Time for next reduction op */
int r_max; /* Max value for rcpt count before tarpit */
int r_untarpit; /* Must drop below this to get out of tarpit */
time_t r_last_entry; /* For reporting */
int conn_count; /* SMTP connections */
time_t conn_rop_time; /* Time for next reduction op */
int conn_max; /* Max value for conn count before tarpit */
int conn_untarpit; /* Must drop below this to get out of tarpit */
time_t conn_last_entry; /* For reporting */
int tarpit_delay; /* Determines if and how severely to tarpit */
int tarpit_max_delay; /* Max delay for tarpit */
int config_db_rev; /* If the IP is in the config DB.

Values are -1 : error
0 : ip not in db

1,2 : alternating db versions */
}

Listing 1: Shared memory table entry structure.

Now, we want to be polite and make sure that we
don’t tarpit every system that ever sends mail to us.
However, should a system trigger a tarpit delay, we don’t
want the reduction operation to let them off too easily.
Thus we add another threshold – r_untarpit. If a delay is
in place, r_count must drop below this value in order for
D to go back to zero. This changes Equation (1) a bit –
we now need to talk about Dc (current delay value) and
Dn (the next value after we decrement r_count).

Dc = 0 & r_count < r_max → Dn = 0

Dc > 0 & r_count > r_untarpit &
(3)r_count < r_max → Dn = Dc

r_count = r_max → Dn = 1

r_count > r_max → Dn = 1 + Z

where Z = int
⎛
⎜
⎝

r_count − r_max

r_tarpit_inc

⎞
⎟
⎠

By this time we’ve added a bit of complexity to
the simple idea of inserting a delay after a certain
number of messages are received. However, we
should note that the behavior, within an individual
SMTP session, is still that of Equation (1), as seen in
Figures 2 and 3. At the beginning of the session the
values of r_count and D are the same as the shared
values – the session will start with no delay if there is
no shared entry, and will start with a delay if both

shared values are greater than zero. After this point in
the session the delay D can only go up – there is no
reduction operation, and thus no need for an
r_untarpit lower threshold. When the session ends, the
count of RCPT commands received during that ses-
sion is added to the shared r_count value. Only the
shared r_count is subject to Equation (2), and only the
shared delay Dn is calculated using Equation (3).

We’ll see how this looks when we put everything
together in the next section.

Data

The theory above has accumulated a few vari-
ables that need to be stored in the shared memory
tables (the latter having been described in POP-before-
SMTP section). Listing 1 is the C structure description
of that table.

The client_address and pop_expire_time vari-
ables are simple – the former is the key field and indi-
cates what IP we’re describing. If the latter is set and
the current time is less than the value, then SMTP
relay is allowed from the IP address.

Next we have five variables related to receipt
counts. r_count and r_max describe the current and
first threshold recipient count value, as introduced in
Equation (1) from the last section. The r_count is
described as a rough guess based on the inexact nature
of our reduction operation. r_rop_time specifies the
time at which we will next perform the reduction oper-
ation detailed in Equation (2). Each time this operation
is run, this value is set to the current time plus
r_rop_interval, defined below. r_untarpit is the lower
threshold introduced in Equation (3). Finally,
r_last_entry is a timestamp indicating the last time
that the r_count value was incremented.

The values conn_count, conn_max, conn_rop_time,
conn_untarpit, and conn_last_entry are used to tarpit
based on number of SMTP connections. If conn_count
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goes above conn_max during the conn_rop_interval
(defined below), tarpit_delay will be calculated in the
same fashion as for excessive recipient counts. If a
delay is warranted based on both excessive recipient
and connection counts, tarpit_delay will be the sum of
the two delay calculations.

As you may have guessed, tarpit_delay is the
shared delay value. It is the starting delay value used in
qmail-smtpd, and is recalculated each time that the
r_count or conn_count values are incremented or decre-
mented. However, it will not be set higher than
tarpit_max_delay, a value customizable per IP address.

The final value stored, per IP, in the shared mem-
ory table, is the config_db_rev. If greater than zero,
the IP address in this table entry is also in the configu-
ration database. The configuration database gives us
the ability to set custom values for r_max, r_untarpit,
conn_max, conn_untarpit, and tarpit_max_delay. This
allows us to disable tarpitting (or at least set very high
thresholds) for systems like our own internal mail
servers or other ISP’s mail servers.7 It also allows us
to set lower than normal thresholds.

CREATE TABLE tarpit_authmonitor_config
(

r_subtract_int MEDIUMINT NOT NULL,
r_divide_int MEDIUMINT NOT NULL,
r_rop_interval MEDIUMINT NOT NULL,
r_max_default MEDIUMINT NOT NULL,
r_untarpit_default MEDIUMINT NOT NULL,
r_tarpit_inc MEDIUMINT NOT NULL,
conn_subtract_int MEDIUMINT NOT NULL,
conn_divide_int MEDIUMINT NOT NULL,
conn_rop_interval MEDIUMINT NOT NULL,
conn_max_default MEDIUMINT NOT NULL,
conn_untarpit_default MEDIUMINT NOT NULL,
conn_tarpit_inc MEDIUMINT NOT NULL,
pop_timeout MEDIUMINT NOT NULL,
tarpit_max_delay_default MEDIUMINT NOT NULL,
notarpit MEDIUMINT NOT NULL,
shm_table_entries MEDIUMINT NOT NULL,
last_modified TIMESTAMP NOT NULL,
created TIMESTAMP NOT NULL

);

Listing 2: SQL table definition for global tarpit con-
figuration.

The two legitimate values for this variable are 1
and 2. The differing values are used to update the
shared memory tables when a change is made to the
configuration database. If all non-zero config_db_rev
values in shared memory are ‘1’, and the configuration
database is updated, its revision will become ‘2’, and
the shared memory table will be updated accordingly.
The next update will reuse the revision value ‘1’.
While somewhat simplistic, this is sufficient for our
needs, as database configuration changes are rare. If
the value is less than zero, there was an error while
reading the configuration from the database.

7We hereafter refer to the practice of setting very high
thresholds for a particular IP as whitelisting that IP.
Whitelisting can also refer to disabling tarpitting (setting
tarpit_max_delay to zero) for a particular IP.

Our configuration database contains global set-
tings, in addition to the per-IP custom settings men-
tioned above. Listing 2 shows the SQL definition for the
table that holds these settings. The default values for the
customizable settings are stored here (r_max_default,
r_untarpit_default, conn_max_default, conn_untarpit_
default, and tarpit_max_delay_default).

The database also stores values for the count reduc-
tion operation described in Equation (2) – r_divide_int
and r_subtract_int. How often the reduction operation is
performed is determined by r_rop_interval. The number
of additional recipients needed to increment the tarpit
delay, after r_max, is r_tarpit_inc. These values also have
connection count counterparts.

The remaining miscellaneous settings are used to
set the POP-before-SMTP timeout (pop_timeout), size
of shared memory table (shm_table_entries), and
whether or not tarpitting is in use (notarpit). This last
value was used initially to give us an idea of what the
code would do without actually delaying any SMTP
sessions.

Figure 4 shows a series of four graphs that illus-
trate the theoretical performance of the tarpit code.
These graphs were plotted using data from a perl pro-
gram that simulates input to the mail system and the
tarpit response. The following spammer and tarpit val-
ues were used:
Spam parameters
Max simultaneous connections 100
Messages/connection 1000
Messages/second, per connection 5

Tarpit configuration
Reduction interval (minutes) 15
conn_max (not simulated)
r_subtract_int 5
r_divide_int 2
r_max 1000
r_untarpit 100
r_tarpit_inc 100
tarpit_max_delay (seconds) 30

Concentrating on the cumulative messages graph
first, we see that tarpitting generally works, but per-
haps not immediately as we suspect. During the first
hour, the overall insertion rate is slightly less than
29/sec (1700/min) – 17 per minute per connection.
After the first hour the injection rate settles to just
under 3.4/sec. Still not ideal, but enough to keep the
load on our servers reasonable. Were tarpitting dis-
abled, the injection rate from this example would be
about 250/sec. Over 24 hours the sender manages to
inject nearly 400,000 recipients – this would have
taken less than an hour without tarpitting.

Before examining some of the other interesting
aspects of the system’s behavior as a whole, let’s look at
the other variables graphed, and how they demonstrate
various aspects of the system. r_count would exactly
track the message total graph were it not for the
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reduction operation, which we can see happening every
15 minutes. After hour one, when the overall injection
rate becomes negligible, we can see the shape of Equa-
tion (2) on the r_count graph. The conn_count graph is
quite similar in shape to that of r_count – the
tarpit_delay graph would be as well, except for the limit
imposed by tarpit_max_delay. We can see the effect of
r_untarpit in the area where tarpit_delay stays at 8
between hours two and three – while the directly calcu-
lated tarpit_delay would have gone to zero almost
immediately, the r_untarpit functionality keeps it at the
last value calculated before r_count went below r_max.
There’s some argument to be made that the tarpit_delay
should stay at the maximum value achieved until the
count goes below r_untarpit.
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Figure 4: Theoretical example of cumulative mes-
sages, r_count, conn_count, and tarpit_delay val-
ues over one day.

Finally, why does the injection rate stay low,
even when r_count and tarpit_delay go to zero at hour
three? The key to this is the simple tarpit behavior
shown in Figure 3. The initial connections that start up
in hour zero have no initial tarpit value, and are never
tarpitted because they deliver exactly r_max messages.
However, after ten minutes, any new connections are
started up with a tarpit_delay value of 30 seconds.
While the shared tarpit_delay value is reduced every
15 minutes, the individual tarpit_delay value in each
qmail-smtpd process is not. So each connection started
with a tarpit_delay of 30 will take just over eight
hours to deliver its 1,000 messages!

This is reflected in the r_count and tarpit_delay
graphs – the bulk of the connections time out at eight
hour intervals. At these points there are a few sender
connections that get a zero tarpit_delay, complete

quickly, and drive up the shared tarpit_delay again for
the rest of the restarting connections. There are likely
a few connections in each cycle that start when the
shared tarpit_delay is between zero and 30 – this
would account for the intermittent small bursts of
activity, spaced two to four hours apart. These connec-
tions can be considered to be starting at various points
on the Figure 3 graph, and taking as much time as
needed to deliver 1,000 messages from that point. All
of this serves to stagger out the restarting connections,
so that we avoid seeing the 30 messages/sec slope at
eight-hour intervals.

We didn’t necessarily plan for it to work out this
smoothly – the straight lines and periodic behavior are
probably more a feature of the simulator than the system
itself. Still, somewhat confident that it works well in
theory, we proceed to setting it up to work in practice.

Mail System Modifications

As mentioned in the POP-before-SMTP section,
our pre-tarpit mail system calls qmail-smtpd as part of
an exec chain:

tcpserver → auth-lookup → qmail-smtpd

To implement tarpitting, we need auth-lookup to
pass tarpit details to qmail-smtpd, and we also need to be
able to write additional details into the shared memory
table. So with tarpitting, our exec chain looks like this:

tcpserver → auth-lookup →
qmail-smtpd → auth-record

auth-lookup

auth-lookup checks for an entry in the shared
memory table corresponding to the IP address passed
by the tcpserver process. It also pulls generic configu-
ration information out of a second shared memory
table, copied there from the configuration database by
auth-monitord.

The four values that it passes to qmail-smtpd (via
the environment) are $TARPIT_RCPT_REMAINING,
$TARPIT_DELAY, $TARPIT_MAX_DELAY, and
$TARPIT_INCREMENT (r_tarpit_inc). The first rep-
resents the remaining recipients allowed before
tarpit_delay is incremented – this is calculated in
auth-lookup to minimize the amount of code we’re
adding to the already weighty qmail-smtpd.

The values passed are based on the values stored
in shared memory for the source IP address of the con-
nection, or default values if the IP is not in the main
shared memory table. All values are passed as zero if
the global configuration variable notarpit is set to 1.

qmail-smtpd

We only make three, rather simple, modifications
to qmail-smtpd. The first is pulling the values set by
auth-lookup out of the environment. At this point, if
tarpit_r_remaining and tarpit_delay are zero, tarpit-
ting is disabled in this instance of the process. As zero
is the default value for these two variables, tarpitting
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will also be disabled if the environment variables
$TARPIT_RCPT_REMAINING and $TARPIT_DELAY
are not set.

The second modification is to the smtp_rcpt subrou-
tine. This is the subroutine that is called to parse the
RCPT command. At the end of the subroutine, after all
the regular checks and parsing, we add a simple few lines,
shown in Listing 3, that actually implement the tarpit.

/* tarpitting */
if (r_remaining == 0 &&

(tarpit_delay == 0 ||
tarpit_increment > 0)) {

if (tarpit_delay < tarpit_max_delay)
tarpit_delay++;

r_remaining = tarpit_inc;
}
if (notarpit == 0 && tarpit_delay > 0)

sleep(tarpit_delay);
if (r_remaining > 0)

r_remaining--;
r_count++;

Listing 3: C code in qmail-smtpd’s smtp_rcpt subrou-
tine to implement tarpitting.

The first if clause checks to see if the internal
tarpit_delay count needs to be increased. The increase
will happen if r_remaining is zero and either
tarpit_delay is zero (the initial case where r_count has
reached r_max), or tarpit_increment is greater than
zero. The tarpit_increment check is to verify that the
configuration is in a sane state. Even if all conditions
are set for an increase, tarpit_delay is not increased
above the tarpit_max_delay threshold.

We then simply sleep() for tarpit_delay seconds,
as long as tarpit_delay is non-zero and tarpitting is
enabled. Finally, we decrement r_remaining and
increment r_count. Even though one is more or less a
reflection of the other, their relationship is compli-
cated enough (see Equations (1) and (2)) to merit
recording them separately.

The last modification to qmail-smtpd allows it to
send the per-session recipient count information on to
the other systems. The main() subroutine is modified
to accept a command-line argument (the next program
in the exec chain) and store it in the global variable
‘‘argl’’. Then various relevant exit points are modified
to write qmail-smtpd’s internal r_count into the envi-
ronment variable $TARPIT_RCPT_COUNT, after
which the next program in the command chain is
invoked with execvp(). As mentioned above, this next
program is auth-record.

auth-record
The modifications to auth-record are fairly short.

An initial check is made to see if the $TARPIT_
RCPT_COUNT environment variable exists and is
non-null. If so, a multicast packet is sent containing
the recipient count value and a singular increment to
the connection count.

auth-monitord
auth-monitord is the daemon that establishes the

shared memory table used to store information about
POP-before-SMTP. It also records updates, regularly
scans the table to expire old entries, and will send out the
contents of its table to populate another server’s table.

Updated for tarpitting, auth-monitord has three
new features: an additional shared memory table to
store global configuration settings; global and per-ip
settings are read from a database and written to shared
memory at regular intervals; and the main shared
memory table now stores tarpitting information. Indi-
vidual tarpit_delay values are recalculated after per-IP
updates and during each table scan.

Pseudocode for the startup and main loop of auth-
monitord is shown in Listing 4. Most of it should be
fairly self explanatory – the tarpit_delay calculations
and reduction operations are as in the Theory section.
There are, however, a few details worth noting. The first
is that the shared memory table is hashed for faster
access, as our current table size is about 16,000 entries
(average number of valid entries on a weekday is about
7,600). This uses nearly a megabyte of memory.

auth-monitord is started at boot time, so it’s
almost certainly the first program on the system to
open the multicast session. When opening the socket
to be used for multicast communication, we set
SO_REUSEPORT on the socket so that the same port
may be used by multiple programs. In addition to
reads and writes from auth-monitord, one or more
copies of auth-record may be writing at the same time.

struct auth_message {
int op_code;
int table_len;
int version;
struct table_entry entry[0];

};

Listing 5: Multicast message structure.

Listing 5 shows the one simple message structure
used by auth-record and auth-monitord for passing
information. The op code is either AUTH_ADD, for
passing one table entry (table_entry is defined in List-
ing 1), AUTH_DUP, for passing multiple table entries,
or AUTH_GET, for requesting table entries from other
auth-monitords. The routine that sends the contents of a
shared memory table does so by sending multiple small
packets – each less than the size of the ethernet MTU.
The packets are sent with a 1 to 10 millisecond delay
between each one, in an attempt to avoid flooding the
network. An average update only takes a few seconds.

When an AUTH_GET request is issued, every
mail server sends out an update except the one that
requested the update. This results in multiple table
dumps going over the network at the same time – and
all auth-monitords process every update packet. While
not terribly efficient, this mechanism is simple to
implement, only happens when a mail system is
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rebooted, and ensures that all systems are in sync.
When a table entry is received, via AUTH_DUP, that
already exists in the table, the newer of the last_entry
times are used, and the entry with the larger (connec-
tion/recipient) count prevails, determining both the
count and the next reduction op time.

Load initial configuration from database (including shared memory table size);
Establish shared memory table and table data structure;

/* entries are hashed by last octet in IP address */
Copy configuration settings from database into shared memory;
Build multicast network socket;
Load per-IP configuration information from the database and place it in shared memory;
Send message with op code AUTH_GET to multicast port;
while (TRUE) {

Sleep until a message arrives or 5 seconds passes;
if (A message has arrived) {

Read message from network;
Discard message if source is a unicast address we don’t trust;
if (message_op_code == AUTH_ADD) { /* single entry from auth-record? */

Sanity-check entry, add it to the table;
Recalculate its tarpit_delay ;

} elseif (message_op_code == AUTH_DUP) { /* multiple entries from another
auth-monitord, in response to an AUTH_GET */

Sanity check (multiple entries); add them to the table;
Recalculate tarpit_delay values;

} elseif (message_op_code == AUTH_GET) {
Send contents of our shared memory table;

}
} /* end if a message has arrived */
if (It has been five minutes or more since last table scan) {

Load global and per-IP configuration information from the database;
Update copy in shared memory;
/* Scan table: */
Expire POP times if appropriate;
Perform connection and receipt-count reduction operations that are due;
Remove empty entries;
Insert new default values if appropriate;
Recalculate tarpit_delay

}
}

Listing 4: Pseudocode for auth-monitord.

The other source of shared memory table
updates, aside from auth-record messages, is the con-
figuration database. The database is re-read about
every five minutes, and the config_db_rev variable
mentioned earlier is used to implement any changes
needed to individual table entries. The update routine
sets config_db_rev to 1 if the previous revision was 2
or an error (zero or less), and to 2 otherwise. It then
writes all per-IP configuration settings from the
database into the shared memory table, marked with
the current config_db_rev.8 When the subsequent
database scan is performed, entries with a revision of
less than one have values like r_max checked against
the database default, and updated if the default has

8This means that the shared memory table always contains
an entry for an IP that has custom thresholds in our database.
Given that we currently only have 100 custom entries, this
isn’t yet a problem.

changed. If an entry with custom settings is not
marked with the current config_db_rev, it must have
been removed from the database, and is therefore
removed from the table.

Finally, it’s worth noting that auth-monitord also
uses two sanity check routines quite frequently:
table_check verifies that shared memory data structure
pointers are valid, and is run every time the table is
searched or scanned; table_check_entry verifies that a
particular entry has expected values, and is run each
time an entry is added or updated. If these checks were
not performed, a corrupted entry or table could either
shut down the SMTP service or turn the system into
an open relay – either option is highly undesirable.

User Interface

A user interface is needed for tarpitting for three
reasons – as a debugging tool, to allow changes to the
configuration, and to tell us who is being tarpitted so that
they may be either whitelisted or blocked from sending
mail entirely (blacklisted). Almost coincidentally, we
have a tool for each reason: auth-dump, a web interface,
and auth-watch.
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• auth-dump does what it says on the tin. For
each entry in the shared memory table, a line is
printed with the entry values separated by
colons. Useful, but not exactly user friendly.

• Our web interface, however, is user friendly. It
provides the ability to change global configura-
tion settings, list per-IP entries, as well as add,
modify, or delete per-IP entries. It also provides
a snapshot view of the current shared memory
table, allowing us to see which currently active
systems have custom thresholds.

Top auth-dump entries [rcpts>50], by rcpt count [log 59870: 1384.7]
Sat Jul 19 02:01:52 2003 - Mon Aug 4 02:32:34 2003

IP Address r_count diff conn_count tarpit_delay
1 17.16.128.142 1675/2943 529 214 7/022
2 17.18.233.246 365/0782 0 6  0/000
host.domain.com

3 17.17.54.155 256/0488 92 256 0/000
yetanother.net.

4 192.68.62.241 170/0170 0 3  0/000
5 17.21.82.39 140/0520 39 5 0/000
6 192.168.171.156 122/0122 35 122 0/000
7 17.31.38.230 112/0112 15 3 0/000
8 192.168.52.10 110/0110 0 1  0/000
obvious.spammerdomain.name

9 192.168.48.10 108/0108 12 4 0/000
10 17.17.122.2 100/1168 41 327 0/000
11 17.22.191.99 90/0369 -3 4 0/000
12 17.18.234.10 90/0140 -9 24 0/000

Figure 5: auth-watch output.

• The final tool, auth-watch, is a perl script that
provides a running/historical view of the shared
memory table. As seen in Figure 5, it shows the
current r_count and tarpit_delay values and the
highest values seen during the run of the pro-
gram. The ‘diff’ value shown is the difference
between the current r_count and the one five min-
utes ago – indicating how active the sender is.

Tarpitting in Practice

Policy
Much of the problem in detecting and preventing

spam is finding the line between what is and is not spam.
Similarly, tarpitting must be tuned to find the balance
between not catching spammers and unduly impeding
legitimate customers. Even if we achieve this goal suc-
cessfully, what do we do if we find a customer system in
the tarpit? Here we must decide between two more
extremes: do we immediately set custom parameters, so
that the customer is not tarpitted again, or do we assume
there’s a problem on the customer’s system and block
their ability to send until they resolve it? If we take the
position that the customer is always right – and in turn
fail to detect a customer open relay sending mail through
our servers, this may result in the ISP’s mail servers
being added to one of the many distributed block lists.
This in turn harms all customers.

Finding these balances is a bit of a thorny prob-
lem. It’s also clearly not something that technology can

solve. The solution, or at least the agreed way to go in
looking for it, should involve the people who will have
to clean up if things get messy – customer support,
sales, and management. To this aim, we developed a
policy document before we brought the system live.

A policy document that deals with tarpitting may
also want to deal with general questions about the use of
SMTP services. Terms like SMTP and blacklisting, and
concepts like relaying need to be clearly defined. Some
of the questions that such a document might address:

• Who will we relay for?
• Who will we accept mail for?
• Who will be tarpitted?
• What happens when we find someone in the

tarpit?
• Adding to and removing from an (internal)

whitelist or blacklist.
• Monitoring and reporting.

Having such a policy, agreed upon and signed
off, is unlikely to protect you from the thorns – but it
should provide something of a cushion.
Performance

The tarpit software has been installed on our pro-
duction systems since November of 2002. However, it
was in measurement-only mode (notarpit=1) until
mid-February of 2003. At that point the ability to
delay mail was enabled, but the thresholds were still
set quite high. A few weeks later, we were reasonably
sure that the system was working as expected, without
any side effects. At this point we lowered the thresh-
olds to realistic values.

Prior to this point we’d begun to see intense bursts
of incoming mail on a regular basis. These incidents
would drive our delivery attempts up to five or ten times
the normal rate, resulting in some combination of: load
spikes, mail delays, queues overflowing with undeliver-
able bounce messages, and/or bursts of mail from our
systems to one or more external ISPs. The latter resulted
from spam sent to invalid addresses bouncing to a fake
return address at the ISP or ISPs in question.
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Since early March we have not been as drastically
affected by spam. This does not mean that we have
eliminated it entirely. We’ve even experienced a few
more burst incidents, but tarpitting has kept the volume
of the bursts down to only 2-3 times our normal traffic.

Figure 6 shows data gathered from an actual
spam sender. This set of data conveniently shows what
works, and what doesn’t work, about tarpitting. In the
first two hours of the data set, recipient addresses are
sent in at a fairly rapid pace, and tarpitting kicks in
after 15 minutes – on average the rate is 7 mes-
sages/sec, and more than 40,000 messages are sent in
total. The fluctuations in tarpit_delay are directly
related to the reduction operations on r_count.

The sender appears to have noticed that tarpitting
is taking place, and then tries to work his way around
it. Over three hours, 3000 messages are sent at a rate
of about 20/min. Entirely reasonable. Finally, at 6.5
hours, things start to pick up again. Over the next 4.5
hours, mail is sent at a more rapid pace, but tarpitting
isn’t triggered. The sender doesn’t come to our atten-
tion except during the last burst at the end. Still, in
order to stay under our radar they had to keep their
send rate at two messages/sec.
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Figure 6: Actual example of cumulative messages
and tarpit values for sender seen on July 25.

Overall, the tarpit software is doing a good job of
preventing denial-of-service levels of spam. Yet we’d
prefer that anybody sending 40,000 messages in a four
or five hour period was brought to our attention, and
either whitelisted or blacklisted.

Future Work

The first focus area for improvement is the
‘grace period’ – this is the time period where a

spammer opening multiple connections can get a large
number of messages in before tarpitting starts. Multi-
ple connections opened at the same time, when the
shared tarpit_delay is zero, result in (r_max × connec-
tions) messages getting in without being delayed. This
also accounts for the initial steep slope in the Figure 4
messages graph, which we have seen in practice. So
our first idea for improvement was to ask qmail-smtpd
to send incremental updates – instead of updating the
shared memory table at the end of a session, update it
every time 100 RCPT commands have been issued.

In an ‘‘ideal world’’ situation with lots of con-
nections opening in a short period of time, and mes-
sages being sent as quickly as possible for as long as
possible, this doesn’t make a lot of difference. Under
these conditions, data in the shared memory table only
benefits new connections – and the bulk of the new
connections happen all at the same time as seen in
Figure 4. However, if new connections are established
in a more random fashion, incremental updates would
help ensure that more accurate estimates are available
to the connections. In either the ideal or real world
cases, incremental updates also give an administrator a
more accurate view of the state of the tarpit system.

Another accuracy issue is shared table synchro-
nization across systems – as is, tables are never going
to be entirely in sync: each system does its own reduc-
tion operations, which won’t happen at the same time,
and multicast is not a reliable protocol, so there is the
potential for lost updates. We’ve discussed a few ideas
for improvement, but generally we’ve tried to avoid
depending too much on strict synchronization – dis-
tributed systems are an entire field of study in them-
selves, and not what we want to concentrate on.

As an alternative solution, we could limit the
number of recipients per connection. A related idea
would be limiting (across all servers) the number of
connections that a remote system is allowed to open at
one time.9 To do this accurately we would need to
send a connection-count update at the beginning of the
qmail-smtpd session, changing our exec chain:

tcpserver → auth-lookup → auth-record →
qmail-smtpd → auth-record

The first auth-record would be configured to
only send a connection count update, and the second
to only send a recipient count update, in order to keep
the connection counter accurate. The auth-lookup
would be configured to exit directly, dropping the con-
nection if the connection count read was at or higher
than the maximum. Going back to our theoretical
example, we see the following results:

9The connection count values in the shared memory table
were originally intended to implement connection tarpitting,
trapping one-message-per-connection spammers. Observa-
tion has shown that our current setup would likely only
catch customers with misconfigured mail servers that open
multiple SMTP connections without sending anything.
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Messages/sec
First hour Thereafter

Figure 4 30 3.4
16 3.5Limit recipients per

connection by half
Limit connections by half 15 1.8
Both of the above 8.1 2.0

While primarily intended to reduce the initial
input rate, these ideas also seem to help with the
steady-state rate. Unfortunately our simulator doesn’t
quite seem to emulate the somewhat less steady traffic
as seen in the real world example of Figure 6. One of
the ideas that this graph suggests to us, but which
would likely show no effect on our simulation, is a
less-drastic reduction operation formula. A less-drastic
drop (perhaps achieved merely by changing
r_divide_int to be a floating point value) should
remove the rapid fluctuations seen in shared
tarpit_delay value during the first wave of messages.
This also has its downside – the reduction operation is
designed to be fairly rapid, in order to avoid
penalizing our dynamic IP customers. If one customer
were to send mail at a rate high enough to trigger a
tarpit delay, and then disconnect, a delay that remained
in place for several hours would end up affecting any
other customer that was allocated that same IP
address. This is clearly something we want to avoid.

We could, however, implement slower reduction
operations if we were able to add per-network entries
to the database and shared table (as opposed to per-IP
entries). We would also make r_divide_float one of
the customizable values. These changes would enable
us to make the default reduction curve longer than that
used for our own dynamic-IP networks. This would
also enable us to change other defaults for our
customers in general – giving us the ability to tighten
controls with less risk of reducing service to the
customers. A similar idea would be to not only set
defaults by network, but tarpit by network – helping
us catch spammers who establish multiple connections
from multiple contiguous addresses.

A further obvious way to reduce the steady-state
input rate, without the need for any code changes, is to
increase the tarpit_max_delay. Applied to our
theoretical example this has no effect on the initial rate,
and drops the long-term rate to 1.9 messages/sec. The
relevant RFC seems to allow us up to a five minute
delay value. These delays not only reduce the incoming
rate of spam, but extract a cost – in system resources –
from the sender. However, they also extract a cost from
us.10 It might therefore be a good idea to drop all

10One suggestion for fighting the spam problem is to find a
method of charging the sender for each message sent. D. J.
Bernstein proposes that all mail be stored on the sender’s
system, or at the sender’s ISP [15]. Adam Back’s Hashcash
system would charge the sender in CPU cycles, by requiring
them to produce a token that is difficult to compute but easy
to verify [16]. Microsoft’s Penny Black research project is
investigating several sender-pays techniques [17].

connections from the sender’s IP address after they
have reached the maximum tarpit delay level for a
certain period of time. An extension to this might be a
separate timeout (longer than the reduction operation
would dictate) for those IP addresses that end up in a
drop-all-connections state – making our system a bit
more like Deny-Spammers [14].

The final idea we’ve had on how to improve
tarpitting would be to ‘seed’ the configuration
database with information from a network blocking
list. Entries could automatically be inserted with
thresholds that would cause connections from the
listed addresses to be given an immediate delay. Thus
mail would still be allowed in, at very slow rates, from
senders who may have been listed incorrectly, or who
have fixed their spam problem but not yet been
removed from the list. It would also give us the local
control we desire – an entry in the configuration
database with higher-than-normal settings, or a ‘do not
blacklist’ flag, would not be overwritten by a program
loading entries from a blocking list.

Conclusion

At the end of 2002 we were faced with an
unexpectedly high volume of incoming mail, and with
extremely high volume bursts of mail from individual
sources. Both problems were largely attributable to a
rising tide of unsolicited commercial email. The
implementation of tarpitting was intended to dampen
the burst attacks, and greatly slow the flow of mail
from point sources sending tens or hundreds of
thousands of messages. It was also intended to give us
a fine degree of control over its behavior, have
minimal impact on the customers, and require little
change to our existing mail systems.

Ta r p i t t i n g has definitely helped with the burst
attack problem – in the five months since it was turned
on, we have not seen any concentrated attacks of the
magnitude that we were seeing on a regular basis before
that time. Unfortunately, in its current state, it has not
solved the general incoming spam problem. As our real
world example demonstrated, it’s still possible to inject
40,000 messages into our system, in less than six hours,
without triggering a tarpit delay. However, we’ve got
many ideas for improving it, and we’ve even
theoretically demonstrated that some will work. Overall
it’s a useful addition to our spam-fighting toolbox.

There may be other tools out there that would
suit us – even tools designed for ISPs much larger
than ourselves. One problem with being an ISP is that
you are a large target for those sending spam. One can
easily see how this would make an organization
reluctant to publish any but the vaguest details about
how they are fighting spam – much less actual tools.
It’s clear that those who distribute spam spend as
much time finding new ways to send it as we do
finding ways to stop it. Thus a pessimistic viewpoint
would say that writing this paper just makes their job
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easier. In writing this paper we hope to find a middle
ground between hiding everything and full disclosure.
Better coordination and information sharing between
ISPs (and other large mail volume sites) would lower
the volume of spam for everyone.

Availability

How and what code to make publicly available
is still under review. If the code is made available, a
pointer to it will be available from http://www.
qmail.org.
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